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Abstract: Water scarcity is a significant challenge in China, and the South-to-North Water Diversion
Project (SNWDP) aims to address the water deficit in the northern region. This study analyses Landsat
5/7/8 remote sensing imagery from 2001 to 2020 on the Google Earth Engine (GEE) cloud platform
to assess the impact of the SNWDP on surface water bodies in water-receiving areas. Moreover, by
integrating MODIS evapotranspiration data and ERA5 meteorological reanalysis data, this study
comprehensively assesses the SNWDP’s contribution to varied surface water body changes. Using an
improved multi-temporal water frequency method, this study extracts max, seasonal, and year-long
water surface areas. The results reveal that Beijing and Henan provinces have experienced significant
increases in water surface areas post-SNWDP, with their max water surface area growing at a rate of
10.42 km2/yr and 33.49 km2/year, respectively. However, water surface areas in several provinces,
especially those along the east route, were not observed to increase. The spatially detailed Mann–
Kendall test indicates that the expansion of year-long water bodies is mostly concentrated near the
central route project, revealing spatial heterogeneity in the water replenishment effect. Cropland and
impervious surfaces are the main contributors to transfers in and out of water bodies. Meteorological
and water use factors for spatial variations in water changes are also identified. These findings
provide insights into the varied hydrological consequences of the SNWDP and contribute to the
evaluation and management of similar large-scale water diversion projects around the world.

Keywords: water diversion; south-to-north water diversion project; long-term remote sensing; water
body types; spatiotemporal change; Google Earth Engine

1. Introduction

Water security has persistently been a global challenge [1], and this issue is particularly
pronounced in China, which is densely populated and rapidly urbanizing [2]. As the
world’s most populous nation with a highly uneven distribution of resources, China has
long grappled with water scarcity and imbalanced water distribution [3,4]. According to
relevant data, China’s per capita water resources amount to a mere 2200 m3/year, rendering
extreme water scarcity a stark reality for the country [5]. In recent years, rapid urbanization
and economic growth have intensified water demand, exacerbating water scarcity [6,7] and
significantly aggravating China’s water crisis. Conversely, China’s water resources exhibit
a spatial distribution pattern characterized by less water in the north and more in the
south, with northern regions confronting water scarcity [8,9]. As the second largest plain in
China, the North China Plain supports 25% of the nation’s population but possesses only
3% of its freshwater resources, resulting in a severe water crisis in the region [10–13]. To
address the water shortage in North China, the Chinese government has introduced a series
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of policies and implemented various projects, with the South-to-North Water Diversion
Project (SNWDP) being the most significant component.

The concept of the SNWDP originated in the 1950s, but it was not systematically
planned until the 1990s, with construction commencing at the turn of the century. The
project is regarded as a landmark in modern water conservancy engineering in China,
aiming to resolve the water shortage in the northern region through water diversion
and reallocation [14]. The SNWDP is a significant endeavour consisting of three water
transfer routes—East, Central, and West—that cover a large portion of China. The East and
Central routes began supplying water to the North in 2014. Since its implementation, the
SNWDP has been instrumental in mobilizing water resources [15], delivering over 50 billion
cubic metres of water to northern China. It has contributed to economic development in
the recipient region [16,17], improved the ecological environment [18–21], and alleviated
pressure on water resources [22,23]. Previous studies have highlighted the role of the
SNWDP in stabilizing and replenishing groundwater resources [24–26]. However, most
of these studies have primarily relied on gravity satellites and statistical data to assess
the project’s impact on land water storage, particularly groundwater, while overlooking
changes in surface water. Surface water, as a crucial component of the terrestrial water cycle
and water resources [27], holds significant importance for various aspects, such as human
production, landscape ecology, and climate regulation [28–30]. Consequently, investigating
the surface water variations in the SNWDP area is of significant importance for water
resource protection and management.

Surface water body changes are influenced by a multitude of factors, including both
natural and social factors [31,32]. Therefore, to accurately analyse the contribution of the
SNWDP to surface water body changes, it is crucial to identify various factors simultane-
ously. For instance, meteorological factors like temperature and rainfall directly impact
the formation and disappearance of surface water bodies, while human activities like
urbanization and agricultural irrigation also have significant effects [33]. When assessing
the SNWDP’s impact, it is essential to comprehensively consider these factors and employ
appropriate statistical methods to accurately evaluate the project’s influence on surface
water body changes. Additionally, it is important to acknowledge that surface water body
changes can vary across different regions and time periods.

The SNWDP spans across Central and Northern China, where the industrial structure,
economic conditions, intensity of human activities, and meteorological conditions exhibit
significant spatial variations over different regions [34–38]. Furthermore, influenced by the
resource management policies of various regions, the water usage patterns and resource
management models vary with regional differences [39–41]. Additionally, due to the varia-
tions in water resource depletion and carrying capacity in each region [42,43], the SNWDP
has differing effects on water resource restoration in various areas [44,45]. Therefore, a
detailed assessment for each region is necessary to accurately address the impact of the
SNWDP on surface water changes in different areas.

To identify the impact of the South-to-North Water Diversion Project on surface water
changes in different regions, it is first necessary to accurately extract the spatiotemporal
distribution of surface water bodies. The advancement of remote sensing earth obser-
vation technology and the availability of extensive data sources have led to increasingly
widespread applications of surface water extraction [46,47]. Remote sensing, with its ex-
tensive monitoring range, archived data, and high timeliness, offers effective technical
support for water ecological environmental protection and water resource development,
and it has been applied in certain areas of the SNWDP [48,49]. Currently, the prevalent
methods for water body extraction are primarily divided into two categories: threshold
methods and classification methods [50,51]. Among the threshold methods, the water body
index method is widely employed and has demonstrated effectiveness in extracting water
bodies. Zou et al. [52] integrated the findings of previous studies and multiple indices to
accurately extract long-term series water bodies in the United States, and this approach has
been successfully applied in China [2,53]. Therefore, this study was carried out using this
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widely adopted method and its optimized form to extract the spatiotemporal distribution
of surface water bodies in the SNWDP areas.

In light of these considerations, this study aimed to improve the method for extracting
the distribution of surface water bodies in the receiving areas of the SNWDP and analyse
the divergent changes in water bodies before and after the recharge. Long-term multi-
source remote sensing images and reanalysis data were utilized based on the Google
Earth Engine (GEE) cloud computing platform. This study investigates the spatial and
temporal changes of water bodies in the areas influenced by the SNWDP and identifies
the driving factors behind these changes. It will provide a scientific basis for assessing,
optimizing, and managing the effects of the SNWDP, and it can also support varied water
transfer strategies according to local conditions. The findings of this study will contribute
to the understanding of localized water resource management and provide a basis for the
sustainable development of water-related projects.

2. Data and Methods
2.1. Study Area

The primary research area of this study includes the eastern and central routes of
the SNWDP, which covers an expansive region of 1.05 million km2 and encompasses
12 provinces and 94 cities (Figure 1). The eastern route originates from the Jiangdu Water
Conservancy Hub in Yangzhou City, Jiangsu Province, while the central route begins at
the Danjiangkou Reservoir, located in the middle and upper reaches of the Han River, a
major tributary of Yangtze River. The SNWDP is an extensive undertaking, boasting over
3000 km of water conveyance infrastructure. It serves a population of nearly 400 million
and spans multiple regions, including the North China Plain and the Huaihai Plain.
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2.2. Research Data

This study primarily utilized seven categories of research data: meteorological data,
evapotranspiration data, topographic and geomorphological data, remote sensing imagery,
statistical data, land cover data, and fundamental geographic element data. The data were
predominantly processed and extracted using the Google Earth Engine (GEE) platform,
with some data being organized through ArcGIS.

(1) Meteorological data mainly include annual precipitation (AP) and 2 m height air
temperature (Temp) derived from ERA5-Land reanalysis data [54]. These data have
a spatial resolution of 0.1◦ × 0.1◦ and were analysed and extracted using the GEE
platform. ERA5 data have been proven to accurately represent the interannual and
seasonal characteristics of precipitation in China, making these data suitable for
practical studies [55,56].

(2) Evapotranspiration data primarily consist of MODIS evapotranspiration (ET) data,
which have a spatial resolution of 500 m × 500 m [57].

(3) Topographic and geomorphological data are mainly derived from ALOS Earth obser-
vation DEM data [58], and these data have a spatial resolution of 30 m × 30 m.

(4) Remote sensing images were obtained from the Landsat series of Earth observation
satellites. All series of Landsat satellite images (5/7/8) of the South-to-North Water
Diversion region from 2001 to 2020 were acquired using the GEE platform. The
Landsat-5/7/8 images are courtesy of the U.S. Geological Survey. To ensure higher-
quality images, this study employed the de-clouding algorithm CFMask to remove
clouds, cloud shadows, and snow, resulting in a collection of high-quality images. A
total of 10,321 Landsat satellite images were used to extract water bodies within the
research area (Figure 2).
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(5) The compendium of statistical data primarily encompasses information pertaining
to the volumetric transference of water facilitated by the SNWDP across various
provinces and municipalities. Additionally, it incorporates data on the consumption
of water in each respective province and city, and these data are further sorted into
the following categories: agricultural water consumption (Agcwu), industrial water
consumption (Idswu), and the consumption of non-service public water use (Cnspwu).
The aforementioned data were meticulously extracted from the bulletins of provincial
and municipal water resources.

(6) Land cover data. The China land cover data (CLCD) used in this study were developed
by Huang and Yang [59]. This dataset, with its 30 m resolution, boasts an overall
accuracy of 80%, thereby outperforming other notable datasets such as MCD12Q1,
ESACCI_LC, FROM_GLC, and GlobeLand30. For the purpose of this study, land
cover data from the years 2013 and 2020 were harnessed to scrutinize the significant
metamorphoses of aquatic body types within the geographical confines of the SNWDP.

(7) Fundamental geographic element data, including Chinese provincial and municipal
administrative boundaries, were sourced from the 1:1 million Chinese Basic Geo-
graphic Information Database of the National Basic Geographic Information Center.

Using the GEE cloud computing platform, a comprehensive dataset for assessing
surface water frequency, temperature, precipitation, and evapotranspiration in the research
area from 2001 to 2020 was obtained through calculations.

2.3. Research Method
2.3.1. Water Body Extraction Method and Improvements

In this study, the waterbody extraction algorithm devised by Zou et al. [60] was
utilized and enhanced to identify the distribution of waterbodies within the South-to-
North Water Diversion Project’s zone of influence. The algorithm relies on the relationship
between water body indices and vegetation indices for feature discrimination. Specif-
ically, three indices were employed: the Modified Normalized Difference Water Body
Index (mNDWI), the Normalized Difference Vegetation Index (NDVI), and the Enhanced
Vegetation Index (EVI). The calculations for these three indices are as follows:

mNDWI =
ρGreen − ρSWIRI
ρGreen + ρSWIRI

(1)

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

EVI = 2.5× ρNIR − ρRed
1.0 + ρNIR + 6.0ρRed + 7.5ρBlue

(3)

where ρGreen represents the green band reflectance, ρRed denotes the red band reflectance,
ρBlue signifies the blue band reflectance, ρSWIRI corresponds to the short-wave infrared
band reflectance, and ρNIR refers to the near-infrared band reflectance. Ultimately, the
water body discrimination algorithm, which incorporates the aforementioned indices, is
as follows:

water = (EVI < 0.1) and (mNDWI > EVI or mNDWI > NDVI) (4)

If the EVI value is below 0.1 and mNDWI exceeds either EVI or NDVI, the feature
is identified as a water body. Building upon this, after classifying multiple images of the
same area within a year, the annual frequency of water body occurrences is calculated
cumulatively. The frequency of water bodies is determined using the following formula:

F(y) =
1

Ny
∑Ny

i=1 Wy,i (5)
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where F(y) is the water frequency, a measure of the occurrence of water that ranges
from a minimum value of 0 to a max value of 1; y is the year; Ny is the total number of
observations in a year for a certain image element; Wy,i represents whether the image
element is discriminated as a water body at the ith observation in the yth year (1 if it
is a water body; 0 otherwise). The figure below shows a flow chart of the algorithm’s
entire process.

In mountainous areas, there is a situation where water bodies are mistakenly identified
as shadows of the mountains. Therefore, Zou et al. [52] used DEM data to calculate
mountain shadows and improved the accuracy of water body identification. In this study,
we used ALOS AW3D30 data to identify mountain shadows and remove their impacts
on water body extraction. In practical situations, the shadows cast by buildings in urban
areas can also be classified as water, thus affecting the accuracy of water body extraction,
which has lacked consideration in previous algorithms. Particularly in the SNDWP’s region
of influence, there are a large number of dense buildings, which can introduce errors in
the extracted surface water bodies. To address this challenge, we integrated the global
impervious surface data published by Gong et al. [61] to mask out building shadows,
resulting in more accurate water body frequency data (Figure 3).
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In this study, the integration of DEM data and impervious surface data effectively
reduced significant noise from the water frequency data. However, some image misclas-
sifications and omissions still remained. To address data-related issues and algorithm
recognition errors, we implemented reasonable thresholds based on prior studies [52,60,62].
Specifically, we set the water body frequency threshold at 0.25 to minimize these impacts.
Additionally, we categorized the water frequency threshold into three main classifications:
seasonal water bodies (water frequency between 0.25 and 0.75), year-long water bodies
(water frequency between 0.75 and 1), and max water bodies (water frequency between
0.25 and 1, the union of seasonal water body and max water body). This classification
method enabled us to determine the annual distribution of seasonal, year-long, and max
water bodies within the regions influenced by the SNWDP.

2.3.2. Spatial and Temporal Change Analysis

The South–North Water Diversion Project’s central line and the east line were com-
pleted and first connected in 2014, marking a significant milestone. In order to analyse the
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impact of the SNWDP, we designated 2014 as the SNWDP reference point and conducted
linear regression analyses on the water body areas before and after this year. This approach
allowed us to observe the change trends for before and after the implementation of the
SNWDP, and we also used the following equation to do this:

yi = kix + bi (6)

where yi is the area of the water body in the ith region, ki is the slope of the ith region, and x
is the year. In this study, we set 2014 as the breakpoint year and conducted segmented linear
regression before and after the breakpoint year to observe the change trends regarding the
surface water body areas in each region before and after the SNWDP.

In order to further investigate the spatial variation in the water body areas and the
spatial and temporal changes in rainfall and evapotranspiration from a spatial perspective,
the Mann–Kendall test [63] and Theil–Sen Median method [64] were employed to examine
spatial variations on different raster scales. The Theil–Sen Median is commonly used to
estimate the average rate of change and trend in time series, and in this study, it was
utilized to calculate the slope β of the time series data. For time series data Xi = (x1, x2, . . .,
x3), it can be expressed by the formula:

β = Median
( xj − xi

j− i

)
, ∀j > i (7)

where Median is the median function. If β > 0, it indicates an upward trend in the time
series data, while if β < 0, it suggests a downward trend.

The Mann–Kendall test is a widely used technique for trend analysis in environmental
data series. It is particularly effective in detecting monotonic trend changes and identifying
potential turning points in time series data. The calculation process involves determining
the relationship between the magnitudes of xi and xj for all pairs of values (represented as
S) for a set of time series data Xi= (x1, x2, . . ., xn). The test is based on two assumptions:
(1) H0: the data in the series are randomly arranged, indicating no significant trend; (2) H1:
there exists an upward or downward monotonic trend in the series. The test statistic S is
calculated as follows:

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
xj − xi

)
(8)

sgn
(

xj − xi
)
=


+1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(9)

where the selection of the significance test statistic depends on the length of the time series,
denoted as n. When n < 10, the statistic S is directly used for the two-sided trend test. At a
given significance level α, if |S| ≥ Sα/2, then H0 is rejected, indicating a significant trend in
the original series. Conversely, if |S| < Sα/2, H0 is accepted and the series is considered
to have an insignificant trend. If S > 0, the series is considered to have an upward trend.
If S = 0, there is no trend, and if S < 0, a downward trend is considered to exist. When
n ≥ 10, the statistic S approximately follows a standard normal distribution, and the trend
test is performed using the test statistic Z. The formula for calculating the value of Z is
as follows:

Z =


S−1√
VAR(S)

, S > 0

0, S = 0
S+1√
VAR(S)

, S < 0
(10)

where VAR(S) = (n(n− 1)(2n + 5)−∑m
i=1 ti(ti − 1)(2ti + 5))/18; n is the number of data

points in the time series; m represents the number of knots (recurring datasets) in the series;
ti is the width of the knot (the number of repeated data in the ith set of repeated datasets).
For the trend test, a two-sided approach is adopted. The critical value Z1−α/2 is checked



Remote Sens. 2024, 16, 378 8 of 27

in the normal distribution table at a given significance level α. When |Z| ≤ Z1−α/2, the
original hypothesis was accepted and the trend was not significant; if |Z| > Z1−α/2, the
original hypothesis was rejected and the trend was considered significant.

To examine the spatial and temporal variation characteristics of each parameter on a
larger scale, this study utilized the aggregation tool to consolidate data on water bodies, ET,
AP, and Temp into percentage data at a 0.5◦ × 0.5◦ spatial unit. Moreover, to capture more
detailed trends in surface water bodies, the water body data were further aggregated into
percentage data with a 1 km × 1 km scale to examine the spatial and temporal dynamics of
the surface water changes across the different regions.

2.3.3. Quantify the Impacts of the SNWDP on the Water-Receiving Areas

In order to characterize the recharge intensity of the water-receiving areas of the South-
to-North Water Diversion Project, two indices are proposed in this study: recharge water
intensity (RWI) and recharge surface water intensity (RSWI).

RWI =
Received water volume

Total Area
(11)

RSWI =
Received water volume

Max water area
(12)

where Received water volume denotes the amount of water transferred by the SNWDP in
the year for the region, Total Area denotes the total area of the region (including non-water
areas), and Max water area denotes the maximum water body area of the region in the
previous year, which does not include non-water areas. By using the above two equations,
we calculated the RWI and RSWI of each water-receiving area of the SNWDP to represent
the recharge intensity through the project.

To examine the effect of the SNWDP on water bodies in the receiving areas, linear
regression analyses were conducted to explore the role of different factors on the area of
different water bodies. These factors mainly include Agcwu, Idswu, Cnspwu, ET, AP, Temp,
and SNWDP water transfer volume. In addition, a land transfer matrix based on CLCD
data was used in this study to explore the major changing traces of water bodies. Finally,
to assess the impact of the SNWDP on changes in surface water area, correlation analysis
was employed.

3. Results
3.1. Assessment of the Accuracy of Water Body Extraction

We selected four classic cities in the North China Plain, all are situated near the central
route of the South-to-North Water Diversion Project, are characterized by high building
density, and have been significantly impacted by the project (Figure 4). The figure reveals
that the pre-improvement original algorithm in these areas mistakenly identified numerous
building shadows as water bodies. In contrast, our improved algorithm effectively mitigates
errors due to building shadows and efficiently extracts the spatial distribution of surface
water bodies, thus proving the algorithm’s enhanced applicability in areas with densely
populated human settlements.

In this study, the extraction of max, year-long, and seasonal water bodies was con-
ducted by utilizing consistent imagery and methodologies to ensure comparability in
terms of classification accuracy. Year-long water bodies were used as the reference for
our accuracy assessment. Visual interpretation techniques were employed to distinguish
genuine water body image elements from non-water body image elements in the remote
sensing imagery. The accuracy of the extracted water bodies was then evaluated using a
confusion matrix.

Table 1 shows the accuracy results for year-long water bodies, with a user accuracy
of 94.04%, a producer accuracy of 97.54%, and an overall accuracy of 96.16%. The Kappa
coefficient, which measures agreement beyond chance, is 0.95, indicating that the algo-
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rithm used to ensure the classification accuracy of the water bodies in this study yields
superior outcomes and precisely delineates the distribution of water bodies within the area
influenced by the SNWDP.
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Table 1. Confusion matrix of water body classification results based on Landsat 5/7/8 images.

Classification (2020) Water Non-Water Total User Accuracy (%)

Water 915 58 973 94.04
Non-water 23 1116 1139 97.98

Total 938 1174 OA = 96.16

Producer accuracy (%) 97.54 95.06 Kappa = 0.95

3.2. Changes in a Specific Water Body in a Typical Area

Due to the significant impact of the SNWDP, the Miyun Reservoir—the northernmost
receiving area—was chosen as a representative region in this study to examine changes
in its water body area. Constructed in the 1960s, the Miyun Reservoir has been a crucial
water source for Beijing. However, factors such as climate change and rapid urbanization
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have resulted in a decline in the reservoir’s water storage capacity, leading to severe water
shortages in Beijing.

As shown in Figure 5, the max water body area of the Miyun Reservoir showed a
decreasing trend before 2014. However, after 2014, the max water body area of the Miyun
Reservoir showed a significant increasing trend (p < 0.01). Specifically, from 2001 to 2004,
the max water body area of the Miyun Reservoir continued to decrease, became stable from
2005 to 2014, and then rapidly increased after 2014.
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Furthermore, it is crucial to recognize that changes in surface water bodies are influ-
enced not only by the SNWDP but also by meteorological factors and human activities.
While remote sensing images reveal a trend in water body changes consistent with the
impact of the project, it is necessary to delve into later sections to discuss the specific and
detailed effects of the project on surface water bodies.

3.3. Temporal Trends
3.3.1. Trends in Max Water Body

Figure 6 shows the change trend regarding the max water bodies in the regions
influenced by the SNWDP. As the SNWDP’s east and central routes commenced operations
in 2014, this year was selected as the starting point at which we began evaluating the
SNWDP’s impacts. Trends before and after 2014 were analysed separately. Our findings
reveal that, except for Hebei Province, the max water body area in the other regions
exhibited a decreasing trend prior to 2014. Specifically, Jiangsu Province (62.59 km2/year,
R2 = 0.46, p = 0.01), Henan Province (10.20 km2/year, R2 = 0.43, p = 0.02), Shandong Province
(27.11 km2/year, R2= 0.60, p = 0.01), Shanghai City (4.61 km2/year, R2 = 0.65, p = 0.01), and
Tianjin City (33.14 km2/year, R2 = 0.41, p = 0.01) all experienced a significant decreasing
trend. Interestingly, after the first water connection, most of these regions experienced a
reversal in their declining trends. Notably, Henan Province (33.49 km2/year, R2 = 0.56,
p = 0.05) and Beijing City (10.42 km2/year, R2 = 0.68, p = 0.02) displayed the most significant
increases in water body area. Although Jiangsu Province, Hubei Province, Shandong
Province, and Tianjin City did not exhibit significant increases, they did deviate from
their original continuous declining trends. Hebei Province initially showed a significant
increasing trend until 2014 (19.03 km2/year, R2 = 0.60, p = 0.01), but after 2014, it changed
its original trend. In contrast, the max water body area in Zhejiang Province displayed a
relatively smooth change, without a clear trend. Overall, the most significant increases in
the max water body area were observed in Henan Province and Beijing after 2014.

3.3.2. Trends in Year-Long Water Body

Based on Figure 7, the year-long water body changes in different regions exhibited
various trends. Prior to 2014, some regions had a decreasing trend in their water body area,
such as the total region, Jiangsu Province, Shanghai City, and Tianjin City. Specifically, the
total region initially showed a short-lived increasing trend between 2001 and 2004 but later
displayed a significant decreasing trend (77.47 km2/year, R2 = 0.47, p = 0.01). Similarly,
Shanghai City (1.63 km2/year, R2 = 0.27, p = 0.06) and Tianjin City (21.63 km2/year,
R2 = 0.44, p = 0.01) also showed a decreasing trend. However, after 2014, the trends of
these regions changed and they started exhibiting an increasing trend, except for Shanghai
City, which continued to show a decreasing trend. The increasing trend became more
significant and obvious in Henan Province and Beijing City. The year-long water body
areas in Zhejiang Province and Hubei Province were more variable, making it difficult to
observe clear changes after the implementation of the SNWDP. Overall, based on evaluating
the change trends and their significance, the most significant changes were observed in
Henan Province and Beijing, both of which showed significant increases after 2014.

3.3.3. Trends in Seasonal Water Body

Based on Figure 8, the change trend regarding seasonal water bodies is more similar to
that of the max water bodies. Until 2014, most regions (except Hebei Province and Zhejiang
Province) showed a decreasing trend in their seasonal water body areas. Specifically, the
total region showed a significant decreasing trend (122.07 km2/year, R2 = 0.43, p = 0.01),
along with Hubei Province (18.43 km2/year, R2 = 0.23, p = 0.08), Shandong (68.71 km2/year,
R2 = 0.57, p = 0.01), Shanghai city (2.97 km2/year, R2 = 0.56, p = 0.01), and Tianjin city
(11.51 km2/year, R2 = 0.21, p = 0.10). However, after 2014, the total region, Jiangsu Province,
Hubei Province, and Shandong Province exhibited an increasing trend in their seasonal
water body areas. Notably, Shandong Province showed a significant increasing trend
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(22.17 km2/year, R2 = 0.56, p = 0.05). The change trend for Hebei Province was different from
that of the other regions. It showed a significant increasing trend until 2014 (10.65 km2/year,
R2 = 0.56, p = 0.05) but no longer exhibited an increasing trend after 2014. In summary,
based on the evaluating change trends and their significance, the most pronounced change
in seasonal water bodies was observed in Shandong Province, which showed a significant
increase after 2014.
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3.4. Detailed Spatial and Temporal Trends

The spatial and temporal trends regarding evapotranspiration (ET), temperature
(Temp), and annual precipitation (AP) in the SNWDP-affected regions were analysed using
the MK test, and our results are shown in Figure 9. The results revealed interesting findings.
Regarding annual precipitation (AP), most areas within the zone of influence did not
exhibit a significant trend, indicating a high level of AP volatility. However, certain areas
in Shandong Province showed significant decreases in AP. Conversely, a few areas at the
source of the eastern route displayed significant increases in AP.
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When analysing different water body types, significant increases in max water bodies
in the southern source area of the central route and near the central route were observed.
In the eastern route, the significant increases were mainly concentrated near Dongying
City, Shandong Province. However, in Tianjin and most of the eastern part of Shandong
Province, the max water body showed a significant decreasing trend. Year-long water body
showed a significant increasing trend in most regions, except for Tianjin City. The regions
around the central route all showed a significant increasing trend, revealing the effect of
extra water supply in this area. The eastern Shandong Province and Shanghai City, which
are distant from the route, continued to display a significantly decreasing trend in year-long
water body.

In addition to the aforementioned trends, it is worth noting that the significant in-
creases in seasonal water body were mainly concentrated in the Hebei Province section
of the SNWDP’s central route. This could potentially be attributed to China’s ecological
replenishment program, which has been in place since 2018. However, in the receiving
areas located farther from the central route, there was predominantly a significant decrease
in seasonal water body. The trend of seasonal water body in the eastern part of Shandong
Province was the same as that of the max and year-long water bodies, which also showed
a decreasing trend. However, it is important to note that Dongying city at the Yellow
River estuary stood out as an exception, as it still showed a significant increasing trend in
seasonal water body.

Based on this study, the trends of various components, including the max water body,
year-long water body, seasonal water body, evapotranspiration (ET), annual precipitation
(AP), and temperature (Temp), were analysed using the MK test. The analysis focused on
the trends before and after the implementation of the SNWDP, using 2014 as the inflection
point. The outcomes are presented in Figure 10. Upon dividing the data using 2014 as
the breakpoint, it becomes evident that each component exhibits distinct trends before
and after the implementation of the SNWDP. Our analysis allowed for a clear comparison
between the pre-SNWDP and post-SNWDP periods, shedding light on the effects of this
significant event on the studied components.
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The impact of the SNWDP event resulted in distinct changes in the year-long wa-
ter body, max water body, and seasonal water body. Prior to the implementation of the
SNWDP, there was a significant increase in year-long water body that was primarily concen-
trated near Shandong Province along the east route. Conversely, after the implementation
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of the SNWDP, this prominent increase shifted towards the middle route. Furthermore,
certain areas in the headwaters of the eastern route showed a notable decreasing trend
prior to the implementation of the SNWDP, but this trend was no longer observed after-
wards. It is worth mentioning that Tianjin continued to experience a decline even after the
implementation of the SNWDP.

Following the implementation of the SNWDP, the regions where the max water body
primarily increased were concentrated in the middle route area, the western part of Hebei
Province, and Shandong Province. However, before the SNWDP, the increases were mainly
concentrated in Shandong Province and the northern part of Hebei Province. With respect
to seasonal water body, it is evident that before the SNWDP, only a few areas showed an
upward trend, while many areas demonstrated a downward trend. However, after the
SNWDP, the areas with significant decreases noticeably diminished, while the areas with
significant increases expanded mainly along the central route, the northwestern part of
Shandong Province, and the northern part of Jiangsu Province along the eastern route.

Prior to the SNWDP, Henan Province was the main region experiencing a significant
decrease in annual precipitation (AP). However, after the implementation of the SNWDP,
a significant increasing trend in AP was observed in northwestern Shandong Province.
Although there was a noticeable upward trend in temperature between 2000 and 2020, this
pattern did not continue after the division caused by the SNWDP. ET also exhibited varying
patterns before and after the SNWDP, but generally maintained an increasing trend.

The surface water body in the study region primarily consists of rivers, lakes, and
reservoirs, making it challenging to identify trends at a coarse scale of 0.5◦ × 0.5◦. Therefore,
in this study, we reanalysed the trends regarding seasonal and year-long water body before
and after the implementation of the SNWDP using a finer 1 km × 1 km raster and the MK
test. Figure 11 illustrates the changes in year-long and seasonal water body at the 1 km
scale in various regions. It can be observed that the trend of river water body near the
SNWDP area in Hebei Province can be clearly discerned.

The implementation of the SNWDP has had a positive impact on both seasonal and
year-long water body. It reversed the declining trend witnessed by some rivers prior to 2014,
leading to a clear upward trend in the downstream area near the central route. Specifically,
the Miyun Reservoir, which is in the north end of the receiving area of the central route,
experienced a significant increase in year-long water body after the implementation of the
SNWDP. This increase has effectively alleviated the pressure on Beijing’s water supply
and contributed to the growth of the reservoir’s water volume. Similarly, the Danjiangkou
Reservoir, the source of the central route, has also seen a comparable and significant increase
in surface water area after the implementation of the SNWDP.
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Figure 11. Trends before and after the implementation of the SNWDP at a scale of 1 km × 1 km
in typical regions: (a) the part of the middle line project’s zone of influence; (b) part of the central
project’s zone of influence and Danjiangkou reservoir; (c) Miyun reservoir and the part of the east
line project’s zone of influence.

3.5. Drivers of Change in Water Bodies

In this study, linear regression was employed as a tool to elucidate the factors influenc-
ing the alterations in the spatial extent of various water bodies within the recipient regions,
as delineated in Table 2. Table 2 reveals that agricultural water consumption (Agcwu),
AP, Temp, and SNWDP water transfer volume were the primary catalysts augmenting the
area’s year-long water, max water, and seasonal water bodies (p < 0.01 or p < 0.05). Con-
versely, industrial water consumption (Idswu) emerged as the principal factor contributing
to the contraction of all the water bodies (p < 0.01).

In contrast, the study identified Cnspwu as a significant factor contributing to the
decline in seasonal water. However, its impact on year-long water and max water was
found to be statistically insignificant (p > 0.1). Furthermore, the influence of temperature
on seasonal water was less pronounced (p < 0.05) compared to year-long water (p < 0.01)
and max water (p < 0.01). These findings suggest that seasonal water is less susceptible to
temperature fluctuations compared to its year-long and max counterparts.
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Table 2. Factors influencing surface water areas, with SNWDP water transfer volume as the predictive
variable.

Year-Long p Value Max p Value Seasonal p Value

Agcwu 1.07 *** 0.01 1.11 *** 0.01 1.21 *** 0.01
Idswu −1.19 *** 0.01 −1.14 *** 0.01 −1.07 *** 0.01

Cnspwu −0.02 0.94 −0.17 0.46 −0.52 ** 0.02
ET −1.92 *** 0.01 −1.97 *** 0.01 −2.03 *** 0.01
AP 1.14 *** 0.01 1.32 *** 0.01 1.63 *** 0.01

Temp 2.21 *** 0.01 2.04 *** 0.01 1.67 ** 0.02
SNWDP 0.22 *** 0.01 0.21 *** 0.01 0.20 *** 0.01

Cons 3.57 0.43 3.79 0.40 2.42 0.40

R2 0.65 0.67 0.71
*** represents p < 0.01; ** represents p < 0.05; Cons is a constant term.

The regression results, presented in Tables 3 and 4, demonstrate that after replacing
the water transfer volume variables with RWI or RSWI, the coefficients of RWI or RSWI
all exhibited significant positive values. This reaffirms the positive impact of the SNWDP
on the water bodies in the receiving area. It is important to note that the other variables
did not undergo any significant changes. The results presented in Tables 3 and 4 can also
be used as a robustness test, further validating the conclusions drawn in the previous
regression analyses.

Table 3. Factors influencing surface water areas, with RWI as the predictive variable.

Factors Year-Long p Value Max p Value Seasonal p Value

Agcwu 1.05 *** 0.01 1.09 *** 0.01 1.19 *** 0.01
Idswu −1.14 *** 0.01 −1.10 *** 0.01 −1.03 *** 0.01

Cnspwu −0.86 0.94 −0.23 0.28 −0.58 *** 0.01
ET −2.05 *** 0.01 −2.11 *** 0.01 −2.18 *** 0.01
AP 1.29 *** 0.01 1.47 *** 0.01 1.77 *** 0.01

Temp 1.84 *** 0.01 1.68 ** 0.02 1.31 * 0.06
RWI 0.22 *** 0.01 0.08 *** 0.01 0.07 *** 0.01
Cons 4.43 0.28 4.65 0.25 3.31 0.40

R2 0.69 0.71 0.75
*** represents p < 0.01; ** represents p < 0.05; * represents p < 0.1; Cons is a constant term.

Table 4. Factors influencing surface water areas, with RSWI as the predictive variable.

Factors Year-Long p Value Max p Value Seasonal p Value

Agcwu 1.12 *** 0.01 1.15 *** 0.01 1.25 *** 0.01
Idswu −1.31 *** 0.01 −1.26 *** 0.01 −1.18 *** 0.01

Cnspwu −0.13 0.94 −0.28 0.24 −0.62 0.94
ET −1.13 ** 0.05 −1.19 ** 0.03 −1.31 ** 0.02
AP 1.16 *** 0.01 1.34 *** 0.01 1.67 *** 0.01

Temp 2.59 *** 0.01 2.41 *** 0.01 2.00 *** 0.01
RSWI 0.04 *** 0.01 0.04 *** 0.01 0.04 *** 0.01
Cons −1.65 0.53 −1.34 0.74 −2.73 0.53

R2 0.65 0.68 0.72
*** represents p < 0.01; ** represents p < 0.05; Cons is a constant term.

In conclusion, the expansion of surface water body areas within the recipient regions
was indeed positively influenced by the SNWDP, as well as the synergistic effects of regional
water use structure and climatic conditions.

To further investigate the dynamics of water body transformations, we utilized the
China Land Cover Dataset (CLCD) to explore the from–to transitions of water bodies in the
replenishment regions. The results of the transition matrix are presented in Table 5. The
primary transitions were from water to cropland and impervious surfaces, accounting for
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areas of 720.53 km2 and 400.87 km2, respectively. The land types primarily transitioning
into water were cropland, impervious surfaces, and barren land, with respective areas of
891.41 km2, 311.27 km2, and 303.16 km2.

Table 5. Land use transfer matrix for 2013–2020 (km2).

2013
2020 Cropland Forest Shrub Grassland Water Barren Impervious

Cropland 211,081.60 1417.05 0.68 704.77 891.41 3.21 6527.16
Forest 1169.80 35,843.50 128.58 15.19 0.43 0 35.32
Shrub 1.38 68.81 332.84 93.38 0 0.014 0.014

Grassland 1339.15 843.26 65.77 8363.36 13.19 6.43 94.60
Water 720.53 3.53 0 1.70 5180.25 42.49 400.87
Barren 43.16 0.01 0 2.42 303.16 246.06 338.57

Impervious 13.16 0.01 0 0.16 311.27 2.21 62070.60

In aggregate, water area transitioned out with 1169.12 km2, and other land use types
transitioned into water with an area of 1519.46 km2, resulting in a net increase of 350.34 km2.
Notably, cropland and impervious surfaces were the primary contributors to both water
area outflow and inflow, while barren land emerged as a significant contributor to the
inflow of water area. This suggests that the implementation of the SNWDP has facilitated
ecological restoration by transforming barren land into water bodies.

Overall, our analysis of water body transitions using the CLCD provides valuable
insights into the changes in land use patterns and the positive ecological outcomes resulting
from the implementation of the SNWDP. These findings contribute to our understanding
of the complex dynamics between water resources, land use, and ecological restoration in
the replenishment regions.

4. Discussion
4.1. Reasons for Spatially Varied Changes

The limited availability of data at the sub-provincial level poses challenges to ascer-
taining the primary factors influencing the various changing types of surface water bodies
across different provinces or cities through linear regression analysis. To address this limi-
tation, correlation analysis was employed to investigate the influential factors impacting
the changes in water bodies within each province or city, as depicted in Figure 12.

Figure 12 reveals the distinct factors influencing the water body changes in the different
regions. In the central route areas, Beijing City, Hebei Province, and Henan Province
show a high degree of similarity between their max water body and year-long water
body. The South-to-North Water Diversion Project (SNWDP) has had a significant positive
impact on the year-long water bodies in these three regions. As key replenishment areas
for the central route, these regions benefit from regular water transfers and ecological
replenishments during the flood season each year. These measures not only aid in the
recovery of groundwater levels [65,66] but also positively influence surface water and
ecological restoration [67]. The figure also illustrates the transformation among different
water body types within these regions. Notably, Beijing City and Henan Province exhibit a
significant negative correlation between their year-long water bodies and seasonal water
bodies, indicating a clear trend of seasonal water bodies transitioning into year-long water
bodies. The AP and Temp in the three regions show no significant correlation with water
body area. These three changes in water body area in these regions are minimally affected
by surface temperature and rainfall. ET and the perennial water bodies in the three regions
exhibit a significant positive correlation, indicating that an increase in the surface water
body area will further increase evaporation. This phenomenon may exacerbate water
resource losses [68,69].



Remote Sens. 2024, 16, 378 21 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 23 of 29 
 

 

changes in water bodies, it is crucial to consider these local factors along with the effects 

of water transfers. By taking into account the unique characteristics of each region, water 

resource management strategies can be tailored to optimize water allocation, mitigate wa-

ter deficits, and promote sustainable water use practices. 

In conclusion, the findings demonstrate that changes in surface water bodies within 

the receiving areas are influenced not only by the South–North Water Diversion Project 

(SNWDP) but also by the climate environment, as well as the water usage structure. There-

fore, rational water resource allocation and appropriate water usage structures play a cru-

cial role in the preservation and management of water bodies within the receiving areas. 

It is important to consider these factors in order to ensure sustainable water management 

and the long-term health of the aquatic ecosystems in the region. 

 

Figure 12. Graph showing correlation coefficients between water body areas and related factors. 

Max refers to max water body; Y-L refers to year-long water body; Sea refers to seasonal water body; 

Agc refers to agricultural water consumption (Agcwu); Ids refers to industrial water consumption 

Figure 12. Graph showing correlation coefficients between water body areas and related factors. Max
refers to max water body; Y-L refers to year-long water body; Sea refers to seasonal water body;
Agc refers to agricultural water consumption (Agcwu); Ids refers to industrial water consumption
(Idswu); Cns refers to the consumption of non-service public water use (Cnspwu); TP refers to 2 m
height air temperature (Temp); WP refers to the water transfer volume of the SNWDP; ET refers to
evapotranspiration; AP refers to annual precipitation. *** represents p < 0.01; ** represents p < 0.05;
* represents p < 0.1.

Similarly, from Figure 12, we can see that Agcwu and Idswu are significantly negatively
correlated with the year-long water body in three regions. Henan Province and Hebei
Province, as important agricultural provinces in the North China Plain [70], consume a large
amount of water resources annually for agricultural irrigation and agro-product processing,
leading to the further depletion of water resources [71,72]. Moreover, Idswu and year-long
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water body in Beijing City and Hebei Province show a significant positive correlation, while
in Henan Province, there is no correlation. As a major agricultural rather than industrial
province [73], Henan’s industrial water consumption might have less impact on surface
water compared to agricultural water use. However, as an important industrial base in
North China, Hebei Province’s industries require a large amount of water annually [74],
which could lead to the depletion of groundwater and even a reduction in surface water
area [75]. Therefore, it is crucial to reasonably adjust the water use structure in these three
regions for the protection of surface water and water resources.

For Shandong Province, as seen in Figure 12, the three types of water bodies did not
benefit from the SNWDP. Unlike the middle route project, the east route project does not
involve extensive targeted ecological replenishment. Additionally, due to climate change
and human activities, the region has been suffering from severe water shortages [76,77]. As
an important base for aquaculture and land reclamation from the sea, the increase in surface
water area in Shandong Province is likely due to the development of the aquaculture
industry and the restoration of coastal lands [48,78,79] rather than being significantly
related to the SNWDP. Similarly, the three types of water bodies in Tianjin City also did not
benefit from the SNWDP, as the area also experienced substantial water losses. In terms of
groundwater, the SNWDP has alleviated the losses in the region [80] but has not reversed
the trend of continuous losses. Combining this with the trend graphs in Section 3.3 of our
study, we believe that the SNWDP also mitigated the original surface water losses but
did not significantly reverse this phenomenon. Furthermore, in Tianjin City, the year-long
water body and seasonal water body show a significant positive correlation, indicating
that under severe water loss, the surface water bodies in the region do not undergo mutual
conversion but exhibit similar changing trends.

Moreover, it is important to note that the divergent changes in water bodies across
different regions are not solely influenced by water transfers. Local water deficit levels,
which vary from region to region, play a significant role. Areas with higher water deficits
may experience more pronounced changes in water bodies as efforts are made to address
water scarcity. Furthermore, the natural terrain features, such as terrain slope and the
presence of rivers, lakes, and mountains, can also influence the distribution of water bodies
and changes in water bodies within a region. To fully understand and manage the changes
in water bodies, it is crucial to consider these local factors along with the effects of water
transfers. By taking into account the unique characteristics of each region, water resource
management strategies can be tailored to optimize water allocation, mitigate water deficits,
and promote sustainable water use practices.

In conclusion, the findings demonstrate that changes in surface water bodies within
the receiving areas are influenced not only by the South–North Water Diversion Project
(SNWDP) but also by the climate environment, as well as the water usage structure.
Therefore, rational water resource allocation and appropriate water usage structures play a
crucial role in the preservation and management of water bodies within the receiving areas.
It is important to consider these factors in order to ensure sustainable water management
and the long-term health of the aquatic ecosystems in the region.

4.2. Impact of Recharge Intensity on Surface Water Bodies

We utilized two metrics, namely RWI (recharge intensity) and RWSI (recharge intensity
of surface water), to represent the recharge intensity of the receiving areas of the South–
North Water Diversion Project (SNWDP). The specific results are presented in Table 6.
This table provides a visual representation of the impact of the SNWDP on different
water body types across the studied regions. Comparing the correlation analysis results
of Section 4.1 with the results in Table 6, the findings are largely consistent with those
presented in Figure 12, further supporting the conclusions drawn earlier. When comparing
RWI and RSWI, it is evident that the significance of the correlation coefficients using RSWI
is markedly superior to that of RWI. This may be due to the fact that RSWI is constructed
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from the max water body, enabling a more sensitive representation of the replenishment
intensity of the SNWDP areas.

Table 6. Correlation coefficients between water body area and water diversion strength for differ-
ent regions.

Region
RWI RSWI

Year-Long Seasonal Max Year-Long Seasonal Max

Total
Region 0.157 0.045 0.122 0.125 0.096 0.032

Beijing 0.795 *** −0.575 *** 0.570 ** 0.463 ** −0.603 *** 0.458 **
Hebei 0.305 0.087 0.210 0.577 *** 0.160 0.392 *
Henan 0.740 *** −0.325 0.539 ** 0.715 *** −0.363 0.667 ***

Shandong 0.043 −0.217 −0.224 0.060 −0.265 −0.259
Tianjin −0.402 ** −0.459 ** −0.402 * −0.449 ** −0.430 *** −0.488 **

*** represents p < 0.01; ** represents p < 0.05; * represents p < 0.1.

4.3. Limitations and Perspectives

This study focuses on investigating the impact of the South-to-North Water Diversion
Project (SNWDP) on surface water within the receiving area by analysing changes in the
surface water area. Through rigorous temporal trend analysis and correlation analysis, this
study provides valuable insights into the eco-hydrological effects of the SNWDP. However,
it is important to acknowledge certain limitations that should be considered:

(1) Water body identification. Despite efforts to improve the water body extraction
algorithm and minimize errors during water identification through remote sensing,
there may still be inaccuracies that could lead to misclassified or omitted water
bodies. These limitations could have potentially affected the accuracy of water body
identification in this study.

(2) Complexity of surface water transformation. The transformation of surface water
bodies is a complex phenomenon influenced by multiple factors. This study focused
primarily on the connection between the SNWDP, meteorological factors, and water
use factors that affect surface water area changes. However, to gain a more compre-
hensive understanding, future studies should explore the influence of other factors
such as urbanization, water extraction, and the presence of artificial constructions that
may also impact the mechanisms governing water body changes.

(3) Local topography and morphology. The sensitivity of surface water area alterations is
also influenced by local topography and the morphology of rivers, lakes, and reser-
voirs. These factors were not fully accounted for in this study. To better elucidate the
overall impact of the SNWDP on surface water bodies, future studies should consider
these local variations. Incorporating topographic and morphological data will provide
a more accurate assessment of the project’s influence on surface water dynamics.

(4) The regions affected by the South-to-North Water Diversion Project (SNWDP) include
a large number of rivers, lakes, and reservoirs. The relationship between the surface
water area and the total water volume of these water bodies may not be a simple
correlation. Therefore, when assessing changes in surface water area, this study could
not accurately assess the changes in total water volume and water resources in these
areas. This factor should be considered in future research.

5. Conclusions

This study investigated the impacts of the South-to-North Water Diversion Project
(SNWDP) on surface water bodies from 2001 to 2020 based on long-term satellite observa-
tions. Our analysis focused on changes in water body areas before and after the SNWDP’s
implementation, as well as correlations with other relevant factors. The key findings are
as follows:
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(1) The impact of the SNWDP on the change in surface water area is heterogeneous,
producing varying effects on different water bodies in different regions. Overall,
the SNWDP has facilitated an increase in the year-long water body and max water
body in the middle route area, while it has had almost no significant effect in the
eastern route area. From a fine-scale perspective, the areas with a significant increase
in surface water area are mainly concentrated near the middle route water transfer
project and in Dongying City, Shandong Province. Both the Miyun Reservoir and the
Danjiangkou Reservoir also show a significant increasing trend.

(2) The SNWDP played a significant role in the expansion of year-long water bodies, max
water bodies, and seasonal water bodies within the total receiving areas. However, the
impact of the SNWDP on surface water area varies in different regions, highlighting
the importance of adjusting water usage structures accordingly to protect surface
water. Barren is an important source transferring to water areas, and a pattern of
seasonal water bodies transitioning into year-long water bodies has been observed in
Beijing City and Henan Province, indicating that the implementation of the SNWDP
has also contributed to the hydro ecological restoration of the receiving areas.

These findings highlight the diverse and specific effects of the SNWDP on different
regions and water body types. These findings provide valuable insights for evaluating
the environmental and global changes resulting from significant human interventions.
Additionally, they are particularly beneficial for policymakers and decision makers engaged
in managing water resources. The diverse impacts of the SNWDP on different regions and
water body types emphasize the need for tailored strategies in water management and
resource allocation.
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