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Abstract: On 1 June 2022, a magnitude 6.1 earthquake struck the southern segment of the Longmen-
shan fault zone on the eastern edge of the Tibetan Plateau, once again causing casualties and economic
losses. Understanding the deep-seated dynamic mechanisms that lead to seismic events in the Lushan
earthquake area and assessing the potential hazards in seismic gap areas are of significant impor-
tance. In this study, we utilized 118 magnetotelluric datasets collected from the Lushan earthquake
area and employed three-dimensional electromagnetic inversion with topographic considerations to
characterize the deep-seated three-dimensional resistivity structure of the Lushan earthquake area.
The results reveal that the Shuangshi–Dachuan fault in the Lushan earthquake area can be divided
into two relatively low-resistivity zones: a western zone dipping southeastward and an eastern zone
with a steeper slightly northwestern dip. These two zones intersect at a depth of approximately
20 km, forming an extensional pattern resembling a “Y” shape. The epicenters of both the 2013 and
2022 Lushan earthquakes are primarily located in the upper constricted portion of the pocket-like
low-resistivity body at depth. The distribution of seismic aftershocks is confined within the region
enclosed by the high-resistivity body, following the pattern of the Y-shaped low-resistivity zone.

Keywords: Lushan earthquake; Longmenshan fault zone; Sichuan Basin; magnetotelluric

1. Introduction

The Longmenshan fault zone (LMSFZ) is a well-known thrust fault located on the
eastern edge of the Tibetan Plateau (Figure 1). This fault marks the boundary between
the highly active Tibetan Plateau and the stable Sichuan Basin, extending for a length
of approximately 500 km [1–3]. The LMSFZ is also situated in the central part of the
North–South seismic belt in China, making it one of the most seismically active regions in
mainland China in recent years. Based on criteria such as fault activity, seismic distribution,
and rupture modes during earthquakes at various locations along the LMSFZ, it can be
subdivided into different segments. While there is some controversy regarding the exact
boundaries between these segments, they can generally be categorized as the northeastern
segment, central segment, and southwestern segment [4].

One of the most notable earthquakes to occur along the LMSFZ was the 2008 Wenchuan
Ms8.0 earthquake, which struck the central segment. This earthquake was the second-
largest in magnitude to occur in mainland China since the beginning of the century and
resulted in significant human casualties and property damage [5]. Prior to the Wenchuan
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earthquake, the LMSFZ had experienced a long period of seismic quiescence. This led to
underestimation of the seismic hazard associated with the LMSFZ [6]. Surface ruptures
during the Wenchuan earthquake propagated along the LMSFZ in a northeastward di-
rection [5,7,8], while the southwestern segment of the fault remained inactive during the
event [6,9]. The occurrence of the Wenchuan Ms8.0 earthquake highlighted the high seismic
hazard potential associated with previously creeping faults [10].
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Figure 1. (a) Location of the study region [11]. (b) Map showing locations of MT stations, faults,
and earthquakes. Circles denote mainshocks and aftershocks [12–14]. Squares denote MT stations.
Abbreviations are EQ, earthquake; SCB, Sichuan Basin.

Despite some studies indicating that the Wenchuan earthquake released accumulated
strain along the LMSFZ [15], another earthquake occurred on this fault five years later. The
2013 Lushan M7.0 earthquake struck the southwestern segment of the LMSFZ, approx-
imately 100 km from the epicenter of the Wenchuan earthquake (Figure 2). Geological
surveys conducted after the Lushan earthquake did not reveal any surface rupture [16].
Deep seismic results suggested that the 2013 Lushan earthquake was caused by the acti-
vation of a buried thrust fault [17]. Locations of aftershocks revealed that the fault plane
of the 2013 Lushan earthquake dipped northwestward, with a steep shallow angle and a
gentler angle at greater depths, displaying characteristics of a “shovel-shaped” thrust fault.
Additionally, a southeast-dipping aftershock zone intersected with the deep-seated fault
in the east, forming a “Y” shape [13,14]. In 2022, another earthquake with a magnitude of
6.1 occurred in Lushan County. The relocated epicenters of the mainshock and aftershocks
indicated an initial rupture depth of 18.9 km for the mainshock, with the aftershocks con-
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centrated at depths between 11 and 19 km. The epicenters clustered within an elliptical
area approximately 8 km long in the northeast–southwest direction and 6 km wide in
the northwest–southeast direction [18]. Remarkably, the epicenters of these two Lushan
earthquakes were only 8 km apart.
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Figure 2. (a) Geology map of the Lushan earthquakes region. (b) Geological section of the Lushan
earthquakes region [19]. Abbreviations are LMSFZ, Longmenshan fault zone; SCB, Sichuan Basin;
SGB, Songpan–Ganzi block; ZGf, Zhonggang fault; YFf, Yongfu fault; GLf, Gengda–Longdong fault;
WLf, Wulong fault; SDf, Shuangshi–Dachuan fault; SYf, Shouyang fault; XKDf, Xinkaidian fault; DYf,
Dayi fault.

Following the 2013 Lushan earthquake, various research efforts have been carried out
in the region. For instance, receiver function studies have shown that the LMSFZ serves as
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a transition zone between the Songpan–Ganzi block and the Sichuan Basin, with significant
Moho discontinuity deformation or segmentation [20]. Deep reflection profile studies
revealed the existence of Y-shaped or flower-like fault combinations within the crust in the
Lushan earthquake area [21,22]. However, these studies were limited to a single profile
and lacked three-dimensional coverage, making it challenging to effectively constrain
the complex structural features in the Lushan earthquake area. P-wave receiver functions
results reveal that there are substantial differences in crustal lithospheric structures between
the Songpan–Ganzi block, the LMSFZ, and the Sichuan Basin [23]. Nevertheless, their
study also relied on a single profile crossing the Lushan earthquake area. A seismic array
was used to investigate the velocity structures and fault geometry in the seismic gap area,
but an in-depth analysis of the crustal fine structure in the Lushan earthquake area was not
performed [24,25]. Velocity structures for different periods along the LMSFZ indicated that
the Lushan earthquake area exhibits faster healing compared to the Wenchuan earthquake
area [26].

The magnetotelluric (MT) method enables the acquisition of a subsurface electrical
structure, exhibiting sensitivity to underground fluids and high-temperature materials.
Several studies suggest that the presence of fluids plays a crucial role in seismic generation
and nucleation mechanisms [27–31]. Therefore, investigating subsurface electrical struc-
tures contributes to a better understanding of the deep-seated seismogenic environment in
the LMSFZ and provides essential insights for assessing future earthquake risks along the
LMSFZ. After the 2013 Lushan earthquake, multiple MT profiles traversing the earthquake
area were employed to study the crustal structure [32–35]. However, the electrical structure
was derived using 2D inversion, limiting its ability to investigate variations in electrical
structure along the profiles. In a recent study, three-dimensional inversion of magnetotel-
luric data was conducted in the Lushan earthquake area, obtaining the first 3D electrical
structure of the region [36]. The results indicated that both earthquakes occurred within the
same highly conductive body, thus categorizing the 2022 Lushan earthquake as a strong
aftershock of the 2013 Lushan earthquake. While this study aimed for as even coverage of
data points as possible across both Lushan earthquake areas [36], it is evident that more
densely distributed data are required to unveil the deep structural characteristics of the
numerous northeast trending faults in the region and gain a deeper understanding of the
seismogenic environment of the two Lushan earthquakes.

2. Data Analysis

The southwestern segment of the LMSFZ is situated in a region characterized by the
convergence of multiple tectonic units. It features rugged terrain, a dense network of power
lines, numerous mining areas, and hydropower stations, making fieldwork challenging
and data acquisition demanding. In the months of May and June 2013, we conducted
magnetotelluric measurements in the southwestern segment of the LMSFZ. In this area,
a total of 118 MT stations were collected along five profiles. Previous studies performed
two-dimensional inversions and conducted underground structure interpretations and
research based on three of these profiles [33,35]. This paper incorporates data from these
three profiles along with data from two additional profiles.

Figure 3 presents apparent resistivity and impedance phase curves for 14 represen-
tative MT stations(highlighted as light blue squares in Figure 2) along the CC’ and DD’
profiles. Stations 1 and 2, as well as 8 and 9, cross the Shuangshi–Dachuan fault (SDf) and
exhibit distinct electrical discontinuities. To the northwest of this fault zone, the apparent re-
sistivity values within the LMSFZ are relatively high, while, on the southeast side, apparent
resistivity values for all MT stations generally decrease below several hundred ohm-meters.
However, the shapes of these curves vary, reflecting the deep-seated complexity at the
interface between the LMSFZ and the Sichuan Basin. MT stations in proximity to the
western (SDf1) and eastern (SDf2) branches of the Shuangshi–Dachuan fault show notably
lower apparent resistivity values compared to stations on either side. Beneath the fault
zone, there are electrical discontinuities, and MT stations on the southeastern side of the
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Lushan earthquake area consistently exhibit low-resistivity characteristics in the longer
periods, indicating the presence of a deeper low-resistivity layer.
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The two-dimensional skew β, obtained from phase tensor [37,38], can be employed
to assess the anisotropy of the subsurface medium. Considering that observational data
inherently contain some level of error, it is generally considered that β values exceeding
3 indicate a significant level of three-dimensionality in the subsurface structure [39,40].
Figure 4 illustrates the distribution of β values for four different periods. MT stations in the
vicinity of the Shuangshi–Dachuan fault, as well as those within the LMSFZ on both sides,
exhibit β values exceeding 3 in the high-frequency range. Notably, in the vicinity of the
Shuangshi–Dachuan fault, especially in the epicentral region of the Lushan earthquake, β
values significantly exceed 3 at periods ranging from approximately 10 s to several tens of
seconds. This indicates that the deeper structures exhibit typical three-dimensional features.
Therefore, obtaining a more accurate depiction of the deep electrical structure necessitates
the utilization of three-dimensional electromagnetic imaging inversion techniques.
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3. 3D Inversion and Results

Ideally, for three-dimensional inversion to best recover subsurface structures, a uni-
form distribution of MT stations and the utilization of all the components of the mag-
netotelluric transfer function are preferred. However, practical considerations such as
transportation constraints, topographical variations, and other factors often result in un-



Remote Sens. 2024, 16, 370 6 of 14

evenly distributed MT stations. In some cases, datasets are organized in profiles [41]. It has
been demonstrated that three-dimensional inversion of such datasets can provide more
accurate subsurface structural information compared to two-dimensional inversion [42].
The dataset used in this study is distributed along five MT profiles. Due to the complex
structural nature of the region and the strong three-dimensionality revealed by the phase
tensor analysis, the decision was made to employ three-dimensional inversion to character-
ize the deep structures in the area. The three-dimensional inversion was conducted using
ModEM [43,44].

Given the high population density and the presence of numerous hydroelectric power
stations in the region, the quality of the diagonal elements of the data is relatively poor. As
a result, the inversion process utilized apparent resistivity and impedance phase data from
the off-diagonal elements. A total of 118 MT stations were incorporated in the inversion,
covering a period range from 0.00325 s to 7300 s. Throughout the inversion process, an
error floor of 10% was applied to the apparent resistivity data, while a 5% error floor was
applied to the impedance phase data. In terms of error propagation, this is equivalent to
introducing a 5% error into the impedance data.

The central part of the three-dimensional inversion model has a grid size of
1.5 km × 1.5 km, with a total of 74 × 58 grids. Beyond the central area, there are an
additional 10 expansion grids in each direction, increasing the grid spacing by a factor of
1.5, resulting in a final grid count of 94 × 78. The southwestern segment of the LMSFZ
experiences significant topographical variations, and these variations needed to be con-
sidered during the inversion process. The model consists of a total of 164 vertical layers,
including 86 layers with a thickness of 50 m and 78 layers with gradually increasing thick-
ness from 50 m (Figure 5). Based on DEM data for the study area (Figure 1), grid cells
above Earth’s surface were designated as air cells and were kept unchanged throughout the
inversion process.
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(c) Vertical grids within the depth of 120 km. (d) Vertical grids within the depth of 10 km. Red dots
denote MT stations.

The initial resistivity of the three-dimensional inversion model was set to 100 Ωm
based on the average apparent resistivity of the MT stations. The smoothing factors in all
three directions were set to 0.2. An automatic updating regularization factor was applied,
with an initial value of 5000. When the inversion no longer converged, the regularization
factor was reduced to one-tenth of its original value. The final fitting root mean square
(RMS) error was 2.05 (as shown in Figure 6). The fitting curves for the original data at
each MT station and the response data obtained from the three-dimensional inversion are
presented in Figure S1 in the Supplementary Materials.
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For certain critical structures within the inversion model, such as C1 in the Lushan
earthquake area and C2 beneath the Sichuan Basin, additional tests were conducted. These
tests involved altering the resistivity values of these anomalous bodies and subsequently
performing forward modeling to assess the changes in the response curves (see Figure S2
in the Supplementary Materials). The results of these tests indicate that the key anomalous
bodies within the model are reliable.

Figure 7 presents map views of the deep electrical structure at eight different depths.
Centered around the epicenter of the second Lushan earthquake, there exists a high-
resistivity body (R1) extending from the shallow crust to the uppermost mantle. The
horizontal cross-section of this high-resistivity body is approximately elliptical, with its ma-
jor axis aligned with the orientation of the LMSFZ (NE direction). The Gengda–Longdong
fault constitutes the northwestern boundary of the high-resistivity body, while its south-
eastern boundary lies in proximity to the SDf. In the depth range greater than 10 km, the
high-resistivity body appears relatively continuous. However, within the depth range of
less than 10 km, a complex structure characterized by alternating high and low resistivity
develops. Particularly, on the southeastern side of the epicenters of the two Lushan earth-
quakes, the resistivity of the high-resistivity body is notably lower than in other areas, and
both the mainshocks and most aftershocks are distributed in this region.
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To the northwest of high-resistivity body R1 lies the Songpan–Ganzi block, where
the upper crust exhibits relatively high resistivity within a depth range of approximately
10 km, gradually increasing at greater depths. On the southeastern side of high-resistivity
body R1, corresponding to the Sichuan Basin, the resistivity is relatively low from the
near surface to several kilometers in depth, generally corresponding to the thickness of
sedimentary layers since the Mesozoic. Further depthward, up to approximately 20 km,
the resistivity increases again (as shown in Figure 7). Below 20 km, it exhibits relatively
low resistivity characteristics.

4. Discussion
4.1. Subsection

Figure 8 presents three-dimensional electrical structure images along five profiles.
Among these profiles, BB’ and DD’ are longer and traverse the Songpan–Ganzi block, the
LMSFZ, and the Sichuan Basin. AA’, CC’, and EE’ are shorter profiles that do not extend
into the Songpan–Ganzi block. The Gengda–Longdong fault is revealed in the BB’ and
DD’ profiles as a southwest-dipping boundary with alternating high and low resistivity.
The Wulong fault develops within high-resistivity blocks within the Baoxing Complex,
with relatively small resistivity variations on both sides. The Shuangshi–Dachuan fault
serves as the boundary fault between the LMSFZ and the Sichuan Basin. The resistivity
structures along the five profiles indicate that the SDf gradually becomes shallower from
southwest to northeast. On the EE’ profile in the southwesternmost region, the SDf appears
as a steep electrical boundary extending into the lower crust. On the DD’ and CC’ profiles,
the SDf splits into eastern and western branches (SDf1 and SDf2), with SDf1 dipping
southeastward and SDf2 showing a slight northwestward dip. They intersect at a depth
of approximately 20 km. The CC’ profile, crossing the Lushan earthquake area, exhibits
a more prominent Y-shaped electrical discontinuity structure to the east and west of the
SDf, with a pronounced difference in electrical properties. On the BB’ and AA’ profiles
to the northeast, the electrical discontinuity zone beneath the SDf reaches a depth of only
about 5 km. The electrical structure image from the EE’ profile reveals that the Shiyang
fault extends to greater depths.

On the southeastern edge of the Songpan–Ganzi block, northwest of the Gengda–
Longdong fault, the mid-upper crust exhibits a dual-layered structure of high and low
resistivity. In the northwest segment of the DD’ profile, there is evidence of a lower-
resistivity layer within the mid-lower crust, extending to several kilometers in depth. This
feature is proximal to the deep electrical structure characteristics in the interior of the
Songpan–Ganzi block [32,41]. Within the LMSFZ between the Gengda–Longdong fault
and the SDf, spanning from near the surface to depths of several tens of kilometers, a
high-resistivity body (HRB) is observed, corresponding to the Baoxing Complex. Along the
five profiles, it is evident that the southeastern side of the Sichuan Basin, to the southeast
of the SDf, generally exhibits alternating high and low resistivity in the upper crust. This
corresponds to the complex structural features on Earth’s surface, characterized by multiple
faults, folds, and anticlines.

At depths of approximately twenty kilometers and deeper, a lower-resistivity body C2
develops in the mid-lower crust, extending shallower to the southwest and deeper to the
northeast. The resistivity values also exhibit a southwest-to-northeast gradient, reflecting
lower resistivity in the southwest and higher resistivity in the northeast. The longitudinal
development of C2 appears as a pocket-like structure with an upper constriction, as evident
in profiles CC’, DD’, and EE’ (Figure 7). With increasing depth, C2 extensively extends to
the southern region on the southeastern side of the SDf, particularly evident in the southern
portion of the BB’ profile (Figure 8).
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4.2. Seismogenic Structure and Environment of Lushan Earthquakes

The electrical structure CC’ profile reveals the SDf separating into western and eastern
branches, characterized by contrasting low-resistivity bands. The western branch of the low-
resistivity band tilts to the southeast, while the eastern branch is steeper and tilts slightly
northwestward. They intersect at a depth of approximately 20 km, forming a Y-shaped
configuration (Figure 8). There is a shallow low-resistivity layer in the mid-upper crust.
The epicenters of the Lushan earthquakes are situated in the convergence region of the two
low-resistivity bands, within the upper constricted region of the pocket-like low-resistivity
body (HCL) at depth. The aftershocks of the 2013 Lushan earthquake are distributed along
the east–west cross-section, accompanying the Y-shaped low-resistivity band, while the
aftershocks of the 2022 Lushan earthquake are distributed along the western boundary of
the western branch of the low-resistivity band, with their north–south distribution confined
within the region enclosed by the high-resistivity body.

The electrical structure of the crust and upper mantle in the Lushan earthquake area
has improved our understanding of the relationships between deep and shallow crustal
structures and their connection to seismic activity (Figure 9). The Xinkaidian fault is located
at the boundary between the Songpan–Ganzi block (northwest) and the Sichuan Basin
(southeast). The Sichuan Basin features extensive Cretaceous strata, while older strata
from different geological epochs are exposed in the Songpan–Ganzi uplift, demonstrating
that the Songpan–Ganzi block has been tectonically inverted or overthrust above the
Sichuan Basin (Figure 2). Correspondingly, the electrical resistivity near the surface in the
Songpan–Ganzi block is higher than in the Sichuan Basin. Seismic investigations [45] have
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revealed that, from the near surface to a depth of approximately 10 km, Paleozoic strata
have developed. Near the southeastern side of the first Lushan earthquake epicenter, a
syncline has formed, with its western side corresponding to the Songpan–Ganzi block and
its eastern side corresponding to the Sichuan Basin. At depth, beneath the syncline, there
is a trough, appearing in a mirror-image relationship, along with variations in the Moho
depth and structural discontinuities [21].
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The 2008 Wenchuan earthquake occurred on the central fault (Yingxiu–Beichuan
fault) within the LMSFZ, while the Lushan earthquake took place on the frontal fault
(SDf). These two earthquake source areas exhibit entirely different electrical resistivity
attributes. The Wenchuan earthquake occurred within a high-resistivity body [41], whereas
the Lushan earthquake occurred in an area of transition between high and low resistivity.
The rupture of the Wenchuan earthquake is not connected to the rupture of the Lushan
earthquake, forming a seismic gap between the Lushan and Wenchuan earthquakes. This
seismic gap has shown minimal seismic activity before and after the Wenchuan and Lushan
earthquakes [46,47].

Based on results from seismic geology, seismology, and stress measurements, it is
suggested that this seismic gap still poses a risk of experiencing moderate to strong earth-
quakes [32,48–51]. However, seismic tomography results indicate the presence of low-
velocity and high-Poisson’s-ratio plastic materials beneath the seismic gap, which are
unfavorable for strain accumulation. Therefore, the likelihood of a strong earthquake
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occurring in this segment is considered low [52,53]. The divergence between these two per-
spectives may stem from differences in the understanding of the seismogenic environment
in the deep region of the earthquake zone and the relationship between material properties
and strength.

Deformation observations suggest little post-seismic slip in the southwestern segment
of the LMSFZ, indicating possible locking of this segment [54]. MT profiles in the Lushan
earthquake area reveal the presence of a high-resistivity medium in the deep portions
of the southwestern segment of the LMSFZ. This high-resistivity body corresponds to
the inferred locked blocks in the geodetic measurements. Although the Wenchuan and
Lushan earthquakes have to some extent released stress along the LMSFZ, this process
continues, and seismic activity is related to the accumulation of seismic energy and stress
enhancement [55]. Therefore, the seismic hazard of the southwestern segment of the
Longmenshan fault zone with deep high-resistivity structures and locking characteristics
still deserves attention.

5. Conclusions

Magnetotelluric data were collected from 118 sites in the Lushan earthquake area, and
a three-dimensional electromagnetic inversion was performed, taking into account the to-
pography. The three-dimensional electrical structure revealed the Shuangshi–Dachuan fault
separating into two distinct low-resistivity bands: a southeastern-dipping low-resistivity
band in the western branch and a steeper slightly northwestern-tilted low-resistivity band
in the eastern branch. These two branches intersect at a depth of approximately 20 km,
forming an extension pattern resembling a Y-shape. The epicenters of the 2013 Lushan M7.0
earthquake and the 2022 Lushan M6.1 earthquake are primarily located in the upper con-
stricted portion of the pocket-like low-resistivity body at depth, where the aftershocks are
distributed along the “Y”-shaped low-resistivity body, and their north–south distribution
is confined within the region enclosed by the high-resistivity body.

In the region to the southwest and southeast of the Shuangshi–Dachuan fault, deep
low-resistivity layers exhibit a tendency to protrude towards shallower depths, as well as
towards the northwest and northeast directions. This portrays regional extension move-
ment with stress extending from the southwest to the northeast and from deep to shallow
depths. This area is confined by the hard high-resistivity body to the northeast, which facil-
itated the occurrence of the two Lushan earthquakes. The two Lushan earthquakes and the
Wenchuan earthquake occurred in different fault systems within the LMSFZ. The seismic
gap characterized by high-resistivity structures, high stress, and locking characteristics
between the Lushan earthquake and Wenchuan earthquake areas still warrants attention in
terms of seismic hazards.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/rs16020370/s1, Figure S1: Fitting curves of apparent resistivity and phase
for the 3D inversion; Figure S2: Model test for C1 and C2.
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