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Abstract: The advancement of remote sensing has enabled the creation of high-resolution Digital
Elevation Models (DEMs). Topographic features such as slope gradient (SG), local convexity (LC),
and surface texture (ST), derived from DEMs, are related to subsurface geological conditions. In South
Korea, bedrock depth (Dbedrock) and the average shear wave velocity of soil (VSsoil) serve as metrics
for determining the site class, which represents the degree of site amplification in seismic design
criteria. These metrics, typically measured through geotechnical and geophysical investigations,
require predictive methods for preliminary estimation over large areas. Previous studies developed
an automatic terrain classification (AC) scheme using SG, LC, and ST, and subsequent research
revealed that terrain classification effectively represents subsurface conditions such as Dbedrcok and
average shear wave velocity down to 30 m depth. However, AC intrinsically depends on the regional
features of DEMs, dividing regions based on nested means of topographic features (SG, LC, and ST).
In this study, we developed two terrain classification methods to determine the thresholds of class
divisions, aiming to optimize Dbedrock and VSsoil predictions: Sequentially Optimized Classification
(SOC) and Non-Sequentially Optimized Classification (NOC). Through the study of the sensitivity
of terrain classification methods, smoothing levels, and threshold levels for terrain class generation,
we identified the best classification method by comparing it with the geological and mountainous
region distribution. Subsequently, we developed DEM-dependent regression models for each class to
enhance the accuracy of predicting Dbedrock and VSsoil. The main findings of this study are: (1) the
terrain class map suggested in this study represents the distribution of alluvial plane and mountainous
regions well, and (2) the DEM calibration for each class provides increased accuracy of Dbedrock and
VSsoil predictions in South Korea. We anticipate that the terrain class map, along with Dbedrock

and VSsoil maps, will be effectively utilized in geological interpretations and land-use planning for
seismic design.

Keywords: DEM; slope; convexity; texture; bedrock depth; average shear wave velocity; terrain
classification

1. Introduction

South Korea’s national seismic design standard classifies soil using bedrock depth
(Dbedrock) and the average shear wave velocity of soil layers (VSsoil) [1]. Ground investi-
gations at new construction sites typically involve drilling surveys to determine Dbedrock
and geophysical methods such as downhole and suspension P-S logging tests for VSsoil.
However, these ground surveys are often impractical for existing structures and numer-
ous buildings which lack prior data. A preliminary approach that estimates Dbedrock and
VSsoil using available topographic data (e.g., elevation, slope) can offer valuable insights
for broader area site classifications. Representatively, Wald and Allen [2] and Allen and
Wald [3] developed a relationship model for VS30 (i.e., time-averaged shear wave velocity
down to 30 m depth) using the slope calculated from a Digital Elevation Model (DEM).
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In addition, there are studies using machine learning techniques with DEM data to de-
velop a Dbedrock map in China [4], and using linear regression analysis based on DEM and
slope to develop a VS30 model in South Korea [5]. Moreover, there are studies that predict
the soil–rock interface and rockhead elevation using machine learning techniques with
borehole data [6,7]. As noted, DEM has been the main resource used in the prediction of
subsurface conditions.

The advancement of remote sensing has significantly progressed the development of
DEM [8]. Traditionally, DEMs were derived from stereo pairs of satellite images, providing
global coverage with a moderate resolution [9]. In the 2000s, the Shuttle Radar Topography
Mission (SRTM) marked a significant shift by using radar interferometry to achieve a 30 m
resolution mapping of the Earth [10]. Further enhancement came with aerial Light Detection
and Ranging (LiDAR) systems, which brought DEM accuracy down to centimeter-level
precision, proving to be particularly advantageous in forested areas due to their capability
to penetrate vegetation [11]. In South Korea, the National Geographic Information Institute
(NGII) provides a DEM with a 90 m resolution for the Korean Peninsula and one with a
5 m resolution for South Korea derived from aerial photogrammetry using stereo pairs
of satellite images and topography maps [12]. In addition, the advent of modern LiDAR
technology has further refined its accuracy, which enables it to provide a 1 m resolution
DEM for city regions. As a result, South Korea’s DEMs are available in 1 m, 5 m, and
90 m resolutions, with the 90 m resolution DEM being accessible via the National Spatial
Data Infrastructure (NSDI) portal [13]. However, the 1 m and 5 m resolution DEMs remain
restricted from public access.

As the DEM provides the elevation of the surface, surface characteristics such as
slope gradient (SG), local convexity (LC), and surface texture (ST) can be generated from
the DEM [14]. These topographic features are instrumental in analyzing surface soil
characteristics and the underlying geology. Iwahashi and Pike [14] (IP07) introduced a
terrain classification scheme based on the SG, LC, and ST topographic features. They
established an automatic terrain classification method using these features to distinguish
16 terrain classes and validated their approach by comparing the classifications with
known geology and landforms. Table 1 lists dominant landforms and lithologic units
per terrain class in Japan [14]. Low-number classes (1–8) are related to mountains and
volcanic landforms, while high-number classes (9–16) are related to soil deposits. These
terrain classes effectively represent the geomorphic and geologic features of the surface,
but as noted in IP07, the classification’s effectiveness might vary depending on regional
differences, resolution, and vertical intervals in the DEMs used.

Table 1. Dominant landforms and lithologic units per terrain class in Japan (adapted from Iwahashi
and Pike [14]).

Class Landforms and Lithology Class Landforms and Lithology

1 Mountain. Cretaceous accretionary complexes
(plutonic rocks) 9 Volcanic hill. Holocene pyroclastic flow deposits

2 Volcano. Holocene mafic volcanic rocks 10 Volcanic footslope. Pleistocene volcanic debris

3 Mountain footslope. Chert (exotic blocks) 11 Valley bottom plain. Pliocene marine
sedimentary rocks

4 Mountain footslope. Holocene mafic volcanic rocks 12 Alluvial fan. Holocene sediments

5 Volcanic hill. Pleistocene pyroclastic flow deposits 13 Terrace covered with volcanic ash soil.
Pleistocene sediments

6 Volcanic footslope. Pleistocene volcanic debris 14 Alluvial fan. Pleistocene sediments

7 Mountain footslope. Pliocene mafic volcanic rocks 15 Sand dunes. Holocene sediments

8 Mountain footslope. Pleistocene volcanic debris 16 Natural levee. Holocene sediments
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Terrain classes from IP07 have been applied in various studies worldwide to deduce
geotechnical properties such as the average shear wave velocity in the top 30 m (VS30)
and bedrock depth (Dbedrock). For instance, Vilanova et al. [15] developed a VS30 model for
Portugal that incorporated terrain classifications to predict seismic site behaviors. Similarly,
other studies have utilized DEM-based terrain classifications to map seismic risks and
site conditions in diverse regions like Iran [16], Indonesia [17], North Korea [18], and
California [19]. Moreover, Furze et al. [20] demonstrated the use of terrain attributes in
mapping Dbedrock with a random forest algorithm.

This study aims to find terrain classes which correspond to geologic units in South Ko-
rea, and infer Dbedrock and VSsoil values based on terrain classes and DEM. We implemented
three methods for terrain classification: (1) Automated Classification (AC) aligned with
the IP07 approach, (2) Sequentially Optimized Classification (SOC) that defines thresholds
to minimize Dbedrock standard deviation at each division stage, and (3) Non-Sequentially
Optimized Classification (NOC) that employs a Monte-Carlo simulation to identify thresh-
olds, minimizing Dbedrock standard deviation across all classes. We utilize a 90 m resolution
DEM from the NSDI portal. The 1 m DEM only covers city regions, and the 5 m DEM is
not open to public access. The 30 m DEM from the SRTM project [10] is available, but we
chose the local DEM to capture the local topographical variations. Using the 90 m DEM,
we generated multiple SG, LC, and ST layers for sensitivity analysis of the smoothing
window and threshold effects. We further calculated Dbedrock by fitting a linear model to the
elevation of the DEM at each class. Finally, the resulting terrain classes are compared with
geological layers and the prediction performance of Dbedrock and VSsoil are evaluated.

2. Data

This section discusses the ground investigation data utilized in this study and the
methods employed for deriving SG, LC, and ST. Ground investigation provides Dbedrock
and VSsoil, while SG, LC, and ST are prediction variables used for estimating terrain classes.

2.1. Ground Investigations

The ground investigation data encompass borehole logs with geological strata and
Standard Penetration Test (SPT) results, as well as VS profiles. These elements determine the
Dbedrock and VSsoil at a given site. Dbedrock is ascertained by identifying the depth to a soft rock
layer or a stiffer layer, while VSsoil is an average of the shear wave velocities of soil layers
calculated from VS travel times. The Geotechnical Information Database System (GeoInfo)
in South Korea [21] is a crucial repository for this data, containing 349,869 borehole records
as of October 2023. Among these, 115,608 borehole logs reach the bedrock for Dbedrock
calculations, but only 1891 logs include VS profiles derived from geophysical investigations.
To overcome the deficit in VS profiles, we have leveraged SPT N-values, which are widely
available, correlating them to VS using the N-VS model [22]. In the absence of N-values,
a median VS for each soil layer, as defined in Heo and Kwak [22], is utilized to fill in the
missing VS data. Additionally, we filtered out sites that are poorly located due to the
potential errors from the coordination system when the raw data are supplied. Ultimately,
we produced Dbedrock and VSsoil data for 113,208 sites. Figure 1 presents the distribution of
these sites in South Korea.

2.2. Topographic Features

The terrain classification in this study leverages DEM-related topographic features:
SG, LC, and ST. These features’ calculations are influenced by kernel window size and the
thresholds of binary classification. Figure 2 shows the study area, the DEM used in this
study, and three example topographic features (SG, LC, and ST) derived from the DEM.
The derivation of SG, LC, and ST is described in the following sessions.
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Figure 2. (a) Map of South Korea and study area (Seoul), (b) DEM used in this study, (c) slope
gradient (SG), (d) local convexity (LC), and (e) surface texture (ST) derived from DEM in South Korea.

2.2.1. Slope Gradient (SG)

SG quantifies the change in elevation over a distance. To compute SG, a 3 × 3 kernel
matrix, where the sum of each value is zero, is first applied to the same dimension of the
elevation matrix to derive dx and dy components as per Equations (1)–(4) [23]:

kernelSG,x =

1 0 −1
2 0 −2
1 0 −1

 (1)

kernelSG,y =

 1 2 1
0 0 0
−1 −2 −1

 (2)

dx =
[elev] : kernelSG,x

sum(abs(kernelSG,x))× resDEM
(3)

dy =
[elev] : kernelSG,y

sum
(
abs

(
kernelSG,y

))
× resDEM

(4)

where kernelSG,x and kernelSG,y are kernel matrices for the x and y directions, respectively,
and [elev] is a matrix with DEM values (i.e., elevations), and : indicates the inner product
of the two matrices. The summation of the absolute values of the kernel matrix and
the resolution of DEM (resDEM) are divided into Equations (3) and (4) for normalization.
Therefore, slope in radian (slp) is the arctangent of the square root of the sum of the squares
of dx and dy (Equation (5)).

slp = tan−1
(√

dx2 + dy2
)

(5)

SG is the value in degree converted from slp. If the size of kernel window increases, it
smooths the SG values. Figure 3 compares SG calculations over different kernel sizes for
the Seoul region in South Korea. Among various smooth levels, the SG with a 3 × 3 kernel
window is adopted for use in the terrain classification carried out in this study because the
SG with a 3 × 3 kernel window does not strongly emphasize the noise from the DEM, as
noted in Iwahashi et al. [24].
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Figure 3. (a) Satellite image for the Seoul region and slope gradient maps with (b) 3 × 3 kernel
window, (c) 5 × 5 kernel window, and (d) 7 × 7 kernel window.

2.2.2. Local Convexity (LC)

LC measures surface curvature. By applying various kernel matrices to the DEM, LC
quantifies the convexity or concavity of the terrain:

conv = [elev] : kernelLC (6)

where kernelLC is a kernel matrix and conv is the resulting convexity. Positive values of conv
indicate a convex shape, while negative values indicate a concave shape. In IP07, rather
than using raw conv values, binary values, which are zero if conv is less than a certain
threshold and one if conv is greater than the threshold, are averaged within a certain radius
to calculate LC. Iwahashi et al. [24] calculated LC using thresholds greater than 0 for the
determination of concave shape. In addition, the window size of kernelLC can be varied.
For the 3 × 3 window size, the Laplacian kernel is used, and for the 5 × 5 and 7 × 7 sizes,
Laplacian of Gaussian kernels are used:

kernelLC,3×3 =

 0 −1 0
−1 4 −1
0 −1 0

 (7)
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kernelLC,5×5 =


0 0 −1 0 0
0 −1 −2 −1 0
−1 −2 16 −2 −1
0 −1 −2 −1 0
0 0 −1 0 0

 (8)

kernelLC,7×7 =



0 0 −1 −1 −1 0 0
0 −1 −3 −3 −3 −1 0
−1 −3 0 7 0 −3 −1
−1 −3 7 24 7 −3 −1
−1 −3 0 7 0 −3 −1
0 −1 −3 −3 −3 −1 0
0 0 −1 −1 −1 0 0


(9)

Figure 4 shows LCs for the Seoul region with different kernel sizes and thresholds (1,
2, and 3 m). The radius of circular range is determined based on the kernel window sizes
(10 grids for 3 × 3, 15 grids for 5 × 5, and 20 grids for 7 × 7 window size). Window sizes
larger than the 3 × 3 size (Figure 4d–i) smooth LC too much so that the resolution level is
significantly decreased regardless of threshold variation. The higher threshold ignores the
low-level concave shape so that it distinguishes flat and concave areas more sharply (e.g.,
Figure 4c comparing to Figure 4a). Thus, we selected the 3 × 3 window size with 1 to 3 m
threshold values for the sensitivity study in the subsequent section.
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2.2.3. Surface Texture (ST)

ST assesses terrain roughness. In IP07, ST is calculated as the average number of
either pits or peaks within a certain circular range. If a DEM value is higher or lower than
the median within a window, one is assigned to the cell; otherwise, zero is assigned. The
average of these binary values within a circular range is determined to be the ST value.
An ST close to one indicates a highly textured area, while an ST close to zero indicates
flat terrain. This method is highly dependent on the vertical interval of the DEM; if the
vertical interval is at the millimeter level, almost every cell would be assigned one, whereas
if the vertical interval is large (e.g., 10 m), most cells would be assigned zero. To address
this issue, Iwahashi et al. [24] introduced a threshold; the absolute value of the difference
between a DEM value and the median must be greater than this threshold for a cell to be
assigned as one.

Figure 5 displays the STs for the Seoul region using 3 × 3, 5 × 5, and 7 × 7 window
sizes with three different thresholds (1, 2, and 3 m). Similar to the LC calculation, the radius
of the circular range is dependent on window sizes (10 grids for 3 × 3, 15 grids for 5 × 5,
and 20 grids for 7 × 7 window size). The level of smoothing in the ST correlates with the
selected window size, ranging from light smoothing (3 × 3) to heavy smoothing (7 × 7),
and the threshold level more clearly distinguishes between flat and textured areas (e.g.,
Figure 5c comparing to Figure 5a).
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2.3. Geological Features

The 1:50,000 geologic maps, collected from the Korean Institute of Geoscience and
Mineral Resources (KIGAM) [25], provide a detailed representation of geological formations
and alluvial distribution on the surface of the earth. Furthermore, in conjunction with
maps of mountainous regions from the national cadastral map collection of the NSDI [13],
we found that geological formations in mountainous regions are from an old geologic era,
and Quaternary alluvium is distributed around the outside of the mountainous region.
Comparing the terrain classification results with these geological maps helps in assessing
the accuracy of the topographic features validated in IP07 [14].

Figure 6a shows the distribution of surface geology in the Seoul region. Quaternary
alluvium dominates near the river, and a region older than Quaternary (Precambrian and
Jurassic) can be seen in the hilly and mountainous areas. The mountainous region map
delineates the extent of mountainous terrains (Figure 6b). This map highlights the areas of
high elevation, ruggedness, and slope steepness, which are relevant to terrain classification.
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3. Methods of Terrain Classification
3.1. Analysis Cases

SG, LC, and ST are parameters which are influenced by the size of the smoothing
window and threshold values, which yield diverse values and, consequently, different
terrain classifications. Lighter smoothing typically results in highly variable SG, LC, and
ST values over small areas. The thresholds that determine a positive value for LC and ST
influence the level of consideration given to convexity and texture. Therefore, it is crucial
to determine which combination of smoothing level and threshold produces terrain classes
that best correlate with geologic formation and Dbedrock and VSsoil within the region of South
Korea. For SG analysis, a 3 × 3 window size is consistently used. In the case of LC, the
kernel window size is fixed at 3 × 3, but the thresholds for determining a positive value
vary from 1 to 3 m. For ST, the window sizes range from 3 × 3 to 7 × 7, with corresponding
thresholds which also range from 1 to 3 m. This approach results in a total of nine cases,
as detailed in Table 2. It is noted that the DEM provided by NSDI has a base resolution of
90 m grid size with a vertical interval measured in micrometers.
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Table 2. Analysis of cases with varying filter sizes and vertical intervals for the calculation of slope
gradient (SG), local convexity (LC), and surface texture (ST).

Case Threshold for LC (m) Window Size 1 and Calculation
Radius for ST (grids)

Thresholds for ST
(m)

1 1 3 × 3, 10 1
2 1 3 × 3, 10 2
3 1 3 × 3, 10 3
4 2 5 × 5, 15 1
5 2 5 × 5, 15 2
6 2 5 × 5, 15 3
7 3 7 × 7, 20 1
8 3 7 × 7, 20 2
9 3 7 × 7, 20 3

1 1 window size = 90 m grid.

3.2. Automated Classification (AC)

Iwahashi and Pike [14] proposed an Automated Classification (AC) method which
partitions a study area into 8, 12, or 16 terrain classes based on SG, LC, and ST. These classes,
though derived from topographic data, correlate strongly with the landforms and geological
structures in the region [14]. This study adopts the 16-class system to accommodate all
combinations of SG, LC, and ST values. This system is suitable for a wide area with diverse
topographical features [14]. These 16 classes are defined based on three threshold values
for SG, LC, and ST, respectively, which are determined through nested means at each
classification phase. Figure 7 shows the criteria defining the 16 classes. SG, LC, and ST
values are divided sequentially at each phase according to their 1st (SGTH1, LCTH1, STTH1),
2nd (SGTH2, LCTH2, STTH2), and 3rd (SGTH3, LCTH3, STTH3) phase thresholds, forming
16 distinct classes. In the 1st phase, classes 1 to 4 are defined by following steps:

(1) Divide the SG into two groups based on the SGTH1, which is the mean of the whole SG;
(2) Divide the nested LC, where the SG is steeper than SGTH1 (SG1), into two groups

based on the LCTH1, which is the mean of the nested LC (i.e., LC1 that is greater than
LCTH1 and LC2 that is lower than LCTH1);

(3) Divide the nested ST, where the SG is steeper than SGTH1 (SG1), into two groups
based on the STTH1, which is the mean of the nested ST (i.e., ST1 that is greater than
STTH1 and ST2 that is lower than STTH1);

(4) Denote regions with [SG1, LC1, and ST1] as Class 1, with [SG1, LC1, ST2] as Class 2,
with [SG1, LC2, ST1] as Class 3, and with [SG1, LC2, ST2] as Class 4.

The 2nd phase defines classes 5 to 8 similarly to the 1st phase but using an SG that is
gentler than SGTH1 and steeper than SGTH2 (SG2) with LCTH2 and STTH2. The 3rd phase
defines classes 9 to 16, where classes 9 to 12 are defined using SG3, which is an SG gentler
than SGTH2 and steeper than SGTH3 and classes 13 to 16 are defined using SG4, which is an
SG gentler than SGTH3. For the 3rd phase, LCTH3 and STTH3 are applied to classes 9 to 16.

Figure 8 presents the terrain classification map of the Seoul region, generated using the
AC for each case outlined in Table 2. The terrain classifications exhibit minimal variation
across the cases. Within the same window size category (Cases 1–3, 4–6, and 7–9), the
regions classified as plains (high number classes) extend into areas previously categorized as
mountainous or hilly edges (low number classes) with an increasing number of thresholds.
Modifying the LC threshold (e.g., Cases 1, 4, and 7) does not substantially alter the extent
of the classes; however, there is a slight increase in class numbers in mountainous regions.
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3.3. Sequentially Optimized Classification (SOC)

The AC method primarily categorizes major terrain types based on SG. Typically,
mountainous regions, characterized by steep SG values, are associated with shallow
bedrock depth and rapid shear-wave soil velocity. Conversely, areas with gentle SG
are often composed of sedimentary layers and landfills, where deeper Dbedrock and slower
VSsoil are expected. Consequently, employing SG as a primary classification criterion is
justified. However, the AC’s approach of utilizing the nested mean as the threshold in
South Korea, results in a high SG threshold because most of the area is mountainous, and
so the average SG is high. As a result, AC’s approach cannot distinguish flatter regions into
various classes.

To address this, we introduced Sequentially Optimized Classification (SOC), which
determines thresholds for SG, LC, and ST by minimizing the standard deviation in the
Dbedrock residuals at each classification phase. Residuals are calculated as the difference
between the actual Dbedrock and the median Dbedrock of a terrain group, expressed in natural
logarithm. For instance, in the first phase, the optimal SG threshold (SGTH1) is identified
by finding the value that minimizes the standard deviation of Dbedrock residuals for the
two groups—divided into low and high SGTH1. Dbedrock predictions for each group are
determined by the median value within that group. This procedure is replicated to define
optimal thresholds for SG, LC, and ST in subsequent phases.

Figure 9 presents the terrain classification maps for the Seoul region utilizing SOC
for each case. Compared to AC, there is a reduction in the terrain class numbers across all
regions. The regions with high class number (greater than 9) alluvial deposits are greatly
shrunk, and mountainous regions are mostly composed of class numbers 1 to 3 for all cases.
The influence of smoothing levels and threshold values on terrain classification is observed
to be similar to that in AC-derived classes.
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3.4. Non-Sequentially Optimized Classification (NOC)

While AC and SOC begin their classification with SG, followed by LC and ST, implying
a dependency of the latter classifications on the initial SG division, the Non-Sequentially
Optimized Classification (NOC) approach differs by simultaneously optimizing thresholds
for SG, LC, and ST. NOC employs random number generation to minimize the overall
standard deviation of Dbedrock residuals. To this end, we generated 100,000 sets of uniformly
distributed random numbers within the range of 0 to 20 degrees for SG, and 0 to 0.6 for
both LC and ST, subsequently identifying the optimized threshold set. This method allows
for the determination of SG, LC, and ST thresholds that are not predicated on their ‘parent’
classification group, unlike the sequential dependencies in AC and SOC.

Figure 10 shows the terrain class maps generated using NOC in the Seoul region for
each case. Comparing these to the terrain class maps generated by AC and SOC, the NOC
maps show a better match with the actual alluvial plain distribution and mountainous re-
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gion distribution. In particular, Case 2 (Figure 10b) shows the best match; the top-right area
has the lowest class number, which corresponds to the mountainous region, and high class
numbers (yellowish colors), indicating flat regions, correspond to Quaternary alluvium.
Case 1 (Figure 10a) has a limited area of high class numbers in the flat region. Cases 3 and
7 have similar class distribution to Case 2, but their representation of mountainous regions
and alluvial deposits is worse than Case 2. Cases 4 to 6 and 7 to 8 do not represent the
geologic distribution well either.
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4. Results
4.1. Prediction of Bedrock Depth and Average VS of Soil Layers per Terrain Class

Upon classifying a region, we obtain the mean Dbedrock and VSsoil for each class, calcu-
late the residuals, and assess prediction accuracy by estimating the standard deviation of
residuals. SOC follows the classification scheme suggested by IP07 (i.e., AC): it classifies
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SG, LC, and ST in order. The difference between SOC and AC is that SOC does not use
the class division thresholds as the mean of each topographic feature, but instead uses
thresholds which minimize the standard deviations. On the other hand, NOC randomly
selects class division thresholds for SG, LC, and ST, and finds the set which minimizes the
standard deviations. The main difference between SOC and NOC is the independence of
determining the division thresholds. In SOC, a selected division threshold is dependent on
the division threshold selected in the previous phase. For example, the division threshold
for LC is dependent on the division threshold for SG, and the division threshold for ST
is dependent on the division threshold for LC. On the other hand, in NOC, the division
thresholds for SG, LC, and ST are not dependent each other because all the thresholds are
randomly selected.

To determine the most effective case and method among the nine cases and three
methods, we analyzed the standard deviations in Dbedrock and VSsoil residuals, assigning
equal weight to each class across all cases with AC, SOC, and NOC, as detailed in Table 3.
As a result, Case 1 in the NOC scheme stands out across all methods, but this is due to
the very limited number of data points within the classes (only two points for class 11 and
six points for class 15) causing low standard deviations. We selected Case 2 (3 × 3 grid, 2
m threshold) from NOC method as the optimal case due to following reasons; 1) number
of data points are at least greater than seven for all the classes, and 2) the distribution of
terrain classes corresponds well to the alluvial plane (high number class) and mountainous
regions (low number class).

Table 3. Standard deviation (σln) in natural log unit of Dbedrock and VSsoil for terrain classes classified
using AC, SOC, and NOC schemes for all cases.

Case
AC SOC NOC

σln
(Dbedrock) σln (VSsoil)

σln
(Dbedrock) σln (VSsoil)

σln
(Dbedrock) σln (VSsoil)

1 0.871 0.234 0.819 0.211 0.721 0.19
2 0.865 0.235 0.807 0.21 0.831 0.229
3 0.869 0.235 0.781 0.211 0.833 0.225
4 0.868 0.234 0.8 0.212 0.833 0.221
5 0.866 0.234 0.791 0.208 0.784 0.232
6 0.864 0.235 0.773 0.209 0.832 0.211
7 0.867 0.234 0.776 0.219 0.833 0.228
8 0.868 0.235 0.793 0.206 0.824 0.218
9 0.864 0.236 0.775 0.21 0.819 0.22

Table 4 presents the thresholds defined by AC, SOC, and NOC for Case 2. AC’s SG
thresholds are significantly higher than those of the other methods. Given the predom-
inantly mountainous terrain of the Korean Peninsula, this leads to excessively high SG
thresholds in AC, failing to accurately represent the relatively flat terrains, and conse-
quently resulting in a greater standard deviation for Dbedrock and VSsoil (refer to Table 3). On
the other hand, the SG threshold in SOC’s second phase is too low, so the flatter area is
occupied with low class numbers. The SG thresholds in NOC are well distributed. Thus,
even though the SOC scheme provides a lower standard deviation for Dbedrock and VSsoil in
general, we selected NOC to match the geological representation.
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Table 4. Thresholds classifying slope gradient (SG), local convexity (LC), and surface texture (ST)
of terrain classes using the Automated (AC), Sequentially Optimized (SOC), and Non-Sequentially
Optimized Classification (NOC) schemes for Case 2.

Scheme/Case Phase SG (deg) LC ST

AC/Case 2
1 11.08 0.254 0.234
2 4.67 0.205 0.174
3 1.86 0.152 0.109

SOC/Case 2
1 2.1 0.214 0.263
2 0.32 0.154 0.046
3 0.12 0.071 0.030

NOC/Case 2
1 3.77 0.188 0.232
2 1.88 0.242 0.079
3 0.58 0.197 0.048

Figure 11 displays boxplots for Dbedrock and VSsoil and Table 5 lists the number of data
points and the median and standard deviation of Dbedrock and VSsoil for each terrain class
under NOC for Case 2. The medians for Dbedrock and VSsoil are calculated by first removing
outliers, then computing the median for each group. This outlier elimination helps to
exclude anomalous Dbedrock and VSsoil data that were potentially caused by coordinate
errors in the raw dataset. The median Dbedrock increases with the higher number of terrain
classes which correspond to the flat region. For VSsoil, the median values become slower for
high number of classes, but the difference between the steep region (low number classes)
and the flat region (high number classes) is not significant.
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Table 5. Median (xm) and standard deviation (σln) of natural log unit of Dbedrock and VSsoil for terrain
classes classified using NOC with Case 2.

Terrain Class Number of Data Points
Dbedrock VSsoil

xm (m) σln xm (m/s) σln

1 21,597 5.0 0.953 304 0.254
2 18,071 6.9 0.925 312 0.252
3 63 9.1 0.879 304 0.201
4 10,487 8.0 0.885 307 0.237
5 4154 5.5 0.927 300 0.258
6 8 12.5 0.878 301 0.266
7 12,954 8.0 0.855 300 0.241
8 7121 10.3 0.868 301 0.233
9 5032 6.8 0.872 296 0.236
10 126 8.9 0.727 318 0.225
11 12,280 9.6 0.781 293 0.220
12 11,062 13.5 0.822 297 0.215
13 883 7.3 0.751 285 0.228
14 17 5.6 0.644 255 0.216
15 5250 10.8 0.768 279 0.201
16 13,404 17.5 0.757 277 0.187

4.2. Regression with DEM

While elevation is a key predictor for Dbedrock and VSsoil, the terrain classes do not in-
herently convey elevation values. The alluvial deposits become thicker (increase in Dbedrock)
and the soil particle size becomes finer (decrease in VSsoil) along a decreasing elevation.
To refine the prediction of Dbedrock and VSsoil considering the soil deposit environment, we
employ a power model based on DEM elevation for each class. Figure 12 plots elevation
against Dbedrock and VSsoil by class. In steep terrain (low number classes, 1 to 7), Dbedrock are
not greatly influenced by elevation, whereas in flatter terrains (high number classes, 8–16),
there is a discernible correlation between elevation and Dbedrock. For VSsoil, the elevation
dependence is not as strong as Dbedrock, but there is slight increase in VSsoil with an increase
in elevation. This suggests that incorporating elevation into a regression model could
enhance the precision of Dbedrock and VSsoil predictions beyond terrain classification.

To account for elevation dependency, the following power models for Dbedrock and
VSsoil are applied:

Dbedrock = c0 × elevc1 (10)

VSsoil = d0 × elevd1 (11)

where [c0, c1] and [d0, d1] are regression coefficients for each class, and elev represents
the elevation in meters. Note that the resultant Dbedrock is in meters and VSsoil is in me-
ters/second. Table 6 provides the regression coefficients and their significance level (i.e.,
p-value) as well as their standard deviations for each class. For Dbedrock, classes of [3,6,14]
do not markedly improve prediction accuracy with model adjustments (p-value > 0.1%)
due to limited number of data points and flat model prediction. In addition, class 10 has the
most limited range of available elevations even though the p-value is less than 0.1%. Note
that we used a p-value of 0.1% as the significance level. For VSsoil, classes [5,6,10,13,14] have
highest p-values, and class 3 also has the most limited range of elevation. For these classes
(i.e., 3, 6, 10, 14 for Dbedrock and 3, 5, 6, 10, 13, 14 for VSsoil), use of the median is recom-
mended rather than using fitted models. Utilizing elevation models for each class reduces
the total standard deviation from [0.865, 0.233], which solely uses median estimation, to
[0.844, 0.231] for Dbedrock and VSsoil, respectively. Note that we limited the elevation range
to [0.1, 1000 m] when applying it to models as not to have excessive Dbedrock and VSsoil.
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Table 6. Regression coefficients for Dbedrock and VSsoil prediction and standard deviation of residuals
at each terrain class.

Class
Dbedrock VSsoil

c0 c1 σln p-Value d0 d1 σln p-Value

1 7.88 −0.111 0.95 <0.1% 296.6 0.009 0.254 <0.1%
2 7.38 −0.041 0.925 <0.1% 265.4 0.038 0.25 <0.1%
3 1.02 0.434 0.849 4.1% 148.1 0.152 0.185 <0.1%
4 10.31 −0.084 0.882 <0.1% 257.0 0.047 0.234 <0.1%
5 11.43 −0.18 0.914 <0.1% 302.5 0.004 0.258 46.3%
6 11.09 −0.059 0.877 91.4% 163.4 0.16 0.243 30.9%
7 11.98 −0.125 0.847 <0.1% 273.1 0.028 0.239 <0.1%
8 18.54 −0.212 0.852 <0.1% 270.5 0.036 0.232 <0.1%
9 16.72 −0.23 0.839 <0.1% 279.2 0.017 0.235 <0.1%

10 42.07 −0.433 0.69 <0.1% 410.9 −0.075 0.221 4.6%
11 16.97 −0.179 0.758 <0.1% 261.7 0.037 0.216 <0.1%
12 32.00 −0.321 0.77 <0.1% 283.6 0.019 0.214 <0.1%
13 16.93 −0.218 0.713 <0.1% 277.1 0.015 0.227 3.4%
14 12.84 −0.166 0.642 78.3% 647.4 −0.229 0.206 24.8%
15 18.60 −0.202 0.724 <0.1% 256.8 0.034 0.196 <0.1%
16 34.87 −0.341 0.656 <0.1% 270.2 0.019 0.186 <0.1%

Figure 13 presents maps of Dbedrock and VSsoil across the Korean Peninsula using
models as recommended in Table 6. The most regions have a Dbedrock of <20 m and a VSsoil
of >300 m/s, but some alluvium regions (e.g., Busan, Pohang, or Goheung) have deep
Dbedrock (20 to 75 m) and soft VSsoil (250 to 280 m/s).
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5. Discussion
5.1. Dbedrock and VSsoil Prediction Performance

This study suggests two ways of predicting Dbedrock and VSsoil: (1) using the median val-
ues of Dbedrock and VSsoil at each class, and (2) using the elevation model (Equations (10) and
(11)), for which the coefficients are listed in Table 6. As noted above, for classes [3,6,10,14]
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for Dbedrock and [3,5,6,10,13,14] for VSsoil, median values were used instead of the elevation
model. We evaluated the prediction performance of these two methods by comparing the
standard deviation of the residuals using the natural log unit (σln) for Dbedrock and VSsoil.
Figure 14 shows the σln at each class and the total data points. In the case of Dbedrock, the
reduction in σln is high for high class numbers (9–16), where the maximum reduction was
seen in class 16 (13.3% reduction). In the case of VSsoil, the reduction in σln is not significant;
the maximum reduction was 2.3% for class 15. Again, we found that the elevation has
more of an impact on the prediction of soil thicknesses in flatter regions, but the VS of a soil
deposit is not related to elevation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 25 
 

 

  
(a) (b) 

Figure 13. Maps of (a) Dbedrock (red color gradient) and (b) VSsoil (blue color gradient) for the Korean 

Peninsula. 

5. Discussion 

5.1. Dbedrock and VSsoil Prediction Performance 

This study suggests two ways of predicting Dbedrock and VSsoil: (1) using the median 

values of Dbedrock and VSsoil at each class, and (2) using the elevation model (Equations (10) 

and (11)), for which the coefficients are listed in Table 6. As noted above, for classes 

[3,6,10,14] for Dbedrock and [3,5,6,10,13,14] for VSsoil, median values were used instead of the 

elevation model. We evaluated the prediction performance of these two methods by com-

paring the standard deviation of the residuals using the natural log unit (σln) for Dbedrock 

and VSsoil. Figure 14 shows the σln at each class and the total data points. In the case of 

Dbedrock, the reduction in σln is high for high class numbers (9–16), where the maximum 

reduction was seen in class 16 (13.3% reduction). In the case of VSsoil, the reduction in σln is 

not significant; the maximum reduction was 2.3% for class 15. Again, we found that the 

elevation has more of an impact on the prediction of soil thicknesses in fla�er regions, but 

the VS of a soil deposit is not related to elevation. 

 
(a) 

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 25 
 

 

 
(b) 

Figure 14. Comparison between standard deviations of residuals for each class using median pre-

dictions and elevation models for (a) Dbedrock and (b) VSsoil. 

5.2. Comparison with Other Thresholds 

Previous studies revealed that terrain classification is related to geological formations 

[6,16]. Comparing terrain class maps for nine cases from three methods with geological 

and mountainous maps of the Seoul region (Figures 8–10), we decided that Case 2 of the 

NOC method is the best-matched case. To further validate the applicability of the terrain 

class map developed in this study, we compared the terrain class maps for Case 2 with 

the 1:50,000 scale geological and mountainous maps of different regions (Busan, Pohang, 

and Goheung) in South Korea, as shown in Figure 15. The comparison revealed a good 

correspondence between terrain classes and geologic divisions for the NOC method. For 

instance, classes with low class numbers showed a significant overlap with mountainous 

terrains. 

In addition, the thresholds determined in this study were specifically optimized for 

predicting Dbedrock and VSsoil. However, it is crucial to examine how these thresholds are 

juxtaposed with those from other studies, which may have been developed for different 

regions or under varying geological conditions. To establish the robustness of our opti-

mized thresholds, we compared the terrain classes generated using our methodology with 

classes defined by thresholds from other research efforts. Table 7 compares the thresholds 

for SG, LC, and ST chosen in this study with thresholds created for the world and Japan 

[14]. The world contains all terrain regions on the Earth so the median SG is low, while 

for Japan, the median SG is high because Japan consists of volcanic islands. The SG thresh-

olds in this study are in between the world and Japan cases, and the LC and ST thresholds 

are lower than other cases. Figure 15 shows terrain class distributions defined using the 

world and Japanese cases for the Busan and Pohang regions. The world case predicts a 

narrower range of alluvium for class number 16 and cannot distinguish the mountainous 

regions well. The Japanese case, which has high SG thresholds, assigned class number 16 

to too large an extent, and the resolution of classification is low for mountainous regions. 

This suggests that a region-specific calibration of the thresholds is imperative for achiev-

ing meaningful terrain classification. 

Table 7. Thresholds classifying slope gradient (SG), local convexity (LC), and surface texture (ST) to 

terrain classes by this study (NOC, Case 2) and other studies. 

Region Phase SG (deg) LC ST 

Korea (90 m grid; NOC, Case 2) 

1 3.77 0.188 0.232 

2 1.88 0.242 0.079 

3 0.58 0.197 0.048 
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5.2. Comparison with Other Thresholds

Previous studies revealed that terrain classification is related to geological forma-
tions [6,16]. Comparing terrain class maps for nine cases from three methods with geo-
logical and mountainous maps of the Seoul region (Figures 8–10), we decided that Case
2 of the NOC method is the best-matched case. To further validate the applicability of
the terrain class map developed in this study, we compared the terrain class maps for
Case 2 with the 1:50,000 scale geological and mountainous maps of different regions (Bu-
san, Pohang, and Goheung) in South Korea, as shown in Figure 15. The comparison
revealed a good correspondence between terrain classes and geologic divisions for the
NOC method. For instance, classes with low class numbers showed a significant overlap
with mountainous terrains.
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Figure 15. Maps of mountainous and surface geology, and the classification of terrain class maps
for the Busan (a–c), Pohang (d–f), and Goheung (g–i) regions based on this study (a,d,g), the world
(b,e,h), and Japan (c,f,i).

In addition, the thresholds determined in this study were specifically optimized for
predicting Dbedrock and VSsoil. However, it is crucial to examine how these thresholds are
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juxtaposed with those from other studies, which may have been developed for different
regions or under varying geological conditions. To establish the robustness of our optimized
thresholds, we compared the terrain classes generated using our methodology with classes
defined by thresholds from other research efforts. Table 7 compares the thresholds for SG,
LC, and ST chosen in this study with thresholds created for the world and Japan [14]. The
world contains all terrain regions on the Earth so the median SG is low, while for Japan, the
median SG is high because Japan consists of volcanic islands. The SG thresholds in this
study are in between the world and Japan cases, and the LC and ST thresholds are lower
than other cases. Figure 15 shows terrain class distributions defined using the world and
Japanese cases for the Busan and Pohang regions. The world case predicts a narrower range
of alluvium for class number 16 and cannot distinguish the mountainous regions well. The
Japanese case, which has high SG thresholds, assigned class number 16 to too large an
extent, and the resolution of classification is low for mountainous regions. This suggests
that a region-specific calibration of the thresholds is imperative for achieving meaningful
terrain classification.

Table 7. Thresholds classifying slope gradient (SG), local convexity (LC), and surface texture (ST) to
terrain classes by this study (NOC, Case 2) and other studies.

Region Phase SG (deg) LC ST

Korea (90 m grid; NOC, Case 2)
1 3.77 0.188 0.232
2 1.88 0.242 0.079
3 0.58 0.197 0.048

World (1 km grid; AC)
1 1.76 0.456 0.669
2 0.48 0.454 0.639
3 0.20 0.450 0.590

Japan (270 m grid; AC)
1 8.05 0.462 0.650
2 3.26 0.451 0.606
3 1.30 0.439 0.539

6. Conclusions

This study presented a comprehensive approach for classifying terrain in South Ko-
rea using DEMs, focusing on estimating Dbedrock and VSsoil. By applying three distinct
classification methods—Automated Classification (AC), Sequentially Optimized Classifi-
cation (SOC), and Non-Sequentially Optimized Classification (NOC)—to DEM-derived
topographic features (slope gradient, local convexity, and surface texture), we effectively
correlated terrain classes with subsurface geotechnical properties and geologic formation.
Our analysis revealed that the NOC method, particularly for Case 2 (3 × 3 window size,
2 m threshold), provided the most accurate terrain classification when being correlated
with geological and mountainous maps in addition to minimizing the standard deviation
of errors in Dbedrock and VSsoil. The main findings of this study are listed below.

(1) The results of this study indicate the capability of the NOC method to not only predict
subsurface conditions but also reflect the geologic formation of the landscape. The
Dbedrock and VSsoil are the result of geologic formations, so the terrain classes derived
from our study can be applied to geological interpretations.

(2) The incorporation of a regression model based on DEM elevation significantly en-
hanced the prediction accuracy for Dbedrock, and showed a moderate enhancement in
predicting VSsoil.

(3) This study highlights the importance of considering regional specificity when setting
thresholds for terrain classification, as evidenced by the varying effectiveness of world
and Japan cases applied to South Korean regions.

Our classification scheme and Dbedrock and VSsoil prediction models have the potential to
serve as a preliminary guide for geologic explorations and land-use planning as well as site
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assessments, particularly in areas where detailed geologic maps and ground investigations
are unavailable.

Although the suggested method can be applied to any region, the limitation of the
suggested terrain class divisions is that they are dependent on the classification method,
smoothing, and the thresholds. Thus, the use of other DEMs (e.g., high resolution DEM)
or the application of our methods to other regions require further sensitivity analyses. In
addition, the values of Dbedrock and VSsoil are from a limited number of sites, so the suggested
results can not represent the values for entire region. Therefore, a further sensitivity study
is required if a different DEM is used or the method is applied to other regions, and a
validation process is essential for data points that are not used in the model development.

Future work could extend the scope of this methodology by incorporating a broader
array of geospatial data to refine terrain classification and enhance the prediction of subsur-
face properties. While the current study utilized SG, LC, and ST for terrain classification
and elevation data for Dbedrock and VSsoil refinement, integrating additional topographic
attributes such as relative elevation and curvature could potentially yield more precise
results. Moreover, the employment of machine learning techniques with an increased num-
ber of topographic attributes targeting geologic, geomorphic, and subsurface conditions is
a promising avenue for the classification of regions.
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