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Abstract: Shrubs are important ecological barriers in desert regions and an important component of
global carbon estimation. However, the shrubland in deserts has been hardly presented, although
many high-quality land cover datasets with a 10 m scale based on remote-sensing data have been
publicly released products. Therefore, the underestimation of carbon storage is inevitable with the
absence of desert shrublands. The existing land-cover datasets have been analyzed and compared,
and it has been found that the reason for missing the shrubland in deserts is mainly indued by the
absence of shrubland samples, which are easy to neglect and difficult to retrieve. In this study, we
developed a semi-automatic method to extract shrubland samples in deserts as the updated input for
the machine-learning method. Firstly, the initial samples of desert shrublands were identified from
the very high spatial-resolution (0.3~0.5 m) imagery on GEE, and the maximum NDVI from Sentinel-2
was used for double-checking. Secondly, a feature-based method was used to learn the feature from
the initial samples and a similarity-based searching method was employed to automatically expand
the samples. Finally, the expanded samples and their corresponding time-series satellite images were
inputted into different machine-learning methods at a large region (1.63 × 106 km2) for extracting the
shrubland in the desert. It was found that different combinations of feature variables and time-series
combinations have different impacts on the overall accuracy (OA) of the classification results, as well
as the performance of identifying and classifying the different land-cover types. Compared to the
existing global-scale land-cover products, the proposed method can better identify the shrubland in
deserts and show better overall accuracy.

Keywords: shrubland in deserts; sample expansion; Sentinel 2; GEE; machine learning

1. Introduction

Perennial shrubs form simple plant communities occupying a large area in desert
regions, and they show a unique ability to adapt to the harsh environment of desert
ecosystems, which plays an important role in ecosystem stability [1,2]. The monitor-
ing and evaluation of desertification has been a world hotspot and an important way
to effectively prevent and control desertification [3]. Desertification research has be-
come a hot issue in multidisciplinary research, and the ability to obtain desert veg-
etation information quickly and accurately is the basis and key to desertification re-
search. Therefore, mapping the shrub cover in desert areas is of great significance for
desertification research.

With the ready availability of remote-sensing data and the advantage of a large
area coverage, they have been used for shrub mapping. Since the spatial coverage of
shrubs in deserts is usually small [4,5], most of the studies for mapping shrub cover
are based on UAV platforms [6–9] for small areas [5,10,11], which show good results.
However, shrub mapping in deserts is usually for much large areas, which is both
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difficult and very expensive to access UAV data. Therefore, it is economical and practical
to produce large-area shrub maps in desert areas through using medium-resolution
remote-sensing data.

Laliberte monitored changes of vegetation over time by image segmentation and
object-based classification and mapped shrub encroachment in southern New Mexico
from 1937 to 2003 [12]. Beck mapped shrub coverage on the North Slope of Alaska at
30 m resolution using a random forest algorithm and compared it with two existing
vegetation classification products in the Alaskan Arctic [13]. Baumann demonstrated
that a model using both hyperspectral data and SAR images performed much better in
mapping shrub coverage than a model using a single image [14]. Bayle used the red-edge
band to calculate the normalized anthocyanin reflection index (NARI) and compared its
validity with the normalized vegetation index (NDVI) as a basis for shrub vegetation
mapping and found that the NARI-based model performed better than the NDVI-based
model [15]. Vanselow found that the combination of statistical models and remote-
sensing data is more effective in mapping vegetation in arid mountain environments by
using the spectral vegetation index MSAVI2 and random forest algorithm [16]. Although
these methods have been applied successfully at a specific area, they have not been used
at national, continental, and global scales.

Fortunately, some global land-cover products with a medium resolution (10 m or 30 m)
are available, such as (1) FROM-GLC10 [17], (2) GLC-FCS30 [18], (3) GlobeLand30 [19],
and (4) ESA World Cover [20], which include shrubland. Figure 1 shows the four land-
cover maps in Northwestern China covering a large area of desert. It can be seen that the
distribution and area of shrubland from each dataset are largely different, which limited
the further use of these datasets for research on desertification. Furthermore, all the
datasets seem to largely underestimate the areas of the shrubland in deserts. In order to
quantitatively evaluate the difference among the above land-cover datasets, we manually
interpreted the sampling points based on high-resolution remotely sensed imagery,
annual median, and maximum NDVI. The confusion matrix of the land-cover products
is listed in Table A1. The overall classification accuracies of GLC-FCS, FROM-GLC,
GlobeLand30, and ESA World Cover were 0.706, 0.817, 0.764, and 0.828, respectively.
The four land-cover products had a high accuracy in classifying grassland, bareland,
and others, but they had variables and low accuracy in classifying shrubland. The
above land-cover products are not well-adapted and accurate in the field of desert shrub
mapping due to different data sources, classification schemes, and classification methods.
Therefore, it remains a challenge to map shrubs in the desert with medium-resolution
(10–100 m) remote-sensing data, and it is necessary to study desert shrub mapping by
exploring various remote-sensing data and classification algorithms.

The major reasons for identifying the shrubland in the desert at a large scale, such as
the global land-cover products, may be concluded as follows:

(1) Desert shrubs are relatively sparse and have low aggregation, so they are very difficult
to be identified through medium-resolution remote-sensing imagery and even high-
resolution remote-sensing imagery;

(2) The areas of shrublands within deserts are very small, so very few samples have been
collected while mapping the global land cover by using machine-learning methods,
and the samples are too few to learn the characteristics of the shrubland in deserts;

(3) Although shrub is vegetation, and tools such as the higher vegetation index will
show the features of vegetation, the dry conditions in the desert usually depress these
features; the input data for global land-cover mapping usually cannot cover the key
date of vegetation variation.
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In order to better map shrubland in deserts with medium-resolution remote-sensing
data, accurately and efficiently collecting the shrubland samples in desert areas is key. In
this study, the following steps are made:

Firstly, looking for accurate shrubland samples by using both the very high spatial-
resolution data and the time-series data manually.

Secondly, based on the manually retrieved shrubland samples, a method is designed
to automatically expand shrubland samples at large scale.

Finally, different machine-learning methods are tested to find the better one
for mapping.
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2. Study Area and Materials
2.1. Study Area

The study area is in Northern China, which includes Gansu and Qinghai provinces
and parts of Inner Mongolia and Xinjiang (Figure 2). The total area is 1.63 × 106 km2 with
an elevation of −156.8–6834.6 m. There are large areas of low vegetation cover, such as
desert, Gobi, and bare soil, as well as areas of high vegetation cover such as grassland
and farmland. The climate is mid-temperate continental, with severe cold winters and hot
summers, as well as large annual and daily temperature differences.
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Figure 2. Location of the study area.

2.2. Remote-Sensing Data and the Land-Cover Datasets

We selected remote-sensing data at 10 m and 30 m spatial resolution for mapping
shrub coverage in desert areas. We collected surface reflectance data from Sentinel-2 for the
period from March to October 2020 with less than 30% cloud cover. Sentinel-2 is an Earth
observation mission from the Copernicus programme of the European Space Agency and
contains two identical satellites: Sentinel-2A and Sentinel-2B. Its spatial resolution of the
visible and near-infrared bands is 10 m [21]. The 20 m resolution bands were resampled to
10 m. Data collection and preprocessing is conducted through online code writing on the
Google Earth Engine (GEE) cloud platform.

In this study, images with two different kinds of resolution were employed. The very
high spatial-resolution images from GEE were used to look for the shrubland in deserts
through the texture, and the verified ones corresponded to the Sentinel-2/MSI image
through location and the vegetation index variation.

The Copernicus DEM is a Digital Surface Model (DSM), which represents the surface
of the Earth including buildings, infrastructure, and vegetation. Digital elevation data were
collected and processed on the GEE platform.

ESA World Cover is a global land-cover product at 10 m resolution for 2020, based
on both Sentinel-1 and Sentinel-2 data. FROM-GLC is a 10 m resolution global land-cover
product derived from the classification of 2017 Sentinel-2 imagery using the Random
Forest method. GLC-FCS is a global 30 m resolution surface-coverage product for 2020
based on the 2019–2020 time-series Landsat surface reflectance data, Sentinel-1 SAR data,
DEM terrain elevation data, and global thematic ancillary datasets. GlobeLand30 is the
30 m spatial-resolution global surface-coverage data for the year 2020.
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3. Methods

The study is based on remote-sensing classification algorithms and remote-sensing
data provided by the GEE cloud platform to map desert shrub coverage. The major proce-
dure of the algorithm is very similar to those algorithms for global land-coverage mapping
using Sentinel-2 or Landsat imagery. The major processes include the construction of
feature space, machine-learning modules, training data retrieving strategies, and mapping
result evaluations. The data processing and analysis flow chart of this study is shown in
Figure 3. Besides the similar processes, several modifications have been made in this study
specifically for mapping shrublands within deserts, and the modifications include: (1) a
small portion of the shrub samples in the deserts are identified manually by using very
high spatial-resolution satellite data, and an automatic expansion method is designed for
retrieving more shrub samples, which are neglected by most of the global land-cover map-
ping algorithms; (2) instead of using satellite data with limited temporal information, the
time series of images from April to October are employed as the input data; and (3) several
machine-learning methods are compared to choose the one with better results.
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3.1. Feature Construct

Six remote-sensing spectral indices were calculated to assess the impact of spec-
tral indices on shrub-cover mapping, including normalized difference vegetation index
(NDVI) [22], the enhanced vegetation index (EVI) [23], the normalized difference water
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index (NDWI) [24], the bare soil index (BSI) [25], the normalized difference built-up index
(NDBI) [26], and the ratio vegetation index (RVI) [27]. The calculation formulas for each
index are as follows:

NDVI =
RNIR − RRED

RNIR + RRED
(1)

EVI = 2.5 × RNIR − RRED

RNIR + 6 × RRED − 7.5 × RBLUE + 1
(2)

NDWI =
RGREEN − RSWIR

RGREEN + RSWIR
(3)

BSI =
(RRED + RSWIR)− (RNIR + RBLUE)

(RRED + RSWIR) + (RNIR + RBLUE)
(4)

NDBI =
RSWIR − RNIR

RSWIR + RNIR
(5)

RVI =
RNIR

RRED
(6)

where RNIR, RRED, RBLUE, RGREEN, and RSWIR are the surface-reflectance values of the
near-infrared, red, blue, green, and shortwave infrared bands.

3.2. Machine-Learning Modules

Random Forest (RF) algorithm proposed by Leo Beriman [28] is an Ensemble Learning
algorithm. The combined multiple weak classifiers generate an average of the final results,
so the results of the whole model have high accuracy and generalization performance. It
is shown that RF has the advantages of stability, speed, and high accuracy in processing
remote-sensing data, so it has important applications in crop extraction, image classification,
and agricultural regression modeling [29]. Random forest inherits the idea of bootstrap
aggregating, which is an integrated technique for training classifiers on the original dataset
by sampling with replacement. It uses a set of trained classifiers to classify the new samples
and then uses majority voting or averaging the outputs to count the classification results of
all the classifiers, with the category that results in the highest score being the final label.

Support Vector Machines (SVM) [30] is a nonparametric machine-learning algorithm,
the core of which is to find an optimal hyperplane as a decision function in a high-
dimensional space and, thus, to classify the input vectors into different categories. The
choice of kernel function and cost parameter are the most important parameters affecting
the performance and efficiency of SVM.

Classification and Regression Tree (CART) [31] is a decision tree that grows in a binary
recursive partitioning process, which divides the training dataset into different classes by
the maximum variance of the variables within the subset and the minimum variance of the
variables within the subset. Where the maximum depth parameter of the tree determines
the complexity of the CART model, large depths may have higher accuracy but also increase
the risk of overfitting.

3.3. Accuracy Assessment

Overall Accuracy (OA), User Accuracy (UA), and Producer’s Accuracy (PA) are
evaluation metrics commonly used for assessing the performance of machine-learning
algorithms [32]. The OA and Kappa coefficients adequately reflect the comprehensive
accuracy of the results, and the PA and UA can be used to assess the classification accuracy
of specific land-cover types.

Classification results were evaluated on a class-by-class basis using a confusion ma-
trix. The final land-cover map produced for the study area was compared with existing
land-cover products in the region. The evaluation metrics are calculated, classifiers are
implemented, and confusion matrices are computed based on Google Earth Engine [33].
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3.4. Training Data-Retrieving Strategy

The quality of the samples used for training or labeling is critical to the accuracy of
classification results. The major source of error in many classification processes is inappro-
priate training samples [34]. Since several global land-cover products have been publicly
released, an automated sample extraction strategy from existing land-cover products is
proposed, which is economical and efficient. It is assumed that the intersection of the
existing products are the samples with high accuracy and high quality.

However, the existing land-cover maps are from different sources, so the number
of land-cover types varies, and definitions of the same type of land cover may differ.
Subsequently, the land-cover products were resampled to 10 m resolution and converted to
a customized classification system (Table 1). In addition, we re-project the four land-cover
maps into the same coordinates and crop them into a grid of size 10,000 × 10,000. The
intersection of the four land-cover maps for each grid is used. The study area covered a
total of 210 grids. Sample points are randomly selected from these grids.

Table 1. Land-cover classification system.

Code Class Abbreviation Description

1 Others OT Other surface types, in addition to the following categories.
2 Bare land BL Areas without vegetation cover, including wasteland, deserts, and the Gobi Desert.

3 Grassland GL Areas where herbaceous plant cover is greater than 15%, including natural
grassland and pastures.

4 Shrubland SL Areas in which the shrublands’ height range is 0.3–5 m and cover percentage is
>15% have unique texture.

5 Cropland CL It varies greatly throughout the year from bare fields to seeding to crop growing to
harvesting. It includes paddy fields, greenhouse agriculture, and other types.

6 Forest FO Areas with tree cover greater than 15% and tree height greater than 3 m. Includes
natural forests, planted forests, and fruit trees.

More than enough samples can be retrieved for bare land, grassland, cropland, and
forest, but the shrubland is seldom. Consequently, the final result from these training
samples hardly maps the shrubland in deserts.

As we know, it is hard to retrieve the shrub samples from the medium-resolution
satellite images even with manually checking. By fully taking advantage of high-resolution
imagery on GEE platform, we manually collected a small portion of the shrub sample
points for training and validation. The high spatial-resolution samples used in this study
are Google Earth images. A total of 2067 sample points were randomly sampled in the
study area (Figure 4).

Considering the shrubs mainly mixed with bare lands and grasslands in the study
area, bare land, grassland, and shrubland were collected as samples. These manually col-
lected samples were incorporated with the samples from the existing land-cover products.
Samples were selected from areas where the ground cover has not changed for many years,
as well as areas that are relatively homogeneous and little disturbed by human activities, in
order to ensure the accuracy and authenticity of the sample data. Figure 5 shows some of
the samples’ high-resolution snapshots. However, even at 0.3 m resolution, some of the
shrubs cannot be confirmed manually, so the vegetation index at 10 m resolution was also
plotted out. Although the extremely dry weather conditions depressed the characteristics
of vegetation, the spotted higher vegetation index at the first line of Figure 5 still shows
the appearance of the shrubs, which can be used for double confirmation. The spotted
vegetation index has obvious difference with the smooth distribution of the vegetation
index from bare lands, croplands, and grasslands.
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The automated sample extraction strategy from existing land-cover products is shown
in Figure 6a. However, the labor-intensive option of collecting highly reliable training
samples from interpreting the up-to-date high-resolution images is difficult to implement
on a large scale like the study area. Therefore, we use the minimum distance method based
on sample similarity to automatically label the samples by using the manually retrieved
shrub samples as the initial sample set for feature clustering to achieve spatial expansion
of the samples in the study area. The main idea is, for each category, using the existing
manual samples, we automatically supervise the labeling of the samples by associating the
target categories through the principle of inter-sample similarity to obtain the samples that
cover the entire study area. The finalized samples are then applied in the categorization of
the study area (Figure 6b).
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Mahalanobis distance is a measure of the distance between two data points, consider-
ing the covariance structure of the data. It is a multivariate distance metric that considers
the correlation between variables.

d(x, y) =
√
(x − y)T·Σ−1·(x − y) (7)



Remote Sens. 2024, 16, 374 10 of 22

where x is the vector of the observation and y is the vector of mean values of independent
variables, d represents the Mahalanobis distance, and Σ−1 is the inverse covariance matrix
of independent variables.

The final set of training samples consists of a combination of automatically extracted
sample points from the existing land-cover products, and the extended samples generated
by the above expansion algorithm based on manually verified samples. During training,
20% of samples were randomly selected for validation (Table 2). From the extended samples,
2576, 2550, and 2550 bare land, grassland, and shrubland samples were randomly selected
and merged with the automatically extracted samples, respectively.

Table 2. Number of total samples and validation samples.

Code Class Number of Total Samples Number of Validation Samples

1 Others 7500 1500
2 Bare land 10,076 2015
3 Grassland 10,550 2110
4 Shrubland 10,550 2110
5 Cropland 8000 1600
6 Forest 7500 1500

3.5. Time Series Composite

In previous studies, two compositional methods are widely used for land-cover classi-
fication using multi-temporal remote-sensing satellite images. One is the use of temporal
aggregation, which involves the use of metrics derived from time-series images, such as
mean, median, and minimum or maximum values [35–37]. Another approach is to combine
time series data from all available remote-sensing images [38,39].

Since it is in very dry condition for the study area, the unpredictable precipitation is
the key to find vegetation there. Instead of using only a few images, time series of images is
employed to capture the vegetation characteristics. However, the noise induced by clouds,
cloud shadow, and some other factors will degrade the information, so the maximum,
mean, and median of the time-series images or parameters are all calculated, and they are
all used as inputs for the RF model.

We created five datasets on the GEE platform with the following temporal aggregation-
stacking method. Dataset 1 to Dataset 3 are median, mean, and maximum values of the
surface reflectance and spectral index of image, respectively. Dataset 4 and Dataset 5
are median images composed from images of different time ranges. Input images were
computed and stacked based on different strategies to assess the impact of different choices
on classification accuracy (Table 3).

Table 3. The composition of datasets used for classification and comparison.

Dataset Number of Feature
Bands Description

1 16 Median image was composited from April to October of 2020.
2 16 Mean image was composited from April to October of 2020.
3 16 Maximum image was composited from April to October of 2020.

4 45 Median image was composited from April to October and April to July and August to
October of 2020.

5 52 Image composited from Dataset 4 and spectral indices of Dataset 3.

4. Results
4.1. Influence of the Feature Variables on the Classification Accuracy

In this part, we tested the classification accuracy of the three classification algorithms
based on Dataset 1 in Table 3 with different combinations of features. Tables 4 and 5
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show the producer accuracy and user accuracy from the classification results for different
combination of feature variables and machine-learning algorithms.

Table 4. Influences of different combinations of feature variables on producer accuracy (PA).

Land Cover
Types

Spectral Bands Spectral Bands + Spectral Indices Spectral Bands +
Spectral Indices + DEM

RF SVM CART RF SVM CART RF SVM CART

OT 0.876 0.779 0.824 0.867 0.761 0.828 0.893 0.782 0.844
BL 0.933 0.856 0.829 0.935 0.879 0.836 0.96 0.876 0.872
GL 0.654 0.391 0.560 0.656 0.420 0.578 0.778 0.485 0.658
SL 0.693 0.670 0.461 0.706 0.677 0.499 0.801 0.672 0.569
CL 0.670 0.490 0.480 0.708 0.513 0.510 0.770 0.526 0.593
FO 0.815 0.834 0.754 0.821 0.801 0.776 0.857 0.853 0.806

OT = others; BL = bare land; GL = grassland; SL = shrubland; CL = cropland; FO = forest.

Table 5. Influences of different combinations of feature variables on user accuracy (UA).

Land Cover
Types

Spectral Bands Spectral Bands + Spectral Indices Spectral Bands +
Spectral Indices + DEM

RF SVM CART RF SVM CART RF SVM CART

OT 0.914 0.813 0.830 0.924 0.824 0.824 0.942 0.826 0.854
BL 0.900 0.786 0.831 0.897 0.763 0.846 0.921 0.769 0.868
GL 0.625 0.506 0.557 0.640 0.535 0.581 0.755 0.587 0.653
SL 0.701 0.534 0.445 0.714 0.557 0.461 0.792 0.552 0.545
CL 0.682 0.577 0.482 0.702 0.543 0.522 0.784 0.579 0.602
FO 0.833 0.758 0.767 0.834 0.789 0.792 0.880 0.821 0.820

OT = others; BL = bare land; GL = grassland; SL = shrubland; CL = cropland; FO = forest.

Forest, others, and bare land generally had higher accuracy and were less affected by
combinations of input feature variables, while land-cover types such as cropland, shrubland,
and grasslands were more affected by combinations of characterization variables. When the
RF classifier was used, the spectral indices had a weak effect on improving the classification
accuracy for bare land, grassland, and shrubland, with accuracy increases by 0.01–0.03,
the DEM data had a significant impact on the improvement of classification accuracy for
bare land, grassland, and shrubland, with accuracy increases by 0.08–0.12. When the SVM
classifier was used, the spectral indices and the DEM data had a weak effect on improving
the classification accuracy for bare land, grassland, and shrubland, while accuracy may
increase or decrease. When the CART classifier was used, the spectral indices and the DEM
data had a weak effect on improving the classification accuracy for bare land, grassland,
and shrubland, with accuracy increases by 0.03–0.07.

4.2. Influence of the Times-Series Data on the Classification Accuracy

Based on the results in the previous subsection, we chose to use the Random Forest
algorithm to verify the effect of datasets composed of different time series on the accuracy
of land-cover classification.

Figure A1 shows the distribution of importance scores for all input feature variables
involved in classification in different datasets. Different characteristic variables in
random forests have different importance in participating in classification, and variables
with higher importance scores contribute more to the classification results [40]. From the
figure, it can be seen that DEM feature, RVI, and NDVI feature have higher importance
scores, while spectral bands and other spectral indices have lower importance scores.
Spectral bands B4 and B11 generally have higher importance scores than other spectral
bands. The importance scores of the spectral indices NDVI and RVI were generally
higher than the other spectral indices.



Remote Sens. 2024, 16, 374 12 of 22

Dataset 1, Dataset 2, and Dataset 3 were composited from all the images with less
than 30% cloud cover in the study area from April to October in 2020, and the compositing
methods were median, mean, and maximum values, respectively. Dataset 4 is a combination
of Dataset 1 and the median of images with less than 30% cloud cover in the study area
from April to July 2020 and August to October 2020. Dataset 5 is a combination of Dataset
4 and spectral indices of Dataset 3. Dataset 4 and Dataset 5 had the highest OA of 0.88 and
0.891, respectively, followed by Dataset 2 (0.854), Dataset 1 (0.835), and Dataset 3 (0.811).
Meanwhile, bare land, grassland, and shrubland have the highest PA and UA in Dataset 5
(Table 6).

Table 6. UA, PA, and OA of land-cover types from the classification results of the five different
datasets.

OT BL GL SL CL FO Kappa OA

Dataset 1
PA 0.893 0.960 0.778 0.801 0.770 0.857

0.801 0.835UA 0.942 0.921 0.755 0.792 0.784 0.880

Dataset 2
PA 0.911 0.960 0.790 0.801 0.819 0.889

0.824 0.854UA 0.935 0.935 0.769 0.821 0.818 0.895

Dataset 3
PA 0.888 0.934 0.725 0.740 0.779 0.855

0.773 0.811UA 0.909 0.915 0.716 0.772 0.765 0.843

Dataset 4
PA 0.903 0.982 0.820 0.842 0.846 0.922

0.855 0.880UA 0.957 0.940 0.809 0.872 0.828 0.915

Dataset 5
PA 0.915 0.981 0.830 0.848 0.873 0.932

0.869 0.891UA 0.965 0.947 0.816 0.882 0.859 0.918

OT = others; BL = bare land; GL = grassland; SL = shrubland; CL = cropland; FO = forest; PA = producer accuracy;
UA = user accuracy; OA = overall accuracy; Kappa = Kappa coefficient.

Comparing the results of Dataset 1, Dataset 2, and Dataset 3, Dataset 2 has consistently
higher accuracy for PA and UA for all land-cover types, Dataset 1 is slightly lower than
Dataset 2, and Dataset 3 has the lowest accuracy. Therefore, the median and mean are
better choices than the maximum if images within a year need to be composited. The
accuracy of the land-cover types in Dataset 4 improved compared to Datasets 1 to 3, with
the greatest improvement being in shrubland and cropland. This indicates that stacking
composited data from different time periods helps to improve the accuracy of land-cover
types that are difficult to classify. Meanwhile stacking different types of composited data
can also improve the accuracy of classification. Therefore, the use of both median and
time-series compositions, as well as spectral indices and DEM data, should be considered
in applications.

4.3. Classification Results

In order to evaluate the land-cover results obtained in this study, the classification
results were compared with existing high spatial-resolution land-cover products, including
FROM-GLC, GLC-FCS, ESA Word Cover, and GlobeLand30.

Figure 7 shows the confusion matrix for the classification results using samples from
different sources. Manually verified sample sets are used to validate the classification
results. When using only the sample extracted from the available land-cover data, the
highest PA(RECALL) was 90.74% for other, and after adding the expansion samples, the
highest PA was 92.3%, 94.4%, and 78.19% for bare land, grassland, and shrubs, respectively.
When combining the two samples, other, bare ground, grass, and shrubs had the highest
UA(PERCISION) of 78.86%, 96.4%, 87.79%, and 88.37%, respectively.
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Figure 7. The confusion matrices computed using manual samples. (a) OURS-ES means results
obtained using a random forest trained with a mixture of expanded samples and extracted samples
from existing products. (b) OURS-NES means results obtained using a random forest trained with
samples only from existing products. The red letters in the graph represent the overall accuracies.

Figure 8 shows a visual comparison of the classification images of the random
forest trained by the two sample sets. Figures 9 and 10 show a visual comparison of
the classification results obtained in this study with the existing land-cover products
in several different magnification regions. The different land-cover products showed
great differences in areas with complex land-cover types. Therefore, we chose areas with
complex land-cover types, including shrublands, grasslands, forests, and croplands as
the magnification regions in the study area. It can be seen that the classification effect
of the land-cover results obtained in this study has been significantly improved. For
example, in terms of recognizing and classifying artificial surfaces, ESA Word Cover
is prone to misclassify roads as bare ground (Figures 8F and 9D). In addition, the
classification results of this study resulted in a more accurate identification of land-cover-
type boundaries and more shrubland cover than these products. Samples obtained from
existing land-cover products lacked the sparse shrub cover found in deserts. Expanding
a small number of hand-collected samples solved this problem well, and as can be seen in
Figure 9A,B,E, many of the sparse shrubs categorized as bare ground were also extracted
using the expanded samples.

From the mapping result, bare lands, grasslands, shrublands, croplands, and forests
accounted for 59.35%, 21.57%, 4.23%, 3.98%, and 1.72% of the area of the study area,
respectively. Shrubs are mainly located in the transition zone between desert bare ground
and grassland.



Remote Sens. 2024, 16, 374 14 of 22
Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 8. The classification results of this study are compared with areas of existing high spatial-
resolution land-cover products. (a) OURS-ES, (b) OURS-NES. 

Figure 8. The classification results of this study are compared with areas of existing high spatial-
resolution land-cover products. (a) OURS-ES, (b) OURS-NES.



Remote Sens. 2024, 16, 374 15 of 22Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 9. The classification results of this study compared with areas of existing land-cover products 
((A), 39.8974076°N, 106.3292915°E; (B), 41.2157217°N, 97.7361003°E; (C), 43.5114046°N, 
93.4742268°E; (D), 35.1575914°N, 105.8086764°E; (E), 42.2421678°N, 96.4912866°E; (F), 37.6659061°N, 
102.7705176°E). ESA Word Cover and GlobeLand30 are made based on 2020 data, FROM-GLC is 
made based on 2017 data, and GLC-FCS is made based on 2019–2020 data. Our result is made based 
on 2020 data. 

 

Figure 9. The classification results of this study compared with areas of existing land-cover products
((A), 39.8974076◦N, 106.3292915◦E; (B), 41.2157217◦N, 97.7361003◦E; (C), 43.5114046◦N, 93.4742268◦E;
(D), 35.1575914◦N, 105.8086764◦E; (E), 42.2421678◦N, 96.4912866◦E; (F), 37.6659061◦N, 102.7705176◦E).
ESA Word Cover and GlobeLand30 are made based on 2020 data, FROM-GLC is made based on 2017
data, and GLC-FCS is made based on 2019–2020 data. Our result is made based on 2020 data.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 9. The classification results of this study compared with areas of existing land-cover products 
((A), 39.8974076°N, 106.3292915°E; (B), 41.2157217°N, 97.7361003°E; (C), 43.5114046°N, 
93.4742268°E; (D), 35.1575914°N, 105.8086764°E; (E), 42.2421678°N, 96.4912866°E; (F), 37.6659061°N, 
102.7705176°E). ESA Word Cover and GlobeLand30 are made based on 2020 data, FROM-GLC is 
made based on 2017 data, and GLC-FCS is made based on 2019–2020 data. Our result is made based 
on 2020 data. 

 

Figure 10. High-resolution images with zoomed-in details. (a) The local zoomed of Figure 9A; (b) the
local zoomed of Figure 9B; (c) the local zoomed of Figure 9D; (d) the local zoomed of Figure 9E.



Remote Sens. 2024, 16, 374 16 of 22

5. Discussion

Comparing the shrubland results for the four land-cover products, we found that
FROM-GLC, GlobeLand30, and ESA World Cover had a very low percentage of sparse
desert shrublands in the study area, and GLC-FCS contained more shrublands. The
four land-cover products showed low consistency in the proportion of shrublands and
distribution. Therefore, the accuracy of the global land-cover products on shrubland in
desert areas is very low, and medium-resolution satellite imagery is very difficult to capture
the characteristics of shrubland in deserts. However, it is not impossible to retrieve more
information on shrubland in deserts from medium-resolution satellite imagery.

An analysis of three classification algorithms, Support Vector Machine (SVM), Cate-
gorical Regression Tree (CART), and Random Forest (RF), reveals that the RF algorithm has
a significant advantage when using a large number of features and samples for classifica-
tion. A comparison of the classification accuracies revealed that all three remote-sensing
classification algorithms were accurate for other, bare land, and forest, but less accurate for
grasslands, shrublands, and croplands. This is because land-cover types such as grassland
and cropland are highly seasonal, and shrubs often grow in tandem with grassland and
bare ground. Surprisingly, SVM’s classification results are of low quality, which is incon-
sistent with some past studies that found SVM to be the most accurate classifier [41,42].
The different geographical locations and climates of the study areas of these studies, the
different topographic features, and the different definitions of land-cover types caused
the different results. Different satellites also have different sensors and time periods for
acquiring data, which also leads to different results from different classification algorithms.

The use of spectral indices and topographic features improved the classification
accuracy of random forests, with NDVI, elevation, and RVI having the strongest feature
importance (Tables 4 and 5, and Figure A1). This is consistent with other findings, such
as reports that spectral indices (e.g., NDVI, EVI, and SAVI) improve the accuracy of land-
cover classification [43]. The DEM data resulted in a maximum improvement of 0.12
in classification accuracy for bare lands, grasslands, and shrublands. There is a strong
correlation between land-cover type and elevation, which indicates that elevation makes it
easier to differentiate between grassland and other vegetation or bare ground, as well as
between bare ground and man-made built-up areas.

The median composite method can be used on the GEE platform to quickly process
hundreds of images and filter out images with less than 30% cloud cover. A single cloud-
free image of a certain time period is obtained from the image collection by extracting the
median value of the surface reflectance. In addition to the median method, other methods
such as mean and maximum are also used. The results of Dataset 4 and Dataset 5 show that
overlaying different types of annual composites and multiple monthly composites helps
to improve the classification results. Due to the movement of clouds, the composition of
the median of the image in different years or in different regions affects the acquisition of
phenological information. For example, in 2020, a large portion of the southwestern region
of the study area was covered by clouds for a long period of time from April to July, leaving
information for the rest of the year when the median was computed. This effect is severe
for study areas with strong seasonality in land-cover types.

In the lack of a large number of samples, large-scale land-cover classification mapping
was accomplished by extracting samples using existing high-quality land-cover classifi-
cation datasets. In the case of a few shrub samples in the study area, better classification
results can also be achieved by making use of similar samples from different spatial loca-
tions for training and expanding samples from manually collected samples.

Since this study succeeded in mapping a large portion of shrubland in deserts com-
pared to the previous global land-cover products, the trained model parameters will be
applied for shrubland mapping at other areas at first, and an automated procedure will
be developed to evaluate the results for selecting more samples to retrain the model to
improve the mapping results.
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6. Conclusions

Medium-scale remote-sensing images are easy to acquire and cover a wide range of
areas, which is suitable for large-scale land-cover studies. However, the machine-learning-
based products cannot identify the sparsely distributed land cover with small size, such
as the shrubland in deserts, which is due to the missing samples for these land covers.
Fortunately, with the high-resolution images on Google Earth Engine, a small portion of
samples for shrubs in deserts can be recognized and can also be double confirmed through
the vegetation characteristics from medium-resolution remote-sensing data. Therefore, a
semi-automatic method for collecting shrub samples in deserts is proposed to train different
machine-learning modules, and the proposed procedure can achieve an overall accuracy of
90.66% and a 15.2% higher rate than that without shrub samples. Especially, the PA and
UA for the shrubland are 78.19% and 88.37%, which is close to 0 for other products. In near
future, this method will be employed to retrieve the global shrublands in deserts and to
improve the accuracy of shrubland for the existing land-cover products.
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Table A1. Confusion matrix of the land-cover products.

Name Land Cover Types OT BL GL SL PA

GLC-FCS

OT 293 1 30 0 0.904
BL 205 779 100 20 0.706
GL 20 0 376 0 0.95
SL 43 172 17 11 0.005
UA 0.522 0.818 0.719 0.355
OA 0.706

FROM-
GLC

OT 243 34 47 0 0.75
BL 6 1084 14 0 0.982
GL 16 17 361 2 0.912
SL 1 238 3 1 0.004
UA 0.914 0.789 0.849 0.333
OA 0.817

GlobeLand30

OT 286 8 29 1 0.883
BL 11 944 146 3 0.855
GL 34 8 349 5 0.881
SL 1 206 36 0 0
UA 0.861 0.81 0.623 0
OA 0.764

ESA World
Cover

OT 274 22 24 4 0.846
BL 5 1062 37 0 0.962
GL 20 2 374 0 0.944
SL 0 235 6 2 0.008
UA 0.916 0.804 0.848 0.333
OA 0.828

OT = others; BL = bare land; GL = grassland; SL = shrublands; PA = producer accuracy; UA = user accuracy; OA =
overall accuracy.
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