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Abstract: Urban Functional Zones (UFZs) serve as the fundamental units of cities, making the
classification and recognition of UFZs of paramount importance for urban planning and development.
These differences between UFZs not only encompass geographical landscape disparities but also
incorporate socio-economic information. Therefore, it is essential to extract high-precision two-
dimensional (2D) and three-dimensional (3D) Urban Morphological Parameters (UMPs) and integrate
socio-economic data for UFZ classification. In this study, we conducted UFZ classification using
airborne LiDAR point clouds, aerial images, and point-of-interest (POI) data. Initially, we fused
LiDAR and image data to obtain high-precision land cover distributions, building height models,
and canopy height models, which served as accurate data sources for extracting 2D and 3D UMPs.
Subsequently, we segmented city blocks based on road network data and extracted 2D UMPs, 3D
UMPs, and POI Kernel Density Features (KDFs) for each city block. We designed six classification
experiments based on features from single and multiple data sources. K-Nearest Neighbors (KNNs),
random forest (RF), and eXtreme Gradient Boosting (XGBoost) were employed to classify UFZs.
Furthermore, to address the potential data redundancy stemming from numerous input features, we
implemented a feature optimization experiment. The results indicate that the experiment, which
combined POI KDFs and 2D and 3D UMPs, achieved the highest classification accuracy. Three
classifiers consistently exhibited superior performance, manifesting a substantial improvement in the
best Overall Accuracy (OA) that ranged between 8.31% and 17.1% when compared to experiments
that relied on single data sources. Among these, XGBoost outperformed the others with an OA
of 84.56% and a kappa coefficient of 0.82. By conducting feature optimization on all 107 input
features, the classification accuracy of all three classifiers exceeded 80%. Specifically, the OA for KNN
improved by 10.46%. XGBoost maintained its leading performance, achieving an OA of 86.22% and a
kappa coefficient of 0.84. An analysis of the variable importance proportion of 24 optimized features
revealed the following order: 2D UMPs (46.46%) > 3D UMPs (32.51%) > POI KDFs (21.04%). This
suggests that 2D UMPs contributed the most to classification, while a ranking of feature importance
positions 3D UMPs in the lead, followed by 2D UMPs and POI KDFs. This highlights the critical role
of 3D UMPs in classification, but it also emphasizes that the socio-economic information reflected by
POI KDFs was essential for UFZ classification. Our research outcomes provide valuable insights for
the rational planning and development of various UFZs in medium-sized cities, contributing to the
overall functionality and quality of life for residents.
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1. Introduction

With the acceleration of economic development and the march of urbanization, the in-
adequacies in city planning have given rise to a host of urban challenges. These encompass
issues like environmental pollution, traffic gridlocks, and housing shortages, which are
progressively asserting themselves as the primary impediments to urban progress, signifi-
cantly affecting people’s living standards [1,2]. The intensification of human activities has
brought about transformations in land utilization patterns and urban landscape arrange-
ments, ultimately giving rise to the concept of Urban Functional Zones (UFZs) [3,4]. UFZs
divide the city into spatially separated areas with different attributes. These areas are both
independent and interconnected, representing a complex and diverse range of land use
objects with similar spatial landscape structures and socio-economic activities. UFZs are
commonly categorized into residential, industrial, commercial, institutional, cultural, and
tourism zones, among others [4,5]. Therefore, the classification of UFZs plays a crucial role
in city planning and development, with positive impacts on promoting economic growth,
optimizing the population structure, improving the urban environment, and enhancing the
quality of life for residents.

Conventional approaches to delineating functional zones predominantly depend on
expert surveys or subjective assessments, a process marked by subjectivity, protracted
timelines, notable inaccuracies, and substantial workloads [6]. As information science and
technology progress at a breakneck pace, the utilization of large datasets in the form of Point
of Interest (POI) data has emerged as a powerful tool for capturing spatial and attribute
information related to geographic entities. This has greatly bolstered the capacity to collect
data on the locations of these entities, thereby facilitating a more precise portrayal of human
activity within urban areas [7]. POI data have garnered widespread attention among UFZ
applications. It was employed for the quantitative identification and visualization of
UFZs [8]. Also, several studies have integrated road network and POI data to identify
UFZs and construct UFZ analysis models [9,10]. Nevertheless, depending solely on POI
data without incorporating a description of the spatial structure of functional zones is
insufficient for a comprehensive UFZ classification.

Remote sensing technology, serving as the primary method for urban information
acquisition, offers a rich array of data sources for urban research [11,12]. High-resolution
remote sensing imagery provides precise and detailed insights into UFZs and their diversi-
fication, greatly aiding in the identification and classification of these zones. Researchers
have made notable progress in UFZ classification and identification research by leveraging
remote sensing data. Initially, research indicated that characterizing urban structural types
based on high-resolution hyperspectral remote sensing images and height information
offered a reference for identifying UFZs [13]. Subsequently, innovative methods, such
as the application of the linear Dirichlet mixture model and multiscale geographic scene
segmentation in high-resolution remote sensing images, have been employed for UFZ clas-
sification [5,14]. However, the majority of these studies predominantly highlight disparities
in urban structures or scenes among UFZs, often overlooking socio-economic information
associated with human activities. In recent years, there has been a growing trend in combin-
ing high-resolution remote sensing images with socio-economic data for UFZ identification.
Research suggests that the integration of high-resolution remote sensing images and POI
data to construct UFZ classification grids can significantly enhance classification accu-
racy [15,16]. Furthermore, a hierarchical semantic cognition approach has been proposed
as a comprehensive cognitive framework for UFZ identification [17]. Nonetheless, these
studies did not comprehensively analyze the spatial morphological differences between
UFZs, especially in terms of three-dimensional (3D) morphological features. Huang et al.
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fused multi-view optical and nighttime light data for UFZ mapping. These two data sources
can capture the two-dimensional (2D) and 3D urban morphological and fine-scale night-
time human activity characteristics of functional zones, respectively [18]. However, Light
Detection and Ranging (LiDAR) technology, as an effective means to obtain 3D information,
has been less commonly applied in UFZ classification research [12]. Although Sanlang et al.
integrated LiDAR data and very high-resolution images for UFZ mapping, their approach
primarily focused on 3D urban structure features of building, considering that parameters
using LiDAR data were limited [19]. Additionally, they considered the influence of human
activities on UFZs to a lesser extent, and their consideration of 3D urban structural features
was somewhat limited.

Upon analyzing the aforementioned research, there is a pressing need for the further
exploration of integrating urban morphological features, especially high-precision 3D fea-
tures, with data related to human activities for UFZ classification. Hence, in this research,
we undertook a comprehensive study focused on the classification of UFZs. Our approach
involved the integration of LiDAR point clouds and aerial images with POI data. This
classification was rooted in discerning disparities stemming from spatial landscape struc-
tures and socio-economic activities among diverse UFZs. To achieve this, we formulated
Urban Morphological Parameters (UMPs) to elucidate the spatial landscape characteristics
of these UFZs. Utilizing airborne LiDAR point clouds and images, we meticulously derived
high-precision 2D and 3D UMPs to delineate their landscape features. Additionally, we
harnessed POI data and extracted the Kernel Density Features (KDFs) to articulate the
essential human activities. Through the fusion of 2D and 3D UMPs with POI KDFs, we
devised distinct experiments and used the machine learning algorithms, i.e., K-Nearest
Neighbor (KNN), random forest (RF), and eXtreme Gradient Boosting (XGBoost), for UFZ
classification, subsequently scrutinizing and assessing the influence of different feature
amalgamations on the precision of UFZ classification.

2. Study Area and Data Sources
2.1. Study Area

Our study area was situated in Ziyang City, Sichuan Province, China, as depicted in
Figure 1. This city is strategically positioned between the major cities of Chengdu and
Chongqing. It is a medium-sized city experiencing relatively rapid development. The study
area spans approximately 115 km2, mainly covering the urban region of Ziyang City and
some suburban areas. Located in the central part of the Sichuan Basin, its geographical coor-
dinates range from 104◦21′ to 105◦27′E and 29◦15′ to 30◦17′N. The land covers are diverse
and complex, including both artificial structures and natural landscapes, encompassing
buildings, roads, vegetation, cultivated land, bare land, and water.

2.2. Data Sources

The primary data sources utilized in our research encompass airborne LiDAR point
clouds, aerial images, POI data, and the OpenStreetMap (OSM) road network. Table 1
shows a detailed description of the data sources.

• LiDAR point clouds

The LiDAR point clouds were acquired using an Airborne Laser Scanning (ALS)
system on 9 September 2017. The ALS system mainly comprises the RIEGL VUX-1LR
LiDAR scanner, PHASE ONE IXU1000-R high-resolution digital camera, and POS system.
The entire system was installed on a manned aircraft for data collection. During the data
acquisition process, the LiDAR scanner captured real-time X, Y, and Z coordinates and
intensity information of the target objects, while the digital camera recorded high-resolution
visible light imagery data.

The point clouds were utilized for land cover classification and the extraction of 2D
and 3D UMPs. The parameters of the point clouds included a minimum elevation of 338 m,
a maximum elevation of 519.19 m, and an average point density of 20 pts/m2. Additionally,
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the resolutions between points in the horizontal and vertical directions were approximately
0.17 m and 0.2 m, with a maximum height difference of 181.19 m.
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Figure 1. Overview of study area: (a,b) location of the study area; (c) aerial image using red, green,
and blue bands (the data sources for (a,b) were obtained from the ArcGIS online platform and
mapped using ArcGIS 10.8 software).

Table 1. Description of data sources.

Data Resolution Time (DD/MM/YY) Usage

LiDAR point clouds 20 pts/m2 09/09/2017 Land cover mapping
and UMP extraction

Aerial images 1 m 09/09/2017
Land cover mapping
and UMP extraction;
City block division

POI data Vector (point) 2018 UFZ mapping
OSM road network Vector (line) 2018 City block division

• Aerial images

Aerial images and point clouds were simultaneously acquired through an ALS system
on 9 September 2017. The original resolution of an individual image was 3.33 mm. The
preprocessing of the images involved orthophoto correction using Pix4Dmapper. After
this, the spatial resolution of the final orthophoto image was set at 1 m. It encompasses
information from three spectral bands in the visible light spectrum: red, green, and blue.
Note that aerial images were utilized for land cover mapping and the extraction of 2D and
3D UMPs.

• POI data

POI data based on big data describe the spatial and attribute information of geograph-
ical entities, significantly enhancing the ability to obtain location-based data. This, in turn,
provides a better reflection of human activities in urban areas [7,8,10]. POI refers to a series
of point-type data in internet electronic maps, mainly including attributes such as names,
addresses, coordinates (i.e., longitude and latitude), and categories. In this study, POI data
were obtained from the Amap platform using data interfaces provided by the platform
(URL: https://lbs.amap.com/, accessed on 1 May 2023). The data were crawled for the

https://lbs.amap.com/
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study area using Python language. After data filtering, a total of 36,216 vector points were
obtained. Note that POI data serve as one of the important data sources for the classification
of UFZs.

• OSM data

OSM is an editable map service where users contribute map data through handheld
GPS devices, aerial photography data, other freely available content, and even local knowl-
edge. It is an effective means of acquiring geographic information resources and finds
widespread applications in urban planning, 3D modeling, block boundary delineation,
and other applications [20–23]. In this study, OSM data were utilized to obtain informa-
tion about the road network distribution in the study area and assist in the delineation
of city blocks. The road network data were acquired from the OSM official website, ac-
cessed through the following download URL: https://download.geofabrik.de/, accessed
on 20 May 2023. Major road network data, including urban main roads, secondary roads,
side roads, elevated roads and expressways, and railways, were selected as the basis for
block delineation.

The logical partitioning of blocks is a crucial prerequisite for UFZ classification. We em-
ployed OSM road network data to delineate the blocks. Prior to this, we corrected specific
topological errors in the road data and incorporated aerial images to enhance certain road
segments. This process enabled a systematic division of city blocks, culminating in the final
segmentation of the study area into 1400 blocks. Following this, research involving feature
extraction and the classification of UFZs was carried out for each individual city block.

3. Methods
3.1. Overview of the Methodology

The workflow for conducting research on multisource data fusion for UFZ classifi-
cation, as illustrated in Figure 2, primarily comprised seven key steps: (1) Land cover
mapping and 3D model exploration. We conducted land cover classification using a multi-
feature fusion approach based on LiDAR point clouds and aerial images. We extracted the
building height model (BHM) and canopy height model (CHM) based on the distribution
range of buildings and trees with the normalized Digital Surface Model (nDSM) (derived
by subtracting DEM from DSM). (2) Feature extraction. We extracted 2D and 3D UMPs as
well as POI KDFs. (3) Experimental design. We designed six different experiments based
on the characteristics of various input data sources. (4) Sample selection. We selected the
training data and validation data based on the city block unit. (5) Classifier selection. We
employed KNN, RF, and XGBoost to perform classification experiments for each experi-
ment. (6) Feature optimization. We optimized all input features to enhance classification
performance. (7) Accuracy assessment and results analysis. We conducted a comprehensive
analysis of the influence of six multi-feature fusion approaches and optimized classifica-
tion experiments on the accuracy of UFZs, subsequently generating the UFZ classification
map output.

3.2. Land Cover Mapping and 3D Model Exportation

Accurate mapping of land cover at a high precision is pivotal for UMP extraction and
UFZ classification. Numerous studies affirmed the superiority of classification methods
that leverage multisource data compared to those relying on a single data source [24,25].
Consequently, we integrated airborne LiDAR point clouds and aerial images for land
cover classification. The study area was categorized into building land, bare soil, cropland,
grassland, road, woodland, and water based on aerial images, Google Maps, and on-site
surveys. The classification approach involved four key steps. (1) Feature extraction: we
extracted the features from point clouds, encompassing nDSM, intensity model, roughness
model, and texture features (e.g., variance, homogeneity, contrast, dissimilarity, entropy,
second moment, and correlation), and we extracted spectral features from aerial images,
including RGB bands and visible-light vegetation indices (e.g., normalized green–red
difference index, excess green index, color index of vegetation, and vegetation index).

https://download.geofabrik.de/
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(2) Multiresolution segmentation: we implemented the multiresolution segmentation using
aerial images and nDSM. (3) Sample selection: we selected the representative sample data
for training and validation. (4) Multi-feature fusion and supervised classification. In the
end, we selected the best results (combining all features) for land cover mapping output.
The classification accuracy was remarkable, with an Overall Accuracy (OA) of 94.61% and
a kappa coefficient of 0.93. User Accuracy (UA) and Producer Accuracy (PA) for all land
cover categories exceeded 88%.
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By conducting land cover mapping, we gained insights into the spatial distribution of
land objects, facilitating the extraction of 2D land objects based on attribute information
corresponding to the seven land covers. In this study, the predominant 3D land objects were
buildings and trees, with building land primarily constituted by buildings and woodland
predominantly consisting of trees with a specified height. We intended to amalgamate the
2D distribution maps of building land and woodland, along with the nDSM, to extract 3D
elevation models for both buildings and trees.

Figure 3 illustrates the process for extracting 3D elevation models of buildings and
trees. Initially, based on the 2D distribution from land cover mapping and leveraging class
attribute information for building land and woodland, we extracted the 2D distribution
ranges for buildings and trees, respectively. Subsequently, employing morphological
opening operations eliminates finer objects in the 2D distribution maps, morphological
closing operations were applied to fill smaller gaps, and an eight-neighborhood mode
filter was used to enhance the smoothness of the output objects [26]. This step yielded
2D distribution maps of buildings and trees with more regularized patterns. Following
this, we performed a raster overlay operation between the distribution maps and the
nDSM, obtaining the BHM and CHM corresponding to the areas of buildings and trees.
Figure 4 displays the distribution of buildings and trees in the study area, as well as the
corresponding BHM and CHM in some areas.
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3.3. Feature Extraction
3.3.1. 2D UMP Extraction

After obtaining the distribution of land covers, we proceeded to extract 2D UMPs
based on city block unit. From a landscape pattern perspective, we focused on captur-
ing the structural composition and spatial arrangement of land cover classes within the
landscape. Landscape pattern indices provide an effective means for quantitatively analyz-
ing information pertaining to landscape composition, spatial configuration, and dynamic
changes by establishing connections between patterns and landscape processes. These
indices are typically categorized into three levels: patch level, class level, and landscape
level [27]. Previous research proved that landscape indices at the class level and landscape
level effectively reflect landscape pattern composition, spatial configuration, and frag-
mentation [28]. Therefore, we utilized Fragstats 4.2 to quantitatively describe the spatial
distribution and interrelationships of land cover classes in 2D plane based on class-level
and landscape-level indices [29]. Drawing on previous research [30,31], we selected ten
frequently employed landscape indices for the extraction of 2D UMPs of seven land cover
classes. These indices included area indices: Percentage of Landscape (PLAND), Edge Den-
sity (ED); shape indices: Area-weighted Mean Shape Index (SHAPE_AM), Area-weighted
Mean Fractal Dimension Index (FRAC_AM); aggregation/disaggregation indices: Patch
Density (PD), Landscape Shape Index (LSI), Mean Proximity Index (PROX_MN), Euclidean
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Nearest-Neighbor Mean Distance (ENN_MN), Patch Cohesion Index (COHESION), and
Shannon’s Diversity Index (SHDI). The calculation methods and descriptions for 2D UMPs
are provided in Table 2 [29].

Table 2. Calculation formulas and description of 2D UMPs.

2D UMPs Calculation Description

PLAND PLAND =
∑n

j=1 aij
A × 100

It represents the proportion of different types of patches
within the landscape, quantifying the relative abundance
of each patch type in the landscape. It is an essential
index for measuring landscape composition.

PD PD = ni
A × 106

It describes the number of patches within a unit area and
is an important indicator for describing landscape
fragmentation.

ED ED =
∑m

k=1 eik
A × 104 It represents the perimeter of patches on a unit area and

describes the degree of landscape fragmentation.

LSI LSI = 0.25×∑m
k=1 e∗ik√
A

It represents the regularity of patch shapes and is a
standardized measure for describing patch shape.

SHAPE_AM
SHAPE_AM =

0.25×∑n
j=1

[
pij√aij

×
(

aij
∑n

j=1 aij

)]
n

It adjusts a square standard to measure the complexity of
landscape spatial patterns.

FRAC_AM
FRAC_AM =

2×∑n
j=1

[
ln(0.25×pij)

ln aij
×
(

aij
∑n

j=1 aij

)]
n

It reflects the shape complexity of patches of different
sizes and is a standardized metric.

PROX_MN
PROX_MN =

∑n
s=1

aijs
h2

ijs
n

It considers the size and proximity of all patches within a
specified search radius to the focal patch.

ENN_MN ENN_MN =
∑n

j=1 hij
n

It represents the minimum distance between patches and
adjacent patches, reflecting the fragmentation of a
specific patch type and its distribution within the
landscape.

COHESION COHESION =

[
1 −

∑n
j=1 p∗ij

∑n
j=1 p∗ij

√
a∗ij

]
×
[
1 − 1√

z

]−1
× 100

It describes the degree of interconnection between
various types of patches within the landscape.

SHDI SHDI = −
m
∑

i=1

(
p∗i × ln pi

) It is an index at the landscape level, reflecting the
composition of the landscape structure, independent of
the spatial configuration of patches. It portrays the
diversity of patch types and is particularly sensitive to
the non-uniform distribution of land use types.

n = number of patches; aij = area (m2) of patch ij; A = total landscape area (m2); pi = proportion of the landscape
occupied by patch type (class) i. ni and m = the number of patch type (class) i; eik = total length (m) of edge
in landscape involving patch type (class) i; includes landscape boundary and background segments involving
patch type i. e∗ik = total length (m) of edge in landscape between patch types (classes) i and k; includes the entire
landscape boundary and some or all background edge segments involving class i; pij = perimeter (m) of patch ij;
aijs = area (m2) of patch ijs within specified neighborhood (m) of patch ij; hijs = distance (m) between patch ijs and
patch ijs, based on patch edge-to-edge distance, computed from cell center to cell center; hij = distance (m) from
patch ij to nearest-neighboring patch of the same type (class), based on patch edge-to-edge distance, computed
from cell center to cell center; p∗ij = perimeter of patch ij in terms of number of cell surfaces.

3.3.2. 3D UMP Extraction

In this study, the 3D UMPs primarily pertained to the spatial distribution, variations,
and interrelations of the 3D information of buildings and trees. By utilizing 2D distribution
and elevation models of buildings and trees, we derived a total of 16 3D Building Urban
Morphological Parameters (BUMPs) and 12 3D Tree Urban Morphological Parameters
(TUMPs). These UMPs encompass elevation indices, area indices, shape indices, and
spatial distribution indices.

Based on the 2D distribution of buildings and BHM, we primarily extracted 16 different
3D BUMPs. These encompass 15 3D BUMPs calculated based on BHM (Table 3), as well
as Building Sky View Factor (BSVF). The sky view factor describes the ratio of visible
sky within a given reference circle and is commonly used to measure the extent of 3D
open space [32]. Notably, our research considered sky view factor at ground level, and
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we utilized the Relief Visualization Toolbox to calculate the BSVF values for buildings in
32 different directions, employing a search radius of 100 m [33].

Table 3. Calculation formulas and description of 3D BUMPs.

3D BUMPs Calculation Description Reference

Building Mean Height (BMH) BMH = ∑n
i=1 hi
n The average elevation of building. [31]

Building Max Height (BMaH) BMaH = max(hi) The maximum height of building. [34]

Building Height Variance (BHV) BHV =

√
∑n

i=1(hi−BMH)2

n

The standard deviation of building
height variation, which is used to
illustrate the fluctuation in
building height.

[34]

Normalized Building height
variance (NBHV) NBHV =

√
∑n

i=1(hi−BMH)2

n
∑n

i=1 hi
n

The standard deviation of building
heights divided by the mean height,
commonly referred to as the
coefficient of variation, serves as a
method for measuring the relative
variance in building heights.

[34]

Building Height Range (BHR) BHR = max(hi)− min(hi)
The difference between the maximum
and minimum heights of buildings. [35]

Building Surface Area (BSA) BSA = ∑n
i=1 SAi The surface area of building. [36]

Building Volume (BV) BV = ∑n
i=1 Vi The volume of building. [34]

Ratio of Street Height and Building
Width (BHW) BHW =

Hbuilding
Wbuilding

The ratio of the height of buildings to
their width. [37,38]

Ratio of Building Height and Street
Length (BHL) BHL =

Hbuilding
Lroad

The ratio of the height of a building to
the length of the street. [37,38]

Percentage of Building Surface
Area (PBSA) PBSA = ∑n

i=1 SAi
A∗ × 100%

The ratio of a building’s surface area
to the total area of the city block. [31,36]

Percentage of Building Volume (PBV) PBV = ∑n
i=1 Vi
V∗ × 100%

The ratio of a building’s volume to
the total volume of the city block. [31,36]

Building Edge Density (BED) BED =
Ebuilding

A∗ × 104
The ratio of the edge length of a
building in 3D space to its
surface area.

[36]

Building Shape coefficient (BSC) BSC = ∑n
i=1 SAi

∑n
i=1 Vi

The ratio of a building’s surface area
to its volume. [39]

Building Landscape Shape
Index (BLSI) BLSI = 0.25×Asur f ×Ebuilding

Aprj×
√

A∗

Describes the regularity of buildings
within a city block. [36]

Building Frontal Area Index (BFAI) BFAI = A f ro
Ablock

The ratio of building’s frontal area
within a unit city block to the unit city
block area.

[40]

n = number of buildings; hi = elevation of building i; max() = maximum function; min() = minimum function;
SAi = surface area of building i; Vi = volume of building i; Hbuilding = height of building; Wbuilding = width of
building; Lroad = length of road; A∗ = surface area of study unit; V∗ = volume of study unit; Ebuilding = edge length
of building in 3D space; Asur f = surface area of building; Aprj = projection area of building; A f ro = frontal area of
building; Ablock = area of city block unit.

We classified building heights into four distinct categories in accordance with the
“Chinese Civil Building Design Code”: low-rise (0–10 m), mid-rise (10–24 m), high-rise
(24–90 m), and very high (>90 m). Our observations revealed that BSVF values tend to be
higher in open areas, while in regions with a high density of buildings, BSVF values are
notably lower. This is especially evident in the vicinity of very high buildings, where BSVF
is exceptionally low. Figure 5 displays the distribution of building heights in some study
area along with their corresponding BSVF.
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The extraction of 3D TUMPs closely mirrored the process for 3D BUMPs. In this
context, we primarily derived 12 distinct 3D TUMPs based on the 2D distribution of
trees and the elevation information supplied by the CHM. Table 4 offers a comprehensive
breakdown of the calculation formulas and descriptions for these 3D TUMPs. These
parameters encompass variations in tree height, surface area and volume, morphological
indices, and spatial distribution, among other characteristics.

Table 4. Calculation formulas and description of 3D TUMPs.

3D TUMPs Calculation Description Reference

Tree Mean Height (TMH) TMH =
∑n

i=1 hi
n

The average elevation of tree. [34]

Tree Maximum height (TMaH) TMaH = max(hi) The maximum height of tree. [34]

Tree Height Variance (THV) THV =

√
∑n

i=1(hi−TMH)2

n

The standard deviation of tree height
variation, which is used to illustrate the
fluctuation in tree height.

[34]

Normalized Tree Height Variance (NTHV)
NTHV =

√
∑n

i=1(hi−TMH)2

n
∑n

i=1 hi
n

The standard deviation of tree heights
divided by the mean height, commonly
referred to as the coefficient of variation,
serves as a method for measuring the
relative variance in tree heights.

[34]

Tree Height Range (THR) THR = max(hi)− min(hi)
The difference between the maximum and
minimum heights of trees. [34]

Tree Surface Area (TSA) TSA = ∑n
i=1 SAi The surface area of tree. [35]

Tree Volume (TV) TV = ∑n
i=1 Vi The volume of tree. [30]

Percentage of Tree Surface Area (PTSA) PTSA =
∑n

i=1 SAi
A∗ × 100%

The ratio of a tree’s surface area to the
total area of the city block. [30,35]

Percentage of Tree Volume (PTV) PTV =
∑n

i=1 Vi
V∗ × 100%

The ratio of a tree’s volume to the total
volume of the city block. [30,35]

Tree Edge Density (TED) TED = Etree
A∗ × 104 The ratio of the edge length of a tree in 3D

space to its surface area. [35]

Tree Shape coefficient (TSC) TSC =
∑n

i=1 SAi
∑n

i=1 Vi

The ratio of a tree’s surface area to
its volume. [38]

Tree Landscape Shape Index (TLSI) TLSI =
0.25×Asur f ×Etree

Aprj×
√

A∗
Describes the regularity of trees within a
city block. [35]

n = number of trees; hi = elevation of tree i; max() = maximum function; min() = minimum function; SAi = surface
area of tree i; Vi = volume of tree i; A∗ = surface area of study unit in 3D space; V∗ = volume of study unit;
Etree = edge length of tree in 3D space; Aprj = projection area of tree.
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3.3.3. POI KDF Extraction

POI data encompass a collection of point-based data that include attributes like names,
addresses, coordinates, and categories, providing versatile computational and represen-
tational capabilities. They have been broadly employed in urban spatial analysis and
visualization, as demonstrated by prior research [15,41,42]. Kernel density analysis is
employed to compute the unit density of point and line features within a specified neigh-
borhood range. It intuitively reflects the distribution of discrete measurement values within
a continuous area, ultimately generating a smooth surface where values are greater near
concentrations of points and lower in surrounding areas. The raster values represent unit
density. Kernel density analysis is an effective method for expressing the spatial distri-
bution of POI data and is a commonly used approach [43]. In this paper, our prediction
density for a new (x, y) location was derived from Silverman’s (1986) quartic function, as
determined by the following formula [44]:

D(x, y) =
1
r2

n

∑
i=1

 3
π

× popi

(
1 −

(
di
r

)2
)2
, For di < r (1)

where i = 1, 2, . . . , n represents input points—only the points that lie within a radius
distance from the (x, y) location are included in the sum; D(x, y) is the density prediction
value for the new (x, y) point; r is the search radius; popi is the weight value of the point;
and di is the distance between point i and (x, y).

We employed kernel density analysis to spatially transform POI data that encapsulated
human activities, societal and economic phenomena, and more. This method effectively
converted discrete point data into grid data, making them amenable for spatial analysis
and visualization. First and foremost, we must reclassify the POI data, which encompassed
20 distinct categories within the study area. These categories covered a wide range of
services and facilities, including commercial properties, governmental institutions, edu-
cational and cultural services, etc. During the reclassification process, these 20 categories
were reassigned into five UFZs, residential zones, commercial zones, industrial zones, insti-
tutional zones, and open space, as these data were primarily distributed within built-up
zones. Subsequently, we performed kernel density analysis on the POI data that contained
UFZ attributes. After conducting multiple experiments, we set the search radius to 500 m,
resulting in the generation of grid images with a 1 m resolution consistent with the aerial
image resolution. In the end, we extracted the mean, standard deviation, and sum of kernel
densities within each city block for residential zone, commercial zone, industrial zone,
institutional zone, and open spaces, and obtained 15 POI KDFs.

3.4. Experimental Design

In this study, we extracted both 2D and 3D UMPs as well as POI KDFs corresponding
to each city block. We conducted UFZ classification research using multi-feature fusion
method, analyzing and comparing the impact of input features from different data sources
on classification results. This research designed six experiments (Exp.#) based on both
single data source and multisource data fusion. Firstly, from the perspective of a single
data source, in the first three sets of experiments (Exp.1–3), we utilized POI KDFs and
2D and 3D UMPs as individual input features for UFZ classification. We compared and
analyzed the impact of each feature on classification performance. Subsequently, in the
next three sets of experiments (Exp.4–6), taking a multisource data fusion approach, we
introduced 2D UMPs, 3D BUMPs, and 3D TUMPS in addition to the POI KDFs. We assessed
the contributions of including these different features in enhancing classification accuracy.
Furthermore, we conducted a comparative analysis against the results obtained using single
data sources, examining their respective advantages and limitations. Given the possibility
of data redundancy in high-dimensional input features, we performed feature optimization
for all input features and derived optimized feature fusion experiments (Exp.7). Table 5
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outlines a range of UFZ classification experiments utilizing various input feature fusions,
along with the corresponding number of input features.

Table 5. Experiments for UFZ classification with different feature fusions.

Exp.# Input Feature The Number of Features

Single source data
Exp.1 POI KDFs 15
Exp.2 2D UMPs 64
Exp.3 3D UMPs 28

Multisource data
Exp.4 POI KDFs + 2D UMPs 79
Exp.5 POI KDFs + 2D UMPs + 3D BUMPs 95
Exp.6 POI KDFs + 2D UMPs + 3D BUMPs + 3D TUMPs 107
Exp.7 Optimized features /

3.5. Classification Methods
3.5.1. Sample Selection

Our study area was characterized by a diverse range of functionalities, including
residential housing, factories, hotels, shopping centers, and urban villages. Leveraging
airborne images and high-precision Google Maps, we meticulously classified the study
area into two distinct zones: built-up and non-built-up. This classification was based on
a nuanced understanding of the social and economic characteristics of each city block, as
well as the composition of the underlying surfaces. Within the built-up zones, there were
identifiable segments such as residential areas, commercial districts, industrial sectors,
institutional services, and open spaces. Conversely, the non-built-up zones encompass
agricultural zones, green spaces, water, and unused zones. A detailed breakdown of
these functional categories within the study area is presented in Table 6, providing a
comprehensive overview of the diverse landscape and land cover patterns.

Table 6. The categorization and description of UFZs in the study area.

UFZ Abbreviation Description

Built-up zone

Residential Res Residential areas, communities and affiliated facilities, urban villages,
rural settlements, villas, traditional dwellings, etc.

Commercial Comm Financial services center, shopping service center, dining, hotels,
entertainment facilities, retail center, etc.

Industrial Ind
Heavy and light industrial zone, including refining, machinery,
electronics manufacturing, food processing and pharmaceuticals,
warehouses, etc.

Institutional Ins Scientific and educational cultural services, healthcare and hospital
services, government institutions, and social organizations, etc.

Open space Open Construction sites, squares, stations, parking lots, etc.

Non-built-up zone

Agricultural Agr Vegetable plots, farmland, orchards, nurseries, and other agricultural
cultivation areas.

Green space Green Wooded areas, grasslands, shrubbery, etc.
Water Water Rivers, lakes, reservoirs, ponds, etc.
Unused Unused Open land, bare ground, sandy areas, etc.

In machine learning algorithm, the process of selecting classification samples is a
pivotal step that has a direct impact on the construction of models and the quality of the
classification results. The sample dataset comprises both training data and validation data.
The training data are employed to construct the learning model, whereas the validation
data are utilized to assess the model’s capacity to discriminate new samples. The testing
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error on the validation data provides an approximation of the generalization error and is
used to select the learning model. To avoid the impact of sample quantity and proportion
imbalance on classifier training [45], we selected the sample dataset for each UFZ based on
the spectral responses of objects on aerial images and existing geographic data. This process,
combined with the delineation of city blocks and nine UFZs, resulted in the selection of
sample datasets covering the entire study area and all categories. The number of samples
for each UFZ was determined based on the proportion of each UFZ within the entire study
area. The selection of the sample dataset involves several steps: Initially, we randomly
generated sample dataset that spanned the entire study area without including any feature
attribute information. Subsequently, we combined high-resolution Google Earth images
with aerial images taken at similar times to label the sample dataset with specific categories.
We then employed random sampling once again to divide the sample dataset into two
sets: 70% training data and non-overlapping 30% validation data. Finally, we extracted the
attribute information contained within the input features of each classification experiment
and assigned it to the corresponding training and validation data. Following these steps,
we prepared the sample dataset for Exp.1–6, with each sample data containing its associated
input feature information. Figure 6 displays the number of training and validation data
samples for UFZ classification, indirectly indicating the approximate proportion of each
UFZ within the study area.
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3.5.2. Classifier Selection

In this research, we carefully chose three machine learning algorithms for UFZ classifi-
cation: KNN, RF, and XGBoost. Our objective was twofold. Firstly, we sought to evaluate
the robustness and consistency of the classification experiments through a comprehensive
analysis of the results obtained from these three classifiers. Secondly, we aimed to identify
and select the classifier that delivered the highest classification performance to produce
the UFZ classification map. The UFZ classification, leveraging these three classifiers, was
executed within the Python 3.7 environment.

• KNN classifier

The KNN classifier is a widely used and powerful non-parametric machine learning
algorithm in pattern recognition [46,47]. It stands out for its user-friendly nature, inter-
pretability, robust predictive capabilities, resilience to outliers, and its unique ability to
assess the uniformity of sample distribution based on the accuracy of the algorithm. Conse-
quently, KNN is often integrated with other classifiers in the realm of remote sensing data
classification research [25,48–50]. KNN is an instance-based lazy learning algorithm that
does not require pre-training on a large set of samples to build a classifier. Instead, it stores
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all available instances and measures the similarity between samples based on distance
calculations. The fundamental principle of KNN involves comparing the features of a
new input sample, which lacks a classification label, to the features of every sample in the
training data. It identifies the K-nearest (most similar) data and assigns the most frequently
occurring class among these data as the classification label for the new input data [51].
The selection of the K value holds paramount importance in the classification process,
given that both excessively large and small K values can potentially result in problems like
over-regularization or an exaggerated emphasis on local distinctions [52]. In this study, we
diligently conducted numerous trials to ascertain the optimal K value for achieving the
highest classification accuracy by exploring values within a range of 0 < K < 50. To achieve
this, we introduced an iterative algorithm that calculated the classification accuracy for
each iteration. This was accomplished through cross-validation, using both training and
validation data, and selecting the K value that corresponded to the highest validation data
accuracy as the best choice.

• RF classifier

The RF classifier stands out as a non-parametric pattern recognition algorithm that
operates as an ensemble classifier based on decision trees and bagging. Its classification
predictions are reached by aggregating the results from a multitude of individual decision
trees, essentially taking a collective vote from this ensemble of trees [53,54]. RF demon-
strates remarkable capability in managing high-dimensional input samples without the
need for dimensionality reduction. It operates without the requirement for any a priori
assumptions regarding data distribution, ensuring efficiency even in experiments with
limited sample sizes. Despite these attributes, it consistently delivers robust and reliable
classification results. Furthermore, RF possesses the capability to assess the importance of
input variables, adding to its versatility and utility in various classification research stud-
ies [53,55]. These characteristics render RF exceptionally effective in the realm of remote
sensing data classification, spanning a wide array of data types including multispectral,
hyperspectral, LiDAR, and multisource remote sensing data [56–58]. The fundamental
principle of RF involves a series of steps: Starting with N samples and M feature variables,
RF employs bootstrap sampling to randomly, and with replacement, draw 2N/3 indepen-
dent samples from the original training data. These samples serve as the foundation for
constructing individual decision trees, collectively forming the random forests. Within each
tree, m feature variables (where m < M) are randomly and repeatedly selected to guide the
branching process. The splitting of nodes within these trees is determined using the Gini
criterion, a measure that identifies the variable offering the most optimal partitioning for
the nodes [49]. The remaining data, known as out-of-bag (OOB) data, are used to evaluate
the error rate of the random forest and to calculate the importance of each feature [57].
Through a series of iterations, OOB data are progressively used to eliminate less impactful
features and select the most valuable ones. After OOB predicts results for all samples and
compares them to the actual values, the OOB error rate is calculated. The classification of
new sample data is determined by majority voting among the results from all constructed
decision trees [59]. When confronted with a substantial number of input features, the
heightened intercorrelation among variables can lead to a decline in both classification
accuracy and computational efficiency. Consequently, the process of feature optimization
becomes imperative, as it ensures the preservation of the most influential features that
enhance classification accuracy while simultaneously eliminating the less pertinent ones.
RF incorporates two significant parameters: the number of decision trees (ntree) and the
number of randomly selected feature variables at each node split (mtry). Generally, ntree
configuration is considered more critical since a higher number of trees increases model
complexity but decreases efficiency [56,59]. For most RF applications, the recommended
range for ntree values extends from 0 to 1000, with mtry often being set as the square root
of the total number of input features [24,25,57]. In this study, we set mtry as the square
root of the number of input features, while the ntree range was established from 0 to 1000
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with 100-interval iterations to compute the model’s accuracy, thus determining the optimal
ntree value.

• XGBoost classifier

XGBoost is a gradient boosting algorithm based on decision trees, falling within the
realm of gradient boosting tree models. XGBoost undergoes iterative data processing across
multiple rounds, generating a weak classifier at each iteration. The training of each classifier
is rooted in the classification residuals acquired from the preceding iteration. These weak
classifiers are distinguished by their simplicity, low variance, and high bias, exemplified
by models like CART classifiers, and they are also amenable to linear classification. The
training procedure consistently enhances classification accuracy by mitigating bias. The
final classifier is crafted through an additive model, wherein each weak classifier obtained
in every round of training is assigned weights and aggregated together [60]. XGBoost
boasts several advantages, including regularization to reduce overfitting, parallel process-
ing capabilities, customization of optimization goals and evaluation criteria, as well as
handling sparse and missing values. Research has demonstrated that XGBoost provides
high predictive accuracy and processing efficiency in remote sensing data analysis and
classification applications [61–63]. XGBoost is frequently implemented alongside cross-
validation and grid search, which are two crucial components in machine learning. The
combination of cross-validation and grid search is the most commonly employed method
for model optimization and parameter evaluation [64,65]. In machine learning, using
the same dataset for both model training and estimation can result in inaccurate error
estimation. To mitigate this issue, cross-validation methods are employed, offering more
precise estimates of generalization error that closely reflect the actual performance of the
model. In practical applications, k-fold cross-validation is commonly utilized, with k = 10
being a typical and empirically favored choice [66–68]. Grid search is an algorithm that
leverages cross-validation to identify the optimal model parameters. It operates as an
exhaustive search method, meticulously exploring candidate parameter choices to unearth
the most favorable results. This algorithm systematically cycles through and evaluates
every conceivable parameter combination, effectively automating the process of hyper-
parameter tuning [69]. In our research, we incorporated the k-fold cross-validation and
grid search methods to enhance the efficiency of tuning multiple parameters while mini-
mizing their interdependencies. The following parameters were optimized in our study
to enhance model accuracy. Learning rate, representing the rate of learning, enhances
model robustness by systematically reducing weights at each step. Our study meticulously
examined its values, encompassing 0.0001, 0.001, 0.01, 0.1, 0.2, and 0.3, in order to pinpoint
the optimal setting; n_estimators, denoting the quantity of decision trees, was fine-tuned
within a range spanning from 1 to 1000, with iterations conducted at intervals of 1. The
iterative process persisted until no further enhancements were evident in cross-validation
error over 50 iterations; max_depth and min_child_weight are pivotal parameters exert-
ing substantial influence on the ultimate results. We systematically adjusted their values,
spanning from 1 to 10, with iterations occurring at 1-interval intervals; gamma, the con-
troller of post-pruning tree behavior, designates the minimum loss reduction necessary for
additional splits at a leaf node. Higher values reflect a more conservative approach. Our
study meticulously examined a range of values, spanning from 0 to 0.5, with iterations
conducted at 0.1 intervals; subsample, a parameter governing the random selection of
training data for each tree, plays a key role in the algorithm’s balance between conservatism
and susceptibility to overfitting. Our study encompassed values ranging from 0.6 to 1, with
iterations occurring at 0.1 intervals to identify the most suitable setting; colsample_bytree,
responsible for column sampling during tree construction, dictates the ratio of columns
randomly chosen for each tree, and we explored a range of values from 0.6 to 1, conducting
iterations at 0.1 intervals; reg_alpha, serving as the L1 regularization term for weights,
bolsters the algorithm’s computational efficiency in high-dimensional training samples.
Our study delved into values ranging from 10−5, 10−2, 0.1, and 1 to 100 for this parameter.
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3.5.3. Feature Optimization

When dealing with a substantial number of input features, the increased intercorre-
lation among variables can lead to a decline in classification accuracy and computational
efficiency. Therefore, it is imperative to optimize these numerous input features, preserving
those that significantly contribute to the model’s classification accuracy and eliminating
the less influential ones, to achieve optimal precision. In the realm of classification research,
RF algorithm is frequently employed to assess variable importance. There are two primary
methods for evaluating variable importance: Mean Decrease Impurity (MDI), often referred
to as GINI importance, evaluates the value of a node by quantifying the reduction in
impurity during its division. Mean Decrease in Accuracy (MDA), based on OOB error,
examines the effect on classification accuracy when specific feature values are randomly
interchanged within OOB data. Notably, MDA tends to yield results with greater accuracy
than MDI [53,54].

The MDA of X(j) is calculated by averaging the difference in OOB error estimation
before and after permutation across all trees [70]. A higher MDA value indicates greater
variable importance. The formula for calculating the importance of feature j (the jth
dimension of the sample) is as follows:

MDAc(j) =
1
T ∑T

t

[
1

|Dt|

(
∑xi−Dt

I(P(Xi = yi))− ∑xj
i−Dj

i
I
(

P
(

X j
i = yi

)))]
, (2)

where T represents the number of random trees (Xi, yi) that represent the sample, with y
representing the class label. X j

i denotes the sample resulting from the random exchange of

the j-th dimension (feature) of Xi; Dt is the OOB sample dataset for random tree t and Dj
t

represents the sample dataset formed after exchanging the j-th dimension; P(Xi) represents
the prediction (class) for sample Xi; I(P(Xi = yi)) is the indicator function, returning 1 if
the prediction matches the true class label, and 0 otherwise.

In our research, we employed the MDA method to evaluate variable importance and
implement feature optimization to pinpoint the optimal features for a refined classification
experiment (Exp.7). Figure 7 illustrates the workflow of feature optimization via the RF
classifier, particularly when managing high-dimensional input features. To begin with,
we extracted the attribute values of all features (variables) to their corresponding samples,
denoted as V = (V1, V2, V3 · · ·Vn). The sample dataset was then trained using the RF
classifier. Subsequently, variables were ranked based on their MDA values, and the least
important ones were identified. These least important variables were then excluded from
the input variables, and the attribute values of the remaining variable amalgamation were
reintroduced into the sample dataset. Another round of training was executed with the
RF classifier. This process was iterated until the number of input variables reached zero.
Throughout the iterations, we recorded the variables involved in RF training and the
resulting classification accuracy. Finally, we ranked all the recorded accuracies, found
the best classification result and its corresponding variables, and then output the optimal
variable combination for Exp.7. In this paper, we introduced the variable importance
proportion (VIP), which represents the feature contribution to classification by indicating
the proportion of each variable’s importance relative to the overall variable importance.

3.6. Accuracy Assessment

Accuracy assessment is a crucial aspect of UFZ classification research. The quality of
classification accuracy acts as a key indicator for both model optimization and the design
of classification experiments. Moreover, understanding and analyzing the root causes
and distribution trends of classification errors are of paramount importance in improving
classification results and further refining classification methods.
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Confusion Matrix (CM) stands as a standard format for precision evaluation. Its
assessment primarily hinges on comparing the degree of confusion between classification
outcomes and ground truth values [71]. This method has been widely adopted in remote
sensing data classification studies [11,48]. Leveraging CM enables us to grasp the total
sample count for each UFZ category and the numbers of misclassified and omitted samples,
rendering our classification outcomes more intuitively presentable. CM is depicted in
an n × n matrix format, summarizing the records in the dataset based on actual category
judgment against predicted category judgment from the classification model. Here, the
matrix rows represent the reference category values of samples, while the columns indicate
predicted sample category values [70]. Typical evaluation metrics from CM encompass OA,
UA, PA, and the kappa coefficient. OA and the kappa coefficient reflect the comprehensive
classification precision of the entire image, while UA and PA illuminate the classification
precision of individual categories. Moreover, based on research [72], the kappa coefficient
is interpreted as follows: 0.8–1.0 (almost perfect); 0.6–0.8 (substantial); 0.4–0.6 (moderate);
0.2–0.4 (fair); 0–0.2 (slight). These interpretations also provide a valuable reference for us to
evaluate the quality of our classification results.

4. Results
4.1. Classification Results of Multi-Feature Fusion

Table 7 provides a comprehensive view of the classification results obtained from
six multi-feature fusion experiments employing KNN, RF, and XGBoost. Notably, Exp.6,
whose combination features are related to POI KDFs, 2D UMPs, 3D BUMPs, and 3D TUMPs,
demonstrated the highest classification accuracy among the six experiments (OA = 84.56%,
kappa coefficient = 0.82). Additionally, XGBoost performed best among the three classifiers.
After a thorough analysis and comparison of the classification results from the three single
source data experiments (Exp.1–3), certain trends emerged. In both KNN and RF classifiers,
Exp.3, which incorporated 3D UMPs as input features, displayed a notably more substantial
enhancement in classification accuracy when contrasted with Exp.2, where 2D UMPs were
employed as input features. However, within the framework of XGBoost classifier, the
results for Exp.2 and Exp.3 remained consistent, resulting in an OA of 67.46% and a kappa
coefficient of 0.61. In contrast, Exp.1, which relied exclusively on POI KDFs as input features,
demonstrated the poorest classification performance. Upon thoroughly observing and
analyzing the classification results generated by the fusion of multisource data (Exp.4–6),
it became apparent that the inclusion of new features led to a significant enhancement in
classification accuracy. Particularly, in Exp.4, where 2D UMPs were combined with POI
KDFs, a substantial improvement in accuracy was evident when compared to Exp.1. This
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enhancement was particularly pronounced in the OA, which increased by 12.83% to 24.23%,
and the kappa coefficient, which rose by 0.15 to 0.29. The addition of 3D UMPs further
enhanced classification performance. Specifically, the inclusion of 3D BUMPs in Exp.5 led
to an increase in OA ranging from 0.47% to 1.66% and an increment in the kappa coefficient
by 0.01 to 0.02 when compared to Exp.4. However, as the number of features increased,
the magnitude of accuracy improvement significantly decreased. In the case of Exp.6,
where 3D TUMPs were introduced, resulting in a total of 107 input features, the impact
on classification accuracy varied among the classifiers. Notably, XGBoost demonstrated
a noteworthy increase in OA by 1.42%, whereas the OA in the KNN classifier rose by
only 0.95% and remained below 70%. Conversely, RF experienced a slight 0.2% decrease
in OA compared to Exp.5. This observation suggested that the heightened correlation
and redundancy between features constrained the enhancement in classification accuracy
and, in some instances, even led to a decrease. When we scrutinized the performance
of the classifiers, it became evident that XGBoost consistently demonstrated exceptional
stability and maintained a high classification accuracy, even as the number of input features
increased to 107. This clearly indicated that XGBoost excelled in handling high-dimensional
input features. In contrast, while RF achieved a classification accuracy exceeding 80%, its
accuracy exhibited a tendency to decrease as the number of input features increased. On
the other hand, KNN displayed poor stability when processing high-dimensional input
features, with its classification results significantly falling short of the performance achieved
by RF and XGBoost.

Table 7. The classification results from six multi-feature fusion experiments are based on KNN, RF,
and XGBoost, encompassing OA and kappa coefficient.

Exp.#
OA (%) Kappa Coefficient

KNN RF XGBoost KNN RF XGBoost

Exp.1 55.58 56.06 58.43 0.47 0.47 0.5
Exp.2 60.57 66.27 67.46 0.53 0.59 0.61
Exp.3 61.52 67.7 67.46 0.54 0.61 0.61
Exp.4 68.41 79.1 82.66 0.62 0.75 0.79
Exp.5 68.88 80.76 83.14 0.63 0.77 0.8
Exp.6 69.83 80.56 84.56 0.64 0.77 0.82
Exp.1 55.58 56.06 58.43 0.47 0.47 0.5

Table 8 provides a detailed overview of the results for UA and PA obtained from
the six multi-feature fusion experiments. A closer examination of the accuracy within
the three single data source experiments (Exp.1–3) revealed that in Exp.1, the POI KDFs
exhibited strong performance in classifying residential, commercial, industrial, and agri-
cultural zones, achieving UA and PA values exceeding 50%. However, its performance
was comparatively weaker in classifying water and unused zones. This limitation could be
attributed to the concentration of POI KDFs in built-up zones, which restricted their ability
to effectively differentiate UFZs in non-built-up zones. Institutional zones and open spaces,
being characterized by mixed distributions with residential, commercial, and industrial
zones, presented additional challenges for accurate classification. In the classification of
residential zones, industrial zones, agricultural zones, and water, the 2D UMPs displayed
strong performance, with both UA and PA exceeding 50%. However, they were less ef-
fective when it came to classifying institutional and unused zones. This was primarily
because 2D UMPs primarily described the landscape composition and spatial distribution
based on land covers within city blocks. In some UFZs like residential, commercial, and
industrial zones, where detailed 3D information and functional descriptions were lacking,
distinguishing them became a more challenging task. The 3D UMPs proved to be effec-
tive in classifying residential, industrial, and agricultural zones, as these zones exhibited
distinct 3D characteristics. However, their performance was less effective when it came to
classifying institutional and unused zones.
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Table 8. The statistics of UA and PA in six multi-feature fusion experiments using KNN, RF,
and XGBoost.

UFZ
UA (%) PA (%)

KNN RF XGBoost KNN RF XGBoost

Exp.1
Res 60.78 59.0 61.62 70.45 67.05 69.32

Comm 66.67 60.0 62.07 51.43 51.43 51.43
Ind 63.73 68.75 69.79 82.28 83.54 84.81
Ins 66.67 46.15 60.0 37.5 37.5 37.5

Open 38.46 42.11 42.86 34.88 37.21 41.86
Agr 51.55 58.21 62.32 79.37 61.9 68.25

Green 42.86 41.33 45.07 25.0 43.06 44.44
Water 0 100.0 25.0 0 5.88 5.88

Unused 0 0 0 0 0 0

Exp.2
Res 61.74 66.67 69.61 80.68 86.36 80.68

Comm 44.44 36.36 42.11 34.29 11.43 22.86
Ind 58.44 61.54 60.0 56.96 70.89 64.56
Ins 0 0 33.33 0 0 18.75

Open 60.61 67.74 69.44 46.51 48.84 58.14
Agr 63.41 76.92 76.47 82.54 79.37 82.54

Green 62.3 61.11 67.9 52.78 76.39 76.39
Water 94.44 100.0 100.0 100.0 100.0 100.0

Unused 0 0 50.0 0 0 25.0

Exp.3
Res 67.89 78.79 80.61 84.09 88.64 89.77

Comm 27.27 66.67 50.0 8.57 28.57 34.29
Ind 62.89 70.71 73.96 77.22 88.61 89.87
Ins 0 25.0 20.0 0 6.25 6.25

Open 68.42 53.33 55.00 30.23 37.21 25.58
Agr 65.75 67.21 73.77 76.19 65.08 71.43

Green 53.19 59.78 56.67 69.44 76.39 70.83
Water 55.56 73.68 56.0 58.82 82.35 82.35

Unused 0 0 0 0 0 0

Exp.4
Res 70.54 80.58 87.78 89.77 94.32 89.77

Comm 72.73 82.61 83.33 45.71 54.29 71.43
Ind 74.39 84.52 90.0 77.22 89.87 91.14
Ins 75.0 85.71 66.67 18.75 37.5 62.5

Open 62.96 83.33 80.49 39.53 58.14 76.74
Agr 60.67 79.71 80.6 85.71 87.3 85.71

Green 60.29 64.77 73.08 56.94 79.17 79.17
Water 100.0 100.0 100.0 100.0 100.0 100.0

Unused 0 0 33.33 0 0 12.5

Exp.5
Res 73.33 84.0 85.71 87.5 95.45 95.45

Comm 71.43 76.67 84.62 42.86 65.71 62.86
Ind 71.43 89.02 92.41 82.28 92.41 92.41
Ins 66.67 100.0 80.0 12.5 31.25 75.0

Open 72.73 80.56 85.0 37.21 67.44 79.07
Agr 62.96 78.46 77.61 80.95 80.95 82.54

Green 60.26 67.06 71.43 65.28 79.17 76.39
Water 94.44 100.0 100.0 100.0 100.0 100.0

Unused 0 100.0 50.0 0.0 12.5 12.5
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Table 8. Cont.

UFZ
UA (%) PA (%)

KNN RF XGBoost KNN RF XGBoost

Exp.6
Res 75.25 83.17 86.32 86.36 95.45 93.18

Comm 79.17 80.77 82.14 54.29 60.0 65.71
Ind 72.04 87.06 94.81 84.81 93.67 92.41
Ins 100.0 80.0 80.0 12.5 25.0 75.0

Open 69.57 77.78 79.07 37.21 65.12 79.07
Agr 61.8 79.41 81.43 87.3 85.71 90.48

Green 58.33 69.51 76.0 58.33 79.17 79.17
Water 100.0 94.44 100.0 100.0 100.0 100.0

Unused 0.0 0.0 100.0 0.0 0.0 12.5

After closely observing the classification results obtained from the fusion of multi-
source data in Exp.4–6, it was evident that the fused classification accuracy had notably
improved when compared to using a single data source. Therefore, we conducted a compre-
hensive analysis and comparison of the classification accuracy for nine UFZs (Table 8) and
examined the accuracy variations between different experiments, as visually represented
in Figure 8.
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Figure 8a illustrates the changes in accuracy at the class level in Exp.4 compared to
Exp.1, i.e., the differences in accuracy for nine UFZs between Exp.4 and the corresponding
values in Exp.1. It is evident that the fusion of POI KDFs and 2D UMPs significantly
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enhanced the accuracy of UFZs. This enhancement was most notable in water, with UA and
PA showing changes within the range of 75–100% (except for the UA in the RF classifier,
which remained unchanged). Residential zones, open spaces, agricultural zones, and green
spaces also experienced substantial increases in accuracy, with improvements exceeding
20%. Similarly, commercial, industrial, and institutional zones showed corresponding
increases in classification accuracy, with both XGBoost and RF consistently improving.
In contrast, KNN exhibited a negative change in PA for these three types of UFZs. Only
XGBoost demonstrated a positive increase in accuracy for unused zones, with growth rates
ranging from 12.5% to 33.3%.

Figure 8b depicts the changes in accuracy at the class level in Exp.4 compared to
Exp.2, showing the impact of introducing POI KDFs on 2D UMPs. It is evident that
this combination effectively enhanced the classification accuracy of UFZs. This effect
was particularly pronounced within built-up zones, with notable improvements in the
classification accuracy of residential, commercial, industrial, and institutional zones. Some
metrics even showed an improvement of over 40% in commercial and industrial zones.
In contrast, the classification accuracy of open spaces in built-up zones showed a lower
increase, but some metrics still displayed improvements of over 10%. This was because
open spaces have fewer POI distribution points, and these points were often mixed with
those of other UFZs, making the KDFs less distinct. The addition of POI KDFs had a
smaller impact on the classification accuracy of UFZs in non-built-up zones. This was
because POI KDFs were primarily distributed in urban central areas, and the characteristics
of non-built-up zones such as agricultural zones and green spaces were less pronounced
or almost non-existent. In summary, we found that the fusion of POI KDFs with 2D
UMPs effectively enhanced the classification accuracy of UFZs. POI KDFs contributed
significantly to improving the classification accuracy in built-up zones, while 2D UMPs
played a substantial role in enhancing the accuracy of all the UFZs.

Figure 8c demonstrates the changes in class-level accuracy in Exp.5 compared to
Exp.4. It is evident that the integration of 3D BUMPs with POI KDFs and 2D UMPs had a
significant positive impact on the accuracy of unused zones, with improvements ranging
from 12.5% to 100%. However, the improvements in the other eight UFZs were smaller, and
some metrics even showed negative changes. A similar trend was observed in Figure 8d
when 3D TUMPs were introduced in Exp.6. Here, we observed inconsistent improvements
in the classification accuracy of UFZs, with minimal enhancements. This indicates that
the increased correlation between input features and the varying classification abilities of
different classifiers for high-dimensional input features led to inconsistent growth in some
metrics. Moreover, an analysis of the OA confirmed this observation. XGBoost continued
to enhance classification accuracy through model optimization, while RF exhibited neg-
ative growth, and KNN displayed a lower classification accuracy. Consequently, it was
necessary to further compare and analyze the classification results of experiments through
feature optimization.

4.2. Performances of Feature Optimization

In this study, we carried out comprehensive feature optimization to refine all 107 input
features. We based our optimization on the observed trend of OA concerning the number
of input features. This approach allowed us to identify the optimal number of input
features that led to the highest OA and, consequently, discover the corresponding features
associated with this peak performance. Figure 9 provides a visual representation of the
relationship between OA and the number of input features. The graph revealed a distinct
pattern in which OA experiences significant growth as the number of input features ranges
from 0 to 10. As the number of input features increased from 10 to 24, the rate of OA growth
became notably slower. When the input feature count extended from 24 to 107, OA initially
showed a gradual decline before stabilizing. As a result of this analysis, we were able to
pinpoint that the maximum OA was attained when the number of input features was 24.
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These 24 features were then carefully selected for the further verification of their impact on
classification performance using three classifiers.
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Table 9 presents the results for the OA and kappa coefficients derived from the opti-
mized feature fusion for the three classifiers. Clearly, XGBoost consistently outperformed
the others by achieving the highest classification accuracy, boasting an OA of 86.22% along
with an impressive kappa coefficient of 0.84. On the other hand, RF secured an OA of
82.66% with a kappa coefficient of 0.79. Although KNN fell short of RF in terms of perfor-
mance, it maintained a commendable classification accuracy, posting an OA of 80.29% and
a kappa coefficient of 0.77.

Table 9. Classification results based on the KNN, RF, and XGBoost after feature optimization,
including OA and kappa coefficients.

Exp.#
OA (%) Kappa Coefficient

KNN RF XGBoost KNN RF XGBoost

Exp.7 80.29 82.66 86.22 0.77 0.79 0.84

By comparing the changes in accuracy before and after feature optimization, we
obtained the accuracy change chart shown in Figure 10 by subtracting the corresponding
OA and kappa coefficients of Exp.7 from Exp.6. We observed that KNN experienced the
most significant increase in accuracy, with its OA improving by 10.46% and its kappa
coefficient increasing by 0.13. RF also showed notable improvement, with an OA increase
of 2.14% and a kappa coefficient increase of 0.02. XGBoost exhibited a 1.66% increase in
OA and a 0.02 rise in the kappa coefficient when compared to its performance with the
fusion of all the input features used in Exp.6. In summary, after feature optimization, three
classifiers demonstrated varying degrees of improved classification accuracy. Consequently,
we considered feature optimization to be a necessary step in the experimental design, as
the optimized features significantly contributed to the enhancement in both classification
accuracy and efficiency across the three classifiers. In summary, the results after feature
optimization indicate that all three classifiers demonstrated varying degrees of enhanced
classification accuracy. This underscores the significance of feature optimization in our
experimental design, as it evidently played a pivotal role in augmenting both the accuracy
and efficiency of these three classifiers.
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Table 10 presents the accuracy statistics for three classifiers at the class level after
feature optimization in Exp.7. We observed that the UA and PA for residential zones,
industrial zones, agricultural zones, and water all exceed 75%, with water achieving
a remarkable accuracy rate of 100%. Commercial zones, open spaces, and green spaces
exhibited both UA values and PA values surpassing 60%, while industrial zones maintained
UA values and PA values above 50%. However, the classification accuracy for unused zones
was notably poorer. This was due to the frequent coexistence of unused zones with other
UFZs, which made it challenging to discern distinctive features. Commercial zones, open
spaces, and green spaces exhibited both UA and PA values exceeding 60%, while industrial
zones maintained UA and PA values above 50%. However, the classification accuracy for
unused zones was notably lower. This could be attributed to the frequent coexistence of
unused zones with other UFZs, which made it challenging to discern distinctive features.

Table 10. The statistics of UA and PA for optimized feature fusion experiment based on the KNN, RF,
and XGBoost.

UFZ
UA (%) PA (%)

KNN RF XGBoost KNN RF XGBoost

Res 82.86 86.87 91.21 98.86 97.73 93.18
Comm 84.0 83.33 89.66 60.0 71.43 65.71

Ind 90.12 92.41 92.41 92.41 92.41 92.41
Ins 80.0 80.0 76.47 50.0 50.0 75.0

Open 76.47 81.58 79.55 60.47 72.09 81.40
Agr 75.0 77.46 82.35 85.71 87.30 84.13

Green 67.11 68.83 78.67 70.83 73.61 81.94
Water 100.0 100.0 100 100.0 100.0 100.0

Unused 100.0 0 100 12.5 0 12.5

Figure 11 provides a detailed insight into the changes in class-level accuracy observed
in Exp.7 in comparison to Exp.6. Notably, Exp.7, benefiting from its optimized feature
fusion, outperformed Exp.6, which utilized all input features. This led to an enhancement
in accuracy across a diverse range of UFZs. All three classifiers displayed positive trends in
accuracy for residential zones, commercial zones, open spaces, water, and unused zones.
Although some minor negative trends were observed for industrial zones, institutional
zones, agricultural zones, and green spaces, these declines were relatively modest in
magnitude. Consequently, following the optimization process, there was a noticeable
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overall improvement in accuracy for each UFZ, coupled with a significant reduction in
the disparities between the different classifiers. These outcomes underscore the benefits of
feature optimization in bolstering both classifier stability and UFZ accuracy.
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Figure 11. The changes in accuracy for nine UFZs in KNN, RF, and XGBoost between Exp.7 and
Exp.6, comprising UA and PA.

Ultimately, guided by the remarkable results obtained from the XGBoost classifier in
the optimized experiments (Exp.7), we produced the UFZ classification map for the study
area, which is visually represented in Figure 12.
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4.3. Variable Importance Analysis

Figure 13a presents a visual representation of the variable importance ranking for the
24 optimized features. Notably, within the 3D UMPs, the BSVF emerged as the primary
contributor to UFZ classification. Following closely, within the 2D UMPs, the PLAND
of Building (PLAND_BL) played a pivotal role. Among the 3D UMPs, PBSA and BMH
secured the third and fifth positions, respectively. Furthermore, within the POI KDFs, the
Mean KDFs of Industrial (Ind_MN) claimed the fourth spot. It was essential to highlight
that, among the top five features with the most substantial contributions to the classification,
the 3D UMPs exhibited the highest influence, followed by the 2D UMPs, with the POI
KDFs trailing slightly behind. Upon scrutinizing the distribution of the 24 features, it is
evident that they encompassed four POI KDFs, twelve 2D UMPs, and seven 3D UMPs. We
have meticulously summarized the VIP for these three feature types separately, as depicted
in Figure 13b. It is notable that 2D UMPs hold a significant VIP share of 46.46%, surpassing
the 32.51% VIP value associated with 3D UMPs. In contrast, POI KDFs contributed a
modest 21.04% to the VIP for the classification results. This emphasized that, both in terms
of quantity and VIP value, 2D UMPs took precedence over 3D UMPs, while POI KDFs
exhibited a comparatively lower impact. In conclusion, within the multisource data fusion
process for UFZ classification, 2D and 3D UMPs assumed a central position, with 3D UMPs
demonstrating substantial influence. Conversely, while the contribution of POI KDFs was
relatively modest, their capacity to reflect spatial distribution patterns of human activities,
economic dynamics, and societal attributes remained of paramount significance.
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5. Discussion

The accurate classification of UFZs provides a critical reference for urban planning and
management. Previous research on UFZ classification primarily focused on megacities such
as Beijing, Wuhan, New York, and Munich [5,13,15,18,19]. However, for medium-sized
cities, particularly those in rapid development, a comprehensive understanding of UFZ
classification becomes increasingly crucial. This study presents an innovative classification
scheme designed specifically for medium-sized cities. By grasping the distribution char-
acteristics and current situation of UFZs, effective and systematic urban planning can be
achieved, promoting efficient resource allocation.

Achieving a more precise classification of UFZs necessitates a consideration not only
of the landscape distinctions between these zones but also the incorporation of insights
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into socio-economic activities. Therefore, the integration of diverse remote sensing and
social data stands as a prevailing trend in the research on UFZ classification [15,18,19]. In
our study, we utilized ALS systems that simultaneously acquired high-precision LiDAR
point clouds and aerial images, extracting detailed 2D and 3D UMPs to characterize
spatial landscape variations in different UFZs. Additionally, we seamlessly integrated
POI data obtained from open platforms and extracted their KDFs. Our approach not only
meticulously accounted for the spatial landscape distinctions among different UFZs but
also augmented our analysis with valuable socio-economic activity information.

Upon analyzing and contrasting the results from the six multi-feature fusion classifica-
tion experiments, it became evident that the OAs of the three single data source experiments
were below 70%, failing to meet our requirement for high-precision UFZ classification. This
indicates that the differences between UFZs are influenced by multiple factors. Never-
theless, with the continuous incorporation of POI KDFs alongside 2D and 3D UMPs, the
accuracy of UFZ classification significantly improved. The classification experiment that
included 2D UMPs, 3D UMPs, and POI KDFs achieved the highest classification accuracy.
Notably, compared to experiments relying on single data sources, the OA exhibited an
improvement ranging from 8.31% to 17.1%. These results were consistent across the three
classifiers, affirming the applicability and feasibility of our research methodology. To
further refine the classification results and improve efficiency, we ultimately achieved opti-
mized outcomes (OA = 86.22%, kappa coefficient = 0.84) by reducing the number of input
features to 24. Furthermore, an analysis of feature importance highlighted the significant
contribution of both 2D and 3D UMPs to UFZ classification. In particular, the inclusion of
3D UMPs, such as BSVF, PBSA, and BMH, played a crucial role in accurately categorizing
UFZs. Additionally, the information reflected by POI KDFs, related to human activities,
societal aspects, and the economy, significantly influenced the classification of UFZs.

In comparison to other research, our classification results are quite favorable, although
they may not be the absolute best [14,15,18,19]. On the one hand, this can be attributed to
the complexity of the land cover distribution in the study area, characterized by the presence
of numerous functional zone categories (a total of 9); on the other hand, many UFZs were
still under development, and there is a relatively incomplete coverage of POI data. In
our future research endeavors, we will delve deeper into the influential factors affecting
UFZ classification and refine research methodologies to enhance classification accuracy,
such as collecting more comprehensive socio-economic data and exploring valuable spatial
information at multiple scales.

6. Conclusions

In this study, we employed a multisource data fusion approach for UFZ classification,
leveraging airborne LiDAR point clouds, aerial images, and POI data. Initially, we inte-
grated LiDAR point clouds and aerial images to perform land cover classification, enabling
the precise mapping of land covers and the generation of the BHM and CHM. Subsequently,
we further enriched our dataset by incorporating POI data. From this combined dataset,
we extracted 2D UMPs, 3D UMPs, and POI KDFs. To evaluate the effectiveness of differ-
ent feature combinations, we designed six multi-feature fusion classification experiments
and conducted one experiment with optimized features. The research outcomes revealed
the following:

(1) The classification experiments using POI KDFs, 2D UMPs, and 3D UMPs as separate
input features yielded relatively low accuracy (OA < 70%). Among these, the classi-
fication performance of 2D and 3D UMPs was quite similar, while the classification
performance of POI KDFs lagged behind.

(2) Following the fusion of multisource data, there was a significant enhancement in
overall and class-level accuracy. The results from the three classifiers indicated that
Exp.6, which incorporated 2D and 3D UMPs with POI KDFs, achieved the highest
classification accuracy. Among these classifiers, XGBoost exhibited the best perfor-
mance with an OA of 84.56% and a kappa coefficient of 0.82. It is worth noting that the
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accuracy of KNN and RF showed only a marginal improvement or even a declining
trend in Exp.6, indicating a potential redundancy in the data when all input features
were combined.

(3) Through feature optimization for all input features, there was a significant improve-
ment in classification accuracy. KNN experienced the most substantial increase, with
its OA improving by 10.46%. RF and XGBoost also saw improvements, with their
OAs increasing by 2.14% and 1.66%, respectively. The classification results for all three
classifiers exceeded 80%, significantly enhancing model efficiency. XGBoost achieved
the optimal classification result with an OA of 86.22% and a kappa coefficient of 0.84.

(4) Variable importance analysis demonstrated that 2D UMPs held the highest overall
importance (VIP = 46.46%), followed closely by 3D UMPs (VIP = 32.51%), which
also played a significant role in importance ranking. Despite the lower importance
assigned to POI KDFs, they exerted a notably influential role in the classification of
built-up zones.

In conclusion, this study comprehensively considered the significant role of both
2D and 3D landscape disparities and human activity information in UFZ classification.
We designed various classification experiments and achieved satisfactory results. The
research outcomes have important implications and provide valuable references for future
urban planning and development, rational resource allocation, and ecological environment
construction in medium-sized cities.
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