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Abstract: The impact of extreme climate events on vegetation growth and ecosystem function has
garnered widespread attention, particularly in plateau regions, which are facing increasingly severe
environmental pressures. This study employs the Events Coincidence Analysis (ECA) method to
examine the impacts of extreme climate events on the Net Primary Productivity (NPP) of vegetation
in plateau regions. Specifically, we focus on the unique phenomenon of asymmetric daytime and
nighttime warming and evaluate the compounding effect of extreme precipitation with extreme
temperature events. The results indicate that grassland NPP has higher overall sensitivity and
Coincidence Rates (CR) to extreme precipitation events compared to extreme temperature events.
Specifically, extreme drought events significantly negatively impact grassland NPP, and the sensitivity
of NPP increases with the severity of extreme drought events. In lower elevations (<3200 m), grassland
NPP shows a strong response to extreme precipitation events, with sensitivity decreasing with
increasing elevation, especially for alpine meadows. Extreme high-temperature events contributed
significantly to NPP in mid to high elevations (3000–5000 m). Compound extreme climate events
amplify the average coincidence degree with NPP anomalies, with extreme precipitation events
playing a major role in compound effects. The CR of compound climate events can reach above 0.6,
reflected in the anomaly increase of NPP in temperate grasslands at higher elevations caused by
compound events of extremely wet and extremely high temperatures.

Keywords: net primary productivity; extreme climate; events coincidence analysis; plateau region;
elevations

1. Introduction

The rapid occurrence of climate change has become an undeniable reality [1], as
evidenced by recent events such as the severe forest fires in Australia in 2019 and the hottest
heat wave in history, experienced in North America in 2021, with temperatures reaching
a record high of 49.6 ◦C in the Vancouver, Canada, area. In addition, Southern China
experienced severe ecological damage in 2022 due to heavy rains that were uncommon
in recent decades. These disasters continue to occur at an even more accelerated pace,
posing unprecedented challenges to all aspects of forest management, water resources,
agriculture, and ecosystems [2–6]. The uncertain nature of climate change further amplifies
the potential threats that may arise. Therefore, it is imperative to develop tailored responses
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based on the unique characteristics of each ecosystem and natural environment, informed
by a comprehensive understanding of the impacts of climate extremes on each region.

The impact of climate change on vegetation growth is most directly reflected in
physiological activities such as respiration, transpiration, and photosynthesis. Currently,
ecosystem vulnerability and biodiversity have become prominent topics in ecological re-
search [7,8]. However, the impact of extreme climate events on vegetation may be more
direct and significant than mean climate events [9]. For instance, the El Niño-Southern
Oscillation (ENSO) caused rapid changes in African vegetation patterns [10]. At the same
time, extreme temperature events significantly delayed the end of the vegetation-growing
season in the Tibetan Plateau, and droughts and frosts caused significant disturbances in
vegetation phenology in parts of Northern Europe [11]. These extreme events changed the
dynamic balance of vegetation and carbon balance, leading to a shift from a carbon sink to
a carbon source [12,13]. Asymmetric warming is also a growing concern worldwide, with
plants exhibiting different growth patterns during the day and night [14]. The differences
in temperature changes at different times of the day have already been shown to signifi-
cantly impact vegetation activity in various ecosystems in the Northern Hemisphere [15],
particularly in terms of phenology. Additionally, asymmetric warming affects ecosystem
carbon balance, surface water balance, and energy balance [16–18]. It is, therefore, of great
interest to study the details and linkages of vegetation dynamics patterns in response to
different climate factors.

Choosing appropriate vegetation indices to assess the degree of climate impact on
vegetation disturbance is crucial. Net Primary Productivity (NPP) is a comprehensive
metric representing the net amount of carbon absorbed by plants through photosynthesis,
accounting for respiratory losses. This indicator effectively characterizes overall vege-
tation productivity and health, serving as a fundamental representation of energy flow
within ecosystems. By incorporating NPP into our study, our objective is to unveil the
direct impact of extreme climate events on vegetation and reveal corresponding changes
in ecosystem fundamental productivity and carbon balance. This holistic approach aligns
with our broader research goals, aiming for a comprehensive understanding of the complex
relationships between climate dynamics and vegetation health. It is imperative to thor-
oughly analyze the intricate interactions between temperature, precipitation, and NPP in
our research. Temperature influences physiological processes such as photosynthesis rates
and enzyme activity, while precipitation directly affects water availability, which is crucial
for plant growth. Understanding the complex relationships between climate variables
and NPP is vital for revealing subtle vegetation responses to changing environmental
conditions. Investigating the comprehensive impacts of these climate variables, especially
extreme climate events, on NPP allows for a holistic assessment of how vegetation copes
with continuously evolving environmental conditions.

Given the subtle and sometimes nonlinear relationships between climate factors and
NPP, employing a method that thoroughly explores their dynamic interconnections is highly
effective. As a method of analysis, the complex response relationships between vegetation
and climate cannot be fully explained using only the linear relationships demonstrated
by the Pearson correlation analysis. The event coincidence analysis (ECA) method [19],
developed in recent years to obtain more accurate response relationships, is highly regarded
in terms of the impact of extreme events. This method adeptly accommodates the discrete
characteristics of extreme climate events, ensuring a nuanced exploration of how climate
change affects the productivity and sustainability of terrestrial ecosystems. This enriches
the broader discourse on ecological resilience and adaptive strategies.

In a previous study, Baumbach et al. employed the ECA method to quantify the rela-
tionship between extreme events in vegetation and surface temperature anomalies during
the daytime in Europe [20]. Fan utilized the same methodology to evaluate the impact of
extreme temperature and precipitation events on various crops in South Asia [21]. How-
ever, most current studies only focus on the annual scale, which we believe is not specific
enough. Therefore, we explored the monthly scale and the growing season (May–October)
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by simultaneously using a long time series of meteorological and vegetation data. We
started by examining the effects of high and low temperatures during the day and night,
respectively, to explore the characteristics of diurnal temperature effects on vegetation.
Additionally, since the effects of precipitation and temperature on vegetation are simulta-
neous, the effects of compound extreme events are often more pronounced than those of
individual extreme events. Unfortunately, compound climate events have been frequently
overlooked in previous studies, posing a disadvantage to our in-depth analysis of the
specific and comprehensive impacts of extreme climate events. Consequently, this aspect
will be an integral part of our research, allowing us to explore and analyze the compound
effects of extreme climate events on vegetation productivity.

Our research is concentrated on the ecologically sensitive plateau region, a pivotal
area in our ecological conservation efforts. Conducting a comprehensive examination
of the interactions between extreme climates and Net Primary Productivity (NPP) in
this plateau region not only enhances our understanding of vegetation responses but
also furnishes valuable insights for managing and preserving ecosystems grappling with
ongoing climate change. The outcomes of this study will hold significant implications for
the ecological conservation of this region and other grassland ecosystems, aiding them
in adapting to the increasingly severe and intricate challenges posed by extreme climatic
conditions. Ultimately, this exploration contributes to a broader scientific discourse on the
impacts of climate change, ecosystem resilience, and strategies for sustainable management.
Consequently, our primary research objectives are to (1) analyze the response of grassland
productivity to extreme precipitation and extreme temperature events, including their
compound effects; (2) explore the variation in response intensity along elevation gradients;
and (3) analyze the responses of different grassland types in the plateau region to extreme
climate events.

2. Materials and Methods
2.1. Study Area

Qinghai Province, situated in Northwestern China, covers a large land area of 723,000 km2

and is characterized by a diverse topography encompassing mountains, plateaus, basins,
and plains. The elevation ranges between 1650 and 6860 m. The climate in Qinghai Province
is predominantly characterized by two climatic zones: the semiarid alpine climate and the
cold temperate semi-humid climate, which display noticeable fluctuations in temperature
and precipitation levels concerning changes in elevation. In addition, with a vast coverage
of grasslands in most areas of Qinghai Province, encompassing almost all grassland types
found in the plateau region, this area serves as a representative of the climatic conditions
in both Northwest China and the Qinghai–Tibetan Plateau [22,23]. The grassland types
include temperate grasslands, alpine grasslands, alpine meadows, and desert grasslands,
each displaying distinct characteristics along different altitudinal gradients (Figure 1). Thus,
conducting research in this region is essential for gaining precise insights into the response
patterns of grasslands to extreme climate events, particularly about changes in elevation
and variations across different grassland types.

2.2. Datasets

Constrained by the available remote sensing data, specifically the commonly used
MOD17A3 data, in terms of the temporal scale (post-2001), we opted to employ modeling
techniques to simulate NPP data. This decision was made to extend the temporal scope
to a longer period (1982–2019) and at a finer temporal resolution (monthly scale). This
approach aims to enhance our analysis, allowing us to draw more accurate and universally
applicable conclusions.
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Figure 1. Vegetation types and elevations in the study area (blank areas in the study area are
non-grassland areas).

Therefore, the NPP data utilized in our study were derived from simulations con-
ducted using the CASA model. The model incorporates NDVI data and DEM data,
as well as precipitation, temperature, and insolation data obtained from meteorologi-
cal stations. We validated the simulated NPP data using the MOD17A3 dataset (https:
//search.earthdata.nasa.gov/search?q=MOD17A3, accessed on 25 October 2022) and found
that the overall correlation between the two datasets at all spatial points was as high as
0.83 (p < 0.01) based on multiyear averages for overlapping years (Figure 2). NDVI data
were linearly fitted to MODIS data and GIMMS data to extend the study time range. DEM
data were obtained from the Environmental Resources Center of the Chinese Academy
of Sciences (https://www.resdc.cn/data.aspx?DATAID=284, accessed on 21 November
2022). Meteorological data were obtained from the National Meteorological Information
Center of China (http://data.cma.cn/site/index.html, accessed on 24 October 2019). We
then used the Anspline 1.0 software to interpolate the filtered meteorological station data
into TIFF format.

We used the 1:1,000,000 vegetation type map of China (https://www.resdc.cn/data.
aspx?DATAID=122, accessed on 17 June 2022) to classify the grassland types. The vegetation
data were classified into three vegetation types: temperate grassland, alpine grassland, and
alpine meadow.

2.3. Methods
2.3.1. Identify Extreme Events

To obtain more precise research results, we initially standardized each month of the
growing season (May–October) to create comparable entities. Subsequently, we performed
de-trending to eliminate the interference caused by overall trends in identifying extreme
events. The modified dataset exhibits enhanced objectivity in discerning extreme events.

https://search.earthdata.nasa.gov/search?q=MOD17A3
https://search.earthdata.nasa.gov/search?q=MOD17A3
https://www.resdc.cn/data.aspx?DATAID=284
http://data.cma.cn/site/index.html
https://www.resdc.cn/data.aspx?DATAID=122
https://www.resdc.cn/data.aspx?DATAID=122
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We applied the above processing steps to each pixel in the raster grid to facilitate the
conduction of ECA analysis. Transform the sequence x1, x2, . . . , xn as

yi =
xi − x

s
(1)

with

x =
1
n

n

∑
i=1

xi, s =

√
1

n − 1

n

∑
i=1

(xi − x)2 (2)

where the newly obtained series y1, y2, . . . , yn represents the standardized data. The data
x1, x2, . . . , xn correspond to different years in the same month, where i denotes the year
and n represents the number of years. x1, x2, . . . , xn. x is the mean of different years, and s
is the standard deviation of the data x1, x2, . . . , xn. Then, the de-linearization process was
applied to de-trend from the data. Subsequent analyses were conducted based on the time
series of monthly data arranged in chronological order for each month of the processed
multiyear growing season (all subsequent data processing mentioned is based on the time
series processed as described above).
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We determined whether a specific month was considered to have experienced an
extreme event based on the deviation of its value at that time (month) from the entire
time series. Specifically, if the value at that time (month) was less than −1 (in units of
standard deviation), the month was defined as having experienced extreme minimum
value events. Similarly, if the value was greater than 1 STD (standard deviation), it was
defined as having experienced extreme maximum value events. Extreme precipitation
events were further categorized into extreme drought events (PREmin) and extreme wet
events (PREmax). We conducted separate analyses for nighttime and daytime events,
explicitly distinguishing between extreme low-temperature events during the nighttime
(TNmin), extreme low-temperature events during the daytime (TDmin), extreme high-
temperature events during the nighttime (TNmax), and extreme high-temperature events
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during the daytime (TDmax). Anomalies in vegetation Net Primary Productivity (NPP)
were divided into extreme maximum value events (NPPmax) and extreme minimum value
events (NPPmin) to represent the vegetation growth conditions (Table 1).

Table 1. Classification of extreme events.

Event Type Basic Indicator Interpretation of Event

NPPmin
NPP (month)

Months in which NPP value < −1 STD
NPPmax Months in which NPP value > 1 STD
PREmin Precipitation (month) Months in which Precipitation value < −1 STD
PREmax Months in which Precipitation value > 1 STD
TNmin Monthly minimum nighttime temperature Months in which minimum nighttime temperature value < −1 STD
TDmin Monthly minimum daytime temperature Months in which minimum daytime temperature value < −1 STD
TNmax Monthly maximum nighttime temperature Months in which maximum nighttime temperature value > 1 STD
TDmax Monthly maximum daytime temperature Months in which maximum daytime temperature value > 1 STD

2.3.2. Events Coincidence Analysis

Since our research focuses on analyzing the impact of extreme climate events occurring
at specific nodes (i.e., events surpassing a certain threshold), commonly used methods
such as the Pearson correlation analysis are no longer suitable. The Event Coincidence
Analysis (ECA) method offers a practical and straightforward statistical concept to provide
an analytical perspective. In essence, it reconstructs the data in a binary structure and
analyzes the degree of coincidence in the occurrence timing of one event concerning
another. This method identifies the correlation between two events by recognizing their
co-occurrence frequency throughout the entire time series. Our study primarily utilized
the ECA method to investigate direct and potential event associations. We conducted both
individual event analysis (for calculating a single pixel) and extended event coincidence
analysis (for calculating the regional average), with Coincidence Rates (CR) serving as the
metric for the magnitude of the response relationship, ranging from 0 to 1. A CR value
approaching 1 indicates a higher likelihood of simultaneous occurrence of events in both
series. A value approaching 0 suggests a lower likelihood of temporal coupling between the
two events. For detailed methodological principles, please refer to the literature [24,25]. The
analytical significance test was based on the assumption of independent and sparse events.

Additionally, we conducted a compound analysis of extreme precipitation and extreme
temperature events to assess the response of vegetation productivity. The simultaneous
occurrence of two extreme climate events was identified as a composite extreme event (for
the time series of precipitation and temperature indices, the absolute values in that month
are both greater than 1 STD).

We also aim to utilize the ECA analysis to investigate the temporal lag effects of
extreme climate events on NPP, which is incorporated within this method. The specific
formula is outlined below.

r (∆T, τ) =
1

NB

NB

∑
j=1

θ

(
NA

∑
i=1

1[0,∆T]

((
tA
i − τ

)
− tB

j

))
(3)

Here, θ(·) represents the Heaviside function, and 1[0,∆T] is the indicator function for
the interval [0, ∆T]. When ∆T = 0, the function inside the sum becomes δ(tA

j − τ, tB
j ), where

δ(·, ·) is the Kronecker delta, providing a value of 1 if and only if both arguments are equal,
and zero otherwise. r (∆T, τ) measures “the fraction of B-type events that are followed by
at least one A-type event” equivalent to CR. By defining event lag time τ(ranging from
0 to 3 months) and a specific temporal tolerance window ∆T (in this study, set to 0), the
comparison involves screening for the month with the maximum r (∆T, τ) within the
0–3 month range, determining the lag duration.
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2.3.3. Sensitivity Analysis

Although ECA analysis precisely captures the co-occurrence of extreme climate events
and NPP anomalies, it does not inherently reflect the extent of NPP disturbance during
extreme climate events. Therefore, it is essential to supplement this analysis by exploring
the sensitivity of NPP to extreme precipitation and temperature events to assess the degree
of climate event-induced disturbance.

Moreover, given that the impacts of climate events vary at different extreme levels (we
define extreme climate events based on the specific threshold (>1 STD or <−1 STD) before),
we classified extreme climate events into three categories based on their absolute values:
Slight (1–1.5 STD), General (1.5–2 STD), and Severe (2–3 STD). To enable comparability,
we standardized the values of all three categories to a range of 1–2 STD. For instance, for
the values corresponding to extreme climate events occurring during the Slight category
(1–1.5 STD), we subtracted 0.5 from the values and multiplied the result by 2, thereby
converting them to the 1–2 range. A similar scaling process was applied to the General
(1.5–2 STD) and Severe (2–3 STD) categories. Subsequently, for each type of extreme
climate event, we divided the NPP (Standardized) corresponding to the time of extreme
climate events by the value of its extreme climate indicator (after standardization and range
conversion). We then averaged the results for each time point to represent the sensitivity
level (in the unit of STD/STD). This operation is conducted for each pixel within the study
area, and the averages of all pixels represent the overall level of the study area.

3. Results
3.1. Distribution of NPP along Elevation Gradient

The NPP levels across the grasslands in the study area primarily range from 0 to
500 gCm−2a−1. However, there are significant variations in the altitudinal ranges and
overall NPP levels for each grassland type. As depicted in Figure 3, temperate grasslands
predominantly thrive in areas below 4000 m (Figure 3a), while alpine meadows and alpine
grasslands tend to grow in higher-elevation regions, precisely above 2600 m (Figure 3b,c),
with the most extensive distribution occurring within the 4000–5000 m elevation range.
With increasing elevation, both temperate grassland NPP and alpine meadow NPP exhibit
a trend of initially increasing and then decreasing, reaching peak NPP levels around 3500 m.
In contrast, alpine grasslands consistently experience a decline in NPP with rising elevation
and those concentrated between 4500–5000 m exhibit comparatively lower NPP levels
(<150 gCm−2a−1).
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Figure 3. Spatial variation of NPP along elevation gradient: Density scatterplots for temperate
grassland (a), alpine grassland (b), and alpine meadow (c). Color representation based on percentage
of pixels in each grassland category (i.e., density within the respective range).

3.2. Sensitivity of Grasslands to Extreme Climate Events

The impact of extreme precipitation events on NPP is significant, as illustrated in
Figure 4. We observed that the occurrence of PREmin resulted in a negative response of
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NPP at all elevations (Figure 4a). This indicates a rapid reduction in NPP during drought
events, with a more pronounced effect on vegetation in lower-elevation areas. Conversely,
PREmax events prominently lead to NPP increase, also with a significant decrease in
disturbance intensity as elevation decreased (Figure 4b). Temperate grassland and alpine
grassland exhibited a higher degree of responsiveness to precipitation compared to alpine
meadows. Additionally, alpine meadows growing below 3200 m elevation experience
significant effects from extreme precipitation events (PREmin and PREmax), whereas
alpine grasslands above 3200 m exhibit minimal fluctuations in NPP under such events.
Notably, alpine meadows growing in regions above 3600 m demonstrated a feeble response
in NPP to PREmax events.
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95% standard error intervals for each vegetation type).

Extreme low-temperature events during nighttime and daytime (TNmin and TDmin)
generally lead to a decrease in NPP across most regions (Figure 4c,d). However, NPP shows
positive values below 3000 m elevation when TDmin events occur, indicating a slight
promotional effect of TDmin on NPP in some middle- to low-elevation regions. TNmax and
TDmax exhibit a more apparent promotion of grassland NPP within the elevation range
of 3000–5000 m, gradually weakening with increasing elevation (Figure 4e,f). Importantly,
high-temperature events during both nighttime and daytime have a suppressive impact on
the NPP of temperate grasslands growing below 2800 m elevation (standardized average
NPP < 0), particularly under the disturbance caused by nighttime high-temperature events.

More severe extreme drought events corresponded to a heightened disruption of
grassland NPP (Figure 5). The sensitivity of NPP to drought events steadily increased
from mild to severe drought, a trend evident in temperate grasslands, alpine grasslands,
and alpine meadows. During Severe extreme drought events (STD > 2), the sensitivity of
temperate grassland and alpine grassland reached −0.86 and −0.89, respectively. However,
the sensitivity of the three types of grasslands to PREmax was less pronounced than that
to PREmin. Temperate grasslands exhibited higher sensitivity to PREmax than the other
two grassland types, and its NPP demonstrated a higher sensitivity to events with extreme
moisture levels.



Remote Sens. 2024, 16, 317 9 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

Extreme low-temperature events during nighttime and daytime (TNmin and TDmin) 

generally lead to a decrease in NPP across most regions (Figure 4c,d). However, NPP 

shows positive values below 3000 m elevation when TDmin events occur, indicating a 

slight promotional effect of TDmin on NPP in some middle- to low-elevation regions. 

TNmax and TDmax exhibit a more apparent promotion of grassland NPP within the ele-

vation range of 3000–5000 m, gradually weakening with increasing elevation (Figure 4e,f). 

Importantly, high-temperature events during both nighttime and daytime have a suppres-

sive impact on the NPP of temperate grasslands growing below 2800 m elevation (stand-

ardized average NPP < 0), particularly under the disturbance caused by nighttime high-

temperature events. 

More severe extreme drought events corresponded to a heightened disruption of 

grassland NPP (Figure 5). The sensitivity of NPP to drought events steadily increased 

from mild to severe drought, a trend evident in temperate grasslands, alpine grasslands, 

and alpine meadows. During Severe extreme drought events (STD > 2), the sensitivity of 

temperate grassland and alpine grassland reached −0.86 and −0.89, respectively. However, 

the sensitivity of the three types of grasslands to PREmax was less pronounced than that 

to PREmin. Temperate grasslands exhibited higher sensitivity to PREmax than the other 

two grassland types, and its NPP demonstrated a higher sensitivity to events with extreme 

moisture levels. 

 

Figure 5. The sensitivity (in units of STD/STD) of three types of grassland NPP to various levels of 

extreme precipitation (temperature) events, categorized as temperate grassland, alpine grassland, 

and alpine meadow from left to right. Extreme climate events are classified into three severity levels, 

namely Slight, General, and Severe. The color variations represent the sensitivity of grassland NPP 

to these extreme climate events. 

Figure 5. The sensitivity (in units of STD/STD) of three types of grassland NPP to various levels of
extreme precipitation (temperature) events, categorized as temperate grassland, alpine grassland,
and alpine meadow from left to right. Extreme climate events are classified into three severity levels,
namely Slight, General, and Severe. The color variations represent the sensitivity of grassland NPP to
these extreme climate events.

In general, alpine meadows showed less sensitivity to extreme drought and extreme
moisture events compared to temperate grasslands and alpine grasslands. The overall
sensitivity of grasslands to extreme temperature events was lower than their sensitivity
to extreme precipitation events. All types of grasslands exhibited negative sensitivity to
extreme low-temperature events (TNmin and TDmin) and positive sensitivity to extreme
high-temperature events (TNmax and TDmax). Specifically, alpine grasslands displayed
higher sensitivity to Severe TDmin and TNmax events, reaching −0.24 and 0.33, respectively.
Temperate grasslands showed higher sensitivity only to TNmin, while alpine meadows
demonstrated higher sensitivity only to extreme high-temperature events, especially those
with higher degrees of severity.

3.3. The Coincidence Rate between Grasslands and Individual Extreme Climate Events

The extent of disturbance caused by individual extreme events on NPP varies consider-
ably, as depicted in Figure 6. The NPPmin in both temperate grassland and alpine grassland
exhibit higher Coincidence Rates (CR) with PREmin. Over 60% of the regions in these
two grasslands show higher CR values (>0.2) with PREmin. While multiple factors affect
NPPmin in alpine meadows, PREmin remains the primary influencing factor. NPPmin in
alpine meadows below 4000 m elevation demonstrate higher CR values (>0.2) with PREmin
(Figure 7e). Moreover, there is a noticeable decrease in CR values between NPPmin and
PREmin with increasing elevation across all three grassland types.
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Figure 6. The CR between extreme anomalous events in grassland NPP and individual extreme
climate types. The left and right sides represent NPPmin and NPPmax caused by extreme climate,
respectively. (a,e) depict the spatial distribution of CR (The portion covered by the grid passes the
95% significance test.), where each pixel shows the extreme climate event with the maximum CR
for NPP extreme events. The bottom section represents the proportion of the maximum individual
extreme climate event area attributed to extreme anomalous NPP events (NPPmin and NPPmax) in
temperate grassland (b,f), alpine grassland (c,g), and alpine meadow (d,h). Colors indicate different
types of extreme climate events.
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Figure 7. Trend of CR between extreme anomalous events in grassland NPP and individual extreme
climate types with elevation variation. The left and right sides represent NPPmin and NPPmax
caused by extreme climate, respectively. The vertical direction corresponds to temperate grassland
(a,b), alpine grassland (c,d), and alpine meadow (e,f).
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NPPmax exhibits relatively high CR values (>40%) with PREmax, maintaining a CR
level of 0.2 for both temperate grassland and alpine grassland. The CR values between
NPPmax and TNmax are higher than those with TDmax. In alpine grasslands below 3200 m
elevation, NPPmax shows higher CR values (>0.2) with PREmax (Figure 7d). In contrast, at
higher elevations, the CR values are not significant and are instead driven by extremely
high-temperature events. Furthermore, the most prominent regions with significant CR
values between TNmax and TDmax and grassland NPPmax occur within the 3000–4000 m
elevation range (Figure 7a,c,e).

3.4. The Coincidence Rate between Grasslands and Compound Extreme Climate Events

The compound events of PREmin and extreme temperature exhibit significantly higher
CR with NPPmin compared to the compound events of PREmax and extreme temperature
(Figure 8a). For temperate grassland and alpine grassland, TNmin and TDmin show
high CR values with NPPmin under the influence of PREmin, and the proportion of the
main affected areas exceeds 20% (Figure 8b,c). Under the compound impact of PREmin,
TNmin demonstrates higher CR values with NPPmin across various elevation intervals
in temperate grassland. The effect of compound events on NPPmin in alpine meadows
is similar, but TDmin shows higher CR than TNmin under the compound of PREmin
(Figure 8d). Furthermore, we observed that the PREmin and TDmin compound events
significantly impact NPPmin in the lower elevation regions (<3200 m) for all three grassland
types (Figure 9a,c,e). When the elevation exceeds 3200 m, the CR between this compound
event and NPPmin drastically declines.
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Figure 8. The CR between extreme anomalous events in grassland NPP and compound extreme
climate types. The left and right sides represent NPPmin and NPPmax caused by extreme climate,
respectively. (a,e) depict the spatial distribution of CR (The portion covered by the grid passes the
95% significance test.), where each pixel shows the extreme climate event with the maximum CR
for NPP extreme events. The bottom section represents the proportion of the maximum compound
extreme climate event area attributed to extreme anomalous NPP events (NPPmin and NPPmax) in
temperate grassland (b,f), alpine grassland (c,g), and alpine meadow (d,h). Colors indicate different
types of extreme climate events.
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Conversely, NPPmax exhibits higher CR values only with the compound events of
extreme climate under PREmax, particularly with the compound events of PREmax and
TNmax or TDmax. Under the compound of PREmax, the CR difference between TNmax
and TDmax with NPPmax is insignificant (Figure 8). However, only in high-elevation
alpine grassland and alpine meadows above 5200 m NPPmax shows higher CR values
with the compound events of TDmax and PREmax (Figure 9d,f). Unlike these two, the
NPPmax of temperate grasslands exhibits a clear increase in CR with increasing elevation
under the combined influence of PREmax and either TNmax or TDmax. Within the
4000–4600 m elevation range, the CR between the two compound events of extreme climate
and NPPmax exceeds 0.4. The observed altitudinal trend of CR is contrary to individual
PREmax on NPPmax.
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Figure 9. Trend of CR between extreme anomalous events in grassland NPP and compound extreme
climate types with elevation variation. The left and right sides represent NPPmin and NPPmax
caused by extreme climate, respectively. The vertical direction corresponds to temperate grassland
(a,b), alpine grassland (c,d), and alpine meadow (e,f).

3.5. Lag Analysis of Grassland Response to Extreme Climate Events

We conducted a lagged analysis using ECA to explore the response lag months of
NPP to extreme climate events (0–3 months). The analysis was stratified by elevation
gradients: <3000 m, 3000–4000 m, and >4000 m. To ensure temporal continuity in the
time series, we carried out a monthly analysis covering the twelve months of the year.
The lagged impact of individual extreme climate events on NPP is illustrated in Figure 10.
Overall, for results with relatively large CR values, the events of PREmin and extreme low
temperature (TNmin and TDmin) show a significant immediate impact on NPPmin in the
same month. However, alpine grassland growing below 3000 m exhibits exceptions, with
NPPmin showing a significant lagged response of two months to TNmin. The effects of
PREmax and extreme high-temperature events (TNmax and TDmax) on NPPmax are also
predominantly immediate (same month). For extreme high-temperature events, there is a
two-month lagged response for NPPmax in temperate grasslands and alpine grasslands
growing below 3000 m elevation, although the results are not statistically significant.
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Figure 10. The lagged responses of three types of grasslands to individual extreme climate events at
different elevation gradients. The x-axis represents TG, AG, and AM, corresponding to temperate
grassland, alpine grassland, and alpine meadow. The y-axis corresponds to different extreme climate
events. The six plots are organized into three rows representing elevation gradients: <3000 m (a,b),
3000–4000 m (c,d), and >4000 m (e,f). The first column illustrates the lagged relationship between
extreme climate events and NPPmin (a,c,e), while the second column depicts the lagged relationship
between extreme climate events and NPPmax (b,d,f). Colors and numbers in the figures represent
lag months, with gray indicating non-significance. The size of the circles represents the magnitude of
the composite CR values, ranging from 0 to 0.3.

For compound extreme climate events, the occurrence of extreme climate events
under the compound condition of PREmin is more likely to induce NPPmin events in the
same month (Figure 11a,c,d). It is observed in compounds with all four types of extreme
temperature events. However, variations exist, the compound climate events of PREmin
with TDmin triggering significant lagged responses of two months for temperate grassland
growing below 3000 m elevation with notable CR. Similarly, alpine meadows at elevations
between 3000–4000 m show a lagged response of three months to compound extreme
drought and high-temperature events (PREmin combined with TNmax and TDmax). The
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triggering factors for NPPmax events are most significantly associated with compound
extreme wet and high-temperature events, with a higher likelihood of direct triggering
in the same month (Figure 11b,d,e). Notably, alpine meadow growing above 3000 m
elevation shows a two-month lagged response to compound extreme drought and daytime
high-temperature events.
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Figure 11. The lagged responses of three types of grasslands to compound extreme climate events at
different elevation gradients. The x-axis represents TG, AG, and AM, corresponding to temperate
grassland, alpine grassland, and alpine meadow. The y-axis corresponds to different extreme climate
events. The six plots are organized into three rows representing elevation gradients: <3000 m (a,b),
3000–4000 m (c,d), and >4000 m (e,f). The first column illustrates the lagged relationship between
extreme climate events and NPPmin (a,c,e), while the second column depicts the lagged relationship
between extreme climate events and NPPmax (b,d,f). Colors and numbers in the figures represent
lag months, with gray indicating non-significance. The size of the circles represents the magnitude
of the composite CR values, ranging from 0 to 0.45. In addition, due to space limitations, “Pre” is
abbreviated as “P” here, while “min” is represented as “n”, and “max” is represented as “x”.



Remote Sens. 2024, 16, 317 15 of 20

4. Discussion
4.1. Identification of Extreme Events

Numerous scholars have previously adopted the percentile threshold method for
identifying extreme events [20,21], particularly extreme climate events. The percentile
threshold method is feasible and correct for evaluating a specific extreme climate event, but
it is more suitable for such individual assessments rather than comparing the impacts of
various climate events. This is because the threshold in the percentile threshold method is
influenced by the overall fluctuation of the sequence itself. As a result, the method tends to
identify a fixed and the same number of extreme climate events, regardless of whether the
overall fluctuation amplitude and frequency of the time series are high or low. However,
events identified in sequences with weaker fluctuations may not constitute extreme events,
and some events with significant anomalies in sequences with strong fluctuations may be
overlooked. Our study aims to compare the impact and correlation of various extreme
climate events on vegetation, so we set thresholds based on specific standard deviations.
This approach ensures that the defined extreme events are relatively equitable across
different climate types, thereby avoiding the possibility of identifying extreme situations in
climates with less pronounced trends. Additionally, our de-trending of the temporal data
serves the same purpose, maximizing the assurance that the analyzed abnormal vegetation
growth conditions are solely influenced by extreme climate events and not disturbances
caused by long-term, gradual, and cumulative climate changes. This is crucial because
various factors may influence vegetation growth, including natural variations and slowly
evolving climate trends. More accurate handling of these factors may lead to accurate
interpretations. De-trending allows us to focus specifically on short-term anomalies related
to extreme climate events. By eliminating the background trend or gradual climate changes,
we can highlight abnormal vegetation growth conditions and attribute them solely to the
impact of extreme events.

Furthermore, it is essential to note that in the northwest region of China, particularly
in the plateau areas such as Qinghai Province, the dry and vegetation-lacking conditions
contribute to weaker greenhouse effects and heat conduction. As a result, significant tem-
perature differences between day and night occur during certain months in spring and
autumn [26,27]. In other words, interannual variations may lead to non-synchronous tem-
perature fluctuations between daytime and nighttime in certain months. Higher daytime
temperatures do not necessarily indicate higher nighttime temperatures within the same
month on an interannual scale. Relying solely on average temperature may not sufficiently
reflect extreme temperature climate events. Consequently, we consider the monthly maxi-
mum and minimum temperatures (within the growing season) as fundamental indicators
to identify extreme temperature events. Monthly maximum and minimum temperatures
provide a more comprehensive representation of temperature changes than relying solely
on average temperature. These indicators can explain heatwaves and cold spells by re-
flecting the maximum and minimum temperatures during day and night, which is crucial
for regions where daytime and nighttime temperature fluctuations are not synchronized,
allowing for a more accurate description of climate conditions.

4.2. Grassland Response to Extreme Climate Events at Different Elevations

The high elevation of Qinghai Province results in a colder and drier environment
throughout the year [28], which poses a challenge to vegetation growth. Low temperatures
reduce the rate of photosynthesis, which is the primary process of vegetation growth.
The reduction in photosynthetic activity leads to decreased organic matter production,
inhibiting plant growth. The reduction in water availability leads to a decrease in the
expansion pressure of plant cells [29], affecting their ability to absorb nutrients and grow,
ultimately leading to a decrease in vegetation productivity. However, at the same time, the
low atmospheric pressure resulting from the high elevation reduces the required water
and nutrients for plant growth [30]. Some vegetation species have evolved to adapt to
these harsh environmental conditions. For instance, deep root systems allow plants to
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obtain water and nutrients from deeper soil layers [31], while small leaves and thick
epidermis help reduce water loss through transpiration [32]. These adaptations have
enabled vegetation in Qinghai Province to survive and thrive despite the low temperature
and drought conditions.

Extremely low temperatures and drought events can further interfere with vegetation
growth, decreasing productivity. Conversely, high temperatures and rainfall would im-
prove vegetation conditions [33,34]. Elevated temperatures have been observed to enhance
the photosynthesis rate, promoting organic matter production and increasing soil nitrogen
mineralization and availability. Furthermore, plant growing seasons are extended [35],
and plant habitats are expanded towards the higher and colder areas [36,37]. Additionally,
precipitation provides the necessary water for vegetation growth, leading to increased
expansion of plant cells and an increased ability to absorb nutrients and grow.

Extreme precipitation events significantly impact vegetation more than extreme tem-
peratures, particularly at lower elevations. However, it is worth noting that the extreme hot
events at low elevations promote vegetation growth less than at other elevations. Even high
temperature has a negative effect on vegetation growth. The higher average temperature
at lower elevations increases vegetation transpiration, resulting in increased water evapo-
ration [38,39]. For areas where vegetation is more susceptible to moisture limitation, the
increase in temperature results in a decrease in soil moisture, leading to soil drought and
moisture deficit, which negatively impacts vegetation. Furthermore, photosynthesis can be
significantly affected when daytime temperatures exceed the optimal temperature for plant
photosynthesis [33]. High temperatures also lead to increased respiration of vegetation,
which consumes more carbon.

Interestingly, our findings suggest that high nighttime temperatures significantly
contribute to vegetation growth than those during the day. It is due to the large diurnal
temperature difference in highlands and subzero temperatures at night, which bring about
milder temperature changes and frost risk reduction. Additionally, high nighttime temper-
atures affect vegetation growth mainly by enhancing the dark respiration of vegetation.
Recent studies have shown that dark auto respiration is more dominant in vegetation
activity at high elevations [40]. This enhanced respiration often leads to increased pho-
tosynthesis, which plants must use to compensate for their consumption and stimulate
carbon sequestration. This drive may result in an overcompensation of nocturnal respira-
tory depletion, which is one of the ways in which vegetation growing in the highlands can
combat the harsh environment [41].

In contrast, high daytime temperatures have a greater level of promotion of vegetation
growth under a compound of extreme wetting events, especially at middle and high
elevations. High daytime temperatures significantly improve vegetation conditions at high
elevations and may be accompanied by increased evaporation of soil moisture and stronger
solar radiation. Although it has been reported that vegetation at high elevations is largely
influenced by temperature [42], as an arid region, only a more humid environment can
provide moisture assurance and weaker solar radiation under these weather conditions.

4.3. Response of Different Grasslands to Extreme Climate Events

The sensitivity of alpine meadows to extreme precipitation events, including heavy
rainfall and drought, is not as pronounced as temperate grasslands and alpine grasslands,
both in the case of individual extreme events and compound events involving extreme
temperatures. This diminished sensitivity is particularly evident at elevations above 3200 m.
This may be related to the individual climate sensitivity factors of vegetation. It has been
reported that temperature is the primary limiting factor for CO2 flux during the growing
season of alpine meadows [43], with CO2 flux increasing as temperatures rise. In contrast,
the CO2 flux of temperate grasslands and alpine grasslands is primarily limited by water
constraints resulting from seasonal drought [44], with temperature being a secondary
factor. In addition, alpine meadows exhibit a higher presence of wetlands and lakes.
Although mostly frozen or partially frozen, during our study period (May–October), they
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are readily available water sources for long durations. The presence of wetlands and lakes
provides significant soil moisture resilience and allows for ample flexibility in response
to extreme precipitation events. Furthermore, wetlands and lakes can absorb and release
substantial amounts of heat over short periods, stabilizing the surrounding environment’s
temperature and enhancing the stability of alpine meadow ecosystems. Compared to alpine
meadows, alpine grasslands are more prone to drying out and face more severe challenges
in water supply.

We have observed that the climate response of temperate grasslands varies more
significantly along the elevation gradient compared to the other two types of grasslands,
especially in the context of compound extreme events. The temperate grasslands above
4000 m elevation likely exhibit a significant increase in NPP following compound events
of extremely wet and extremely high temperatures (both daytime and nighttime). We
noticed pronounced variations in species diversity across different elevations despite the
same in grassland types (temperate grassland). The higher species diversity in lower
elevation areas contributes to enhanced resource utilization efficiency. The coexistence of
multiple grassland types facilitates mutual complementation, forming complex interaction
networks. In lower elevations, where the growth environment is relatively more favorable,
temperate grasslands show a less pronounced positive response to high-temperature and
wet events. However, the higher levels of species diversity and abundance in lower
elevations also imply greater demands for water and nutrients, contributing to a stronger
negative response under prolonged drought events. In higher elevation areas, where
nutrient availability in the soil is relatively limited and water retention capacity is not as
prominent, biodiversity is comparatively lower than in lower elevations. Hence, vegetation
in these areas fully exploits the conducive environmental conditions during extremely high-
temperature and precipitation events to promote accelerated growth [45]. Additionally,
if compound events of extremely high temperatures and abundant rainfall occur at the
beginning or end of the growing season, they can significantly advance or extend the
growing season [46]. Unlike temperate grasslands, the variations in vegetation types and
biodiversity along the altitudinal gradient are not as pronounced in alpine grasslands and
meadows. Consequently, the probability of extreme climate events triggering abnormal
vegetation responses does not exhibit a clear trend with elevation changes.

5. Conclusions

We analyzed the effects of extreme climate events (precipitation and temperature)
on grassland NPP in the plateau region (Qinghai Province). Our findings indicate that
grasslands respond more significantly to extreme precipitation than extreme temperature
events. This response is also evident in the compound effects of precipitation and tempera-
ture, where only the compound effect of extreme precipitation events gives rise to a higher
likelihood of abnormal increases or decreases in grassland NPP. Overall, extremely wet and
extremely high-temperature events are more likely to cause abnormal increases in grass-
land NPP. Conversely, extreme drought and extremely low-temperature events are more
likely to result in abnormal decreases in NPP. However, different types of grasslands at
different elevations exhibit variations in their responses. Extreme precipitation events have
a more pronounced impact on grassland NPP in relatively low-elevation regions (below
3000 m), particularly temperate grasslands and alpine grasslands. With increasing eleva-
tion, grassland exhibits a stronger response to extreme temperature events, particularly
within the elevation range of 3000–5000 m. There is a higher probability of nighttime ex-
treme high temperatures causing abnormal increases in NPP compared to daytime extreme
high-temperature events. In addition, most of the extreme climate event-induced anomalies
in the NPP are generated in transient response (for that month) rather than lagged.
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