Long-Term Dynamics of Atmospheric Sulfur Dioxide in Urban and Rural Regions of China: Urbanization and Policy Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regions of Interest
2.2. Database
2.2.1. SO2 Data
2.2.2. Key Driving Factors
2.3. Trend and Regression Analysis
3. Results and Discussion
3.1. Spatial Patterns of SO2 Concentrations
3.2. Trends in SO2 Concentrations
3.3. The Impact of Driving Factors on SO2
3.4. The Role of Chinese Government Policies
4. Conclusions
- The multi-year average SO2 concentrations from MERRA-2 data from 1980 to 2021 over the four rural regions are approximately 11 times lower than those over the four urban regions.
- The SO2 concentration increased significantly over the selected regions from 1980 to 2021, with major changes occurring in between. It increased during 1980–1997 and 2001–2010, but dropped during 1997–2001 and 2010–2021. The relative change showed that the average MERRA-2 SO2 concentration trends over the four urban regions were approximately 16 times higher than those in the four rural regions.
- The results revealed that the driving factors associated with human activities, including urbanization, GDP, and population, played significant roles in multi-decadal SO2 variations and trends in the main urban areas of China.
- The SO2 concentration significantly decreased in most regions of China after 2010, which was attributed to the control policies of China (12th and 13th FYP).
- The OMI SO2 data showed significant downward trends in the last decade over most regions of China, exhibiting better agreement with SO2 variations from ground-based stations than with SO2 data from the MERRA-2 and CAMS reanalysis.
5. Limitations and Future Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinfeld, J.I. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 40, ISBN 1118947401. [Google Scholar]
- Rawat, P.; Sarkar, S.; Jia, S.; Khillare, P.S.; Sharma, B. Regional Sulfate Drives Long-Term Rise in AOD over Megacity Kolkata, India. Atmos. Environ. 2019, 209, 167–181. [Google Scholar] [CrossRef]
- Liu, J.; Liang, D.; Liu, L.; Ning, A.; Zhang, X. Catalytic Sulfate Formation Mechanism Influenced by Important Constituents of Cloud Water via the Reaction of SO2 oxidized by Hypobromic Acid in Marine Areas. Phys. Chem. Chem. Phys. 2021, 23, 15935–15949. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ning, A.; Liu, L.; Wang, H.; Kurtén, T.; Zhang, X. A PH Dependent Sulfate Formation Mechanism Caused by Hypochlorous Acid in the Marine Atmosphere. Sci. Total Environ. 2021, 787, 147551. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Streets, D.G.; De Foy, B.; Krotkov, N.A. Ozone Monitoring Instrument Observations of Interannual Increases in SO2 Emissions from Indian Coal-Fired Power Plants during 2005–2012. Environ. Sci. Technol. 2013, 47, 13993–14000. [Google Scholar] [CrossRef]
- Lee, C.Y.; Zhou, P. Directional Shadow Price Estimation of CO2, SO2 and NOx in the United States Coal Power Industry 1990–2010. Energy Econ. 2015, 51, 493–502. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Di, B.; Liu, D.; Li, J.; Zhan, Y. Spatiotemporal Distributions of Ambient SO2 across China Based on Satellite Retrievals and Ground Observations: Substantial Decrease in Human Exposure during 2013–2016. Environ. Res. 2019, 179, 108795. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of Fossil Fuel and Total Anthropogenic Emission Removal on Public Health and Climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197. [Google Scholar] [CrossRef] [PubMed]
- Grivas, G.; Cheristanidis, S.; Chaloulakou, A.; Koutrakis, P.; Mihalopoulos, N. Elemental Composition and Source Apportionment of Fine and Coarse Particles at Traffic and Urban Background Locations in Athens, Greece. Aerosol Air Qual. Res. 2018, 18, 1642–1659. [Google Scholar] [CrossRef]
- Kato, N.; Akimoto, H. Anthropogenic Emissions of SO2 and NOx in Asia: Emission Inventories. Atmos. Environ. Part A Gen. Top. 1992, 26, 2997–3017. [Google Scholar] [CrossRef]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large Contribution of Meteorological Factors to Inter-Decadal Changes in Regional Aerosol Optical Depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef]
- Smith, S.J.; van Aardenne, J.; Klimont, Z.; Andres, R.J.; Volke, A.; Delgado Arias, S. Anthropogenic Sulfur Dioxide Emissions: 1850–2005. Atmos. Chem. Phys. 2011, 11, 1101–1116. [Google Scholar] [CrossRef]
- Kalita, G.; Kunchala, R.K.; Fadnavis, S.; Kaskaoutis, D.G. Long Term Variability of Carbonaceous Aerosols over Southeast Asia via Reanalysis: Association with Changes in Vegetation Cover and Biomass Burning. Atmos. Res. 2020, 245, 105064. [Google Scholar] [CrossRef]
- Larssen, T.; Lydersen, E.; Tang, D. Acid Rain in China. Rapid Industrialization Has Put Citizens and Ecosystems at Risk. Environ. Sci. Technol. 2006, 40, 418–425. [Google Scholar] [CrossRef]
- Chang, C.-T.; Yang, C.-J.; Huang, K.-H.; Huang, J.-C.; Lin, T.-C. Changes of Precipitation Acidity Related to Sulfur and Nitrogen Deposition in Forests across Three Continents in North Hemisphere over Last Two Decades. Sci. Total Environ. 2022, 806, 150552. [Google Scholar] [CrossRef]
- Chutia, L.; Ojha, N.; Girach, I.; Pathak, B.; Sahu, L.K.; Sarangi, C.; Flemming, J.; da Silva, A.; Bhuyan, P.K. Trends in Sulfur Dioxide over the Indian Subcontinent during 2003–2019. Atmos. Environ. 2022, 284, 119189. [Google Scholar] [CrossRef]
- Streets, D.G.; Tsai, N.Y.; Akimoto, H.; Oka, K. Sulfur Dioxide Emissions in Asia in the Period 1985–1997. Atmos. Environ. 2000, 34, 4413–4424. [Google Scholar] [CrossRef]
- Stavroulas, I.; Bougiatioti, A.; Grivas, G.; Paraskevopoulou, D.; Tsagkaraki, M.; Zarmpas, P.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Sources and Processes That Control the Submicron Organic Aerosol Composition in an Urban Mediterranean Environment (Athens): A High Temporal-Resolution Chemical Composition Measurement Study. Atmos. Chem. Phys. 2019, 19, 901–919. [Google Scholar] [CrossRef]
- Arub, Z.; Bhandari, S.; Gani, S.; Apte, J.S.; Hildebrandt Ruiz, L.; Habib, G. Air Mass Physiochemical Characteristics over New Delhi: Impacts on Aerosol Hygroscopicity and Cloud Condensation Nuclei (CCN) Formation. Atmos. Chem. Phys. 2020, 20, 6953–6971. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI Observations of Regional SO2 and NO2 Pollution Changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Fadnavis, S.; Müller, R.; Kalita, G.; Rowlinson, M.; Rap, A.; Li, J.-L.F.; Gasparini, B.; Laakso, A. The Impact of Recent Changes in Asian Anthropogenic Emissions of SO2 on Sulfate Loading in the Upper Troposphere and Lower Stratosphere and the Associated Radiative Changes. Atmos. Chem. Phys. 2019, 19, 9989–10008. [Google Scholar] [CrossRef]
- Ukhov, A.; Mostamandi, S.; Krotkov, N.; Flemming, J.; da Silva, A.; Li, C.; Fioletov, V.; McLinden, C.; Anisimov, A.; Alshehri, Y.M.; et al. Study of SO Pollution in the Middle East Using MERRA-2, CAMS Data Assimilation Products, and High-Resolution WRF-Chem Simulations. J. Geophys. Res. Atmos. 2020, 125, e2019JD031993. [Google Scholar] [CrossRef]
- Wang, T.; Wang, P.; Theys, N.; Tong, D.; Hendrick, F.; Zhang, Q.; Van Roozendael, M. Spatial and Temporal Changes in SO2 Regimes over China in the Recent Decade and the Driving Mechanism. Atmos. Chem. Phys. 2018, 18, 18063–18078. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Wang, Y.; Wang, H.; Zhang, L.; Zhao, H.; Zheng, Y.; Sun, T.; Zhang, X. Satellite-Derived PM2.5 Concentration Trends over Eastern China from 1998 to 2016: Relationships to Emissions and Meteorological Parameters. Environ. Pollut. 2019, 247, 1125–1133. [Google Scholar] [CrossRef]
- Sun, W.; Shao, M.; Granier, C.; Liu, Y.; Ye, C.S.; Zheng, J.Y. Long-Term Trends of Anthropogenic SO2, NOx, CO, and NMVOCs Emissions in China. Earth’s Future 2018, 6, 1112–1133. [Google Scholar] [CrossRef]
- Zheng, C.; Zhao, C.; Li, Y.; Wu, X.; Zhang, K.; Gao, J.; Qiao, Q.; Ren, Y.; Zhang, X.; Chai, F. Spatial and Temporal Distribution of NO2 and SO2 in Inner Mongolia Urban Agglomeration Obtained from Satellite Remote Sensing and Ground Observations. Atmos. Environ. 2018, 188, 50–59. [Google Scholar] [CrossRef]
- Yousefi, R.; Shaheen, A.; Wang, F.; Ge, Q.; Wu, R.; Lelieveld, J.; Wang, J.; Su, X. Fine Particulate Matter (PM2.5) Trends from Land Surface Changes and Air Pollution Policies in China during 1980–2020. J. Environ. Manag. 2023, 326, 116847. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Wang, Y.; Xia, X.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Yao, W.; Zheng, Y.; Zhao, H.; et al. A Global-Scale Analysis of the MISR Level-3 Aerosol Optical Depth (AOD) Product: Comparison with Multi-Platform AOD Data Sources. Atmos. Pollut. Res. 2021, 12, 101238. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Li, L.; Zheng, Y.; Zhang, L.; Zhao, H.; Zhong, J.; Yao, W.; Liang, Y.; Wang, Y.; et al. The Significant Contribution of Small-Sized and Spherical Aerosol Particles to the Decreasing Trend in Total Aerosol Optical Depth over Land from 2003 to 2018. Engineering 2022, 16, 82–92. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, F.; Zhang, W.; Wang, S. Analysis of SO2 Pollution Changes of Beijing-Tianjin-Hebei Region over China Based on OMI Observations from 2006 to 2017. Adv. Meteorol. 2018, 2018, 8746068. [Google Scholar] [CrossRef]
- Yan, H.; Wang, W.; Chen, L. Temperature Effects on the Retrieval of SO2 from Ultraviolet Satellite Observations. In Proceedings of the Remote Sensing of the Atmosphere, Clouds, and Precipitation V, Beijing, China, 13–16 October 2014; Volume 9259, p. 92591X. [Google Scholar]
- Li, C.; Joiner, J.; Krotkov, N.A.; Bhartia, P.K. A Fast and Sensitive New Satellite SO2 Retrieval Algorithm Based on Principal Component Analysis: Application to the Ozone Monitoring Instrument. Geophys. Res. Lett. 2013, 40, 6314–6318. [Google Scholar] [CrossRef]
- Jernelöv, A. Acid Rain and Sulfur Dioxide Emissions in China. Ambio 1983, 12, 362. [Google Scholar]
- Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian Emission Inventory of Anthropogenic Emission Sources for the Period 1980–2020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar] [CrossRef]
- Koukouli, M.E.; Balis, D.S.; van der A, R.J.; Theys, N.; Hedelt, P.; Richter, A.; Krotkov, N.; Li, C.; Taylor, M. Anthropogenic Sulphur Dioxide Load over China as Observed from Different Satellite Sensors. Atmos. Environ. 2016, 145, 45–59. [Google Scholar] [CrossRef]
- Zhang, S.; Mi, T.; Wu, Q.; Luo, Y.; Grieneisen, M.L.; Shi, G.; Yang, F.; Zhan, Y. A Data-Augmentation Approach to Deriving Long-Term Surface SO2 across Northern China: Implications for Interpretable Machine Learning. Sci. Total Environ. 2022, 827, 154278. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, Q.; Streets, D.G. Sulfur Dioxide and Primary Carbonaceous Aerosol Emissions in China and India, 1996–2010. Atmos. Chem. Phys. 2011, 11, 9839–9864. [Google Scholar] [CrossRef]
- Qian, Y.; Scherer, L.; Tukker, A.; Behrens, P. China’s Potential SO2 Emissions from Coal by 2050. Energy Policy 2020, 147, 111856. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, B.; Zhu, Z.; Zhang, T.; Gong, W.; Ji, Y.; Xia, X.; Wang, L.; Zhou, X.; Chen, D. Evaluation and Comparison of MODIS Collection 6.1 and Collection 6 Dark Target Aerosol Optical Depth over Mainland China Under Various Conditions Including Spatiotemporal Distribution, Haze Effects, and Underlying Surface. Earth Space Sci. 2019, 6, 2575–2592. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Xue, W.; Sun, L.; Fan, T.; Liu, L.; Su, T.; Cribb, M. The ChinaHighPM10 Dataset: Generation, Validation, and Spatiotemporal Variations from 2015 to 2019 across China. Environ. Int. 2021, 146, 106290. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-Km-Resolution High-Quality PM2. 5 Data Records from 2000 to 2018 in China: Spatiotemporal Variations and Policy Implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- He, L.; Wang, L.; Lin, A.; Zhang, M.; Bilal, M.; Tao, M. Aerosol Optical Properties and Associated Direct Radiative Forcing over the Yangtze River Basin during 2001–2015. Remote Sens. 2017, 9, 746. [Google Scholar] [CrossRef]
- Xiao, Z.Y.; Jiang, H.; Song, X.D. Aerosol Optical Thickness over Pearl River Delta Region, China. Int. J. Remote Sens. 2017, 38, 258–272. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, L.; Zhou, Y.; Jia, S.; Yao, L.; Zhang, Z.; Zhang, L. Evaluation of Extinction Effect of PM2.5 and Its Chemical Components during Heating Period in an Urban Area in Beijing–Tianjin–Hebei Region. Atmosphere 2022, 13, 403. [Google Scholar] [CrossRef]
- Hu, Y.; Kang, S.; Yang, J.; Ji, Z.; Rupakheti, D.; Yin, X.; Du, H. Impact of Atmospheric Circulation Patterns on Properties and Regional Transport Pathways of Aerosols over Central-West Asia: Emphasizing the Tibetan Plateau. Atmos. Res. 2022, 266, 105975. [Google Scholar] [CrossRef]
- Jia, L.; Yu, K.-x; Li, Z.-b; Li, P.; Zhang, J.-z.; Wang, A.-n.; Ma, L.; Xu, G.-c.; Zhang, X. Temporal and Spatial Variation of Rainfall Erosivity in the Loess Plateau of China and Its Impact on Sediment Load. Catena 2022, 210, 105931. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, T.; He, Q.; Yang, X.; Mamtimin, A.; Wang, M.; Pan, H.; Huo, W.; Yang, F.; Zhou, C. Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China. Remote Sens. 2022, 14, 1167. [Google Scholar] [CrossRef]
- Chin, M.; Ginoux, P.; Kinne, S.; Torres, O.; Holben, B.N.; Duncan, B.N.; Martin, R.V.; Logan, J.A.; Higurashi, A.; Nakajima, T. Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. J. Atmos. Sci. 2002, 59, 461–483. [Google Scholar] [CrossRef]
- Provençal, S.; Buchard, V.; da Silva, A.M.; Leduc, R.; Barrette, N.; Elhacham, E.; Wang, S.-H. Evaluation of PM2.5 Surface Concentrations Simulated by Version 1 of NASA’s MERRA Aerosol Reanalysis over Israel and Taiwan. Aerosol Air Qual. Res. 2017, 17, 253–261. [Google Scholar] [CrossRef]
- Colarco, P.; Da Silva, A.; Chin, M.; Diehl, T. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth. J. Geophys. Res. Atmos. 2010, 115, D14207. [Google Scholar] [CrossRef]
- Shaheen, A. A New MODIS C6.1 and MERRA-2 Merged Aerosol Products: Validation over The Eastern Mediterranean Region. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 4–8 May 2020; p. 639. [Google Scholar]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barr, J.; Benedictow, A.; Blechschmidt, A.M.; Jose Dominguez, J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Shaheen, A.; Yousefi, R.; Wang, F.; Ge, Q.A.; Wu, R. Sulfur Dioxide (SO2) Trends over the Urban Regions of China during 2007–2020 Using MERRA-2 and CAMSRA. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023; p. EGU23-1806. [Google Scholar]
- Levelt, P.F.; Van Den Oord, G.H.J.; Dobber, M.R.; Mälkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.V.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1100. [Google Scholar] [CrossRef]
- Biswas, M.S.; Ayantika, D.C. Impact of Covid-19 Control Measures on Trace Gases (NO2, HCHO and SO2) and Aerosols over India during Pre-Monsoon of 2020. Aerosol Air Qual. Res. 2021, 21, 200306. [Google Scholar] [CrossRef]
- Wang, W.; He, B.-J. Co-Occurrence of Urban Heat and the COVID-19: Impacts, Drivers, Methods, and Implications for the Post-Pandemic Era. Sustain. Cities Soc. 2023, 90, 104387. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.-M.; Meng, S.; Wang, J.-X.; Liu, L.; Zheng, Z.-X. Influential Factors Regarding Carbon Emission Intensity in China: A Spatial Econometric Analysis from a Provincial Perspective. Sustainability 2020, 12, 8097. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yang, X.; Zou, B.; Wang, J. Spatial Variations of PM2.5 in Chinese Cities for the Joint Impacts of Human Activities and Natural Conditions: A Global and Local Regression Perspective. J. Clean. Prod. 2018, 203, 143–152. [Google Scholar] [CrossRef]
- Kharol, S.K.; Kaskaoutis, D.G.; Sharma, A.R.; Singh, R.P. Long-Term (1951–2007) Rainfall Trends around Six Indian Cities: Current State, Meteorological, and Urban Dynamics. Adv. Meteorol. 2013, 2013, 572954. [Google Scholar] [CrossRef]
- Lu, D.; Xu, J.; Yue, W.; Mao, W.; Yang, D.; Wang, J. Response of PM2.5 Pollution to Land Use in China. J. Clean. Prod. 2020, 244, 118741. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal Characteristics, Patterns, and Causes of Land-Use Changes in China since the Late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Jiang, D.; Chang, Y.; Zhong, F.; Yao, W.; Zhang, Y.; Ding, X.; Huang, C. Future Growth Pattern Projections under Shared Socioeconomic Pathways: A Municipal City Bottom-up Aggregated Study Based on a Localised Scenario and Population Projections for China. Econ. Res. Istraz. 2022, 35, 2574–2595. [Google Scholar] [CrossRef]
- Shaheen, A.; Kidwai, A.A.; Ain, N.U.; Aldabash, M.; Zeeshan, A. Estimating Air Particulate Matter 10 Using Landsat Multi-Temporal Data and Analyzing Its Annual Temporal Pattern over Gaza Strip, Palestine. J. Asian Sci. Res. 2017, 7, 22–37. [Google Scholar] [CrossRef]
- Yousefi, R.; Wang, F.; Ge, Q.; Shaheen, A. Long-Term Aerosol Optical Depth Trend over Iran and Identification of Dominant Aerosol Types. Sci. Total Environ. 2020, 722, 137906. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Wang, Y.; Zhang, L.; Zhao, H.; Li, L.; Zhong, J.; Yao, W.; Zhang, X. Seasonal Variability and Trends in Global Type-Segregated Aerosol Optical Depth as Revealed by MISR Satellite Observations. Sci. Total Environ. 2021, 787, 147543. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Lelieveld, J.; Yousefi, R.; Aldabash, M. Winter AOD Trend Changes over the Eastern Mediterranean and Middle East Region. Int. J. Climatol. 2021, 41, 5516–5535. [Google Scholar] [CrossRef]
- Yousefi, R.; Wang, F.; Ge, Q.; Lelieveld, J.; Shaheen, A. Aerosol Trends during the Dusty Season over Iran. Remote Sens. 2021, 13, 1045. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Yousefi, R.; Wang, F.; Ge, Q.; Kaskaoutis, D.G.; Wang, J.; Alpert, P.; Munawar, I. Spatio-Temporal Changes of Spring-Summer Dust AOD over the Eastern Mediterranean and the Middle East: Reversal of Dust Trends and Associated Meteorological Effects. Atmos. Res. 2023, 281, 106509. [Google Scholar] [CrossRef]
- Yousefi, R.; Wang, F.; Ge, Q.; Shaheen, A.; Kaskaoutis, D.G. Analysis of the Winter AOD Trends over Iran from 2000 to 2020 and Associated Meteorological Effects. Remote Sens. 2023, 15, 905. [Google Scholar] [CrossRef]
- Gui, K.; Yao, W.; Che, H.; An, L.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; et al. Record-Breaking Dust Loading during Two Mega Dust Storm Events over Northern China in March 2021: Aerosol Optical and Radiative Properties and Meteorological Drivers. Atmos. Chem. Phys. 2022, 22, 7905–7932. [Google Scholar] [CrossRef]
- Mardini, M.K.; Frebel, A.; Chiti, A.; Meiron, Y.; Brauer, K.V.; Ou, X. The Atari Disk, a Metal-Poor Stellar Population in the Disk System of the Milky Way. Astrophys. J. 2022, 936, 78. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, X.; Christakos, G.; Liao, Y.L.; Gu, X.; Zheng, X.Y. Assessing Local Determinants of Neural Tube Defects in the Heshun Region, Shanxi Province, China. BMC Public Health 2010, 10, 52. [Google Scholar] [CrossRef]
- Chu, H.-J.; Huang, B.; Lin, C.-Y. Modeling the Spatio-Temporal Heterogeneity in the PM10-PM2.5 Relationship. Atmos. Environ. 2015, 102, 176–182. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and Temporally Weighted Regression for Modeling Spatio-Temporal Variation in House Prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Liao, H.; Yang, Y.; Yue, X. Meteorological Influences on PM2.5 and O3 Trends and Associated Health Burden since China’s Clean Air Actions. Sci. Total Environ. 2020, 744, 140837. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Che, H.; Du, R.; Liang, Z.; Sun, T.; Wang, J.; Niu, Y.; Xu, H.; Hu, D.; Huang, J. Seasonal Variation of Atmospheric Vertical Extinction and Its Interaction with Meteorological Factors in the Yangtze River Delta Region. Chemosphere 2020, 247, 125768. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhao, C.; Fan, H. Toward Understanding the Variation of Air Quality Based on a Comprehensive Analysis in Hebei Province under the Influence of COVID-19 Lockdown. Atmosphere 2021, 12, 267. [Google Scholar] [CrossRef]
- Fioletov, V.E.; McLinden, C.A.; Krotkov, N.; Li, C. Lifetimes and Emissions of SO2 from Point Sources Estimated from OMI. Geophys. Res. Lett. 2015, 42, 1969–1976. [Google Scholar] [CrossRef]
- Fioletov, V.E.; McLinden, C.A.; Krotkov, N.; Li, C.; Joiner, J.; Theys, N.; Carn, S.; Moran, M.D. A Global Catalogue of Large SO2 Sources and Emissions Derived from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 2016, 16, 11497–11519. [Google Scholar] [CrossRef]
- Gao, M.; Ji, D.; Liang, F.; Liu, Y. Attribution of Aerosol Direct Radiative Forcing in China and India to Emitting Sectors. Atmos. Environ. 2018, 190, 35–42. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Gao, M.; Zhang, Q.; He, K.; Carmichael, G.; et al. Reactive Nitrogen Chemistry in Aerosol Water as a Source of Sulfate during Haze Events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Zhang, W.; Zhan, D.; Li, J. The Impact of Anthropogenic Emissions and Meteorological Conditions on the Spatial Variation of Ambient SO2 Concentrations: A Panel Study of 113 Chinese Cities. Sci. Total Environ. 2017, 584, 318–328. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Husar, J.D.; Husar, R.B. Estimating Historical Anthropogenic Global Sulfur Emission Patterns for the Period 1850–1990. Atmos. Environ. 1999, 33, 3435–3444. [Google Scholar] [CrossRef]
- Fidrmuc, J.; Korhonen, I. The Impact of the Global Financial Crisis on Business Cycles in Asian Emerging Economies. J. Asian Econ. 2010, 21, 293–303. [Google Scholar] [CrossRef]
- Vrekoussis, M.; Richter, A.; Hilboll, A.; Burrows, J.P.; Gerasopoulos, E.; Lelieveld, J.; Barrie, L.; Zerefos, C.; Mihalopoulos, N. Economic Crisis Detected from Space: Air Quality Observations over Athens/Greece. Geophys. Res. Lett. 2013, 40, 458–463. [Google Scholar] [CrossRef]
- Lu, Z.; Streets, D.G.; Zhang, Q.; Wang, S.; Carmichael, G.R.; Cheng, Y.F.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q. Sulfur Dioxide Emissions in China and Sulfur Trends in East Asia since 2000. Atmos. Chem. Phys. 2010, 10, 6311–6331. [Google Scholar] [CrossRef]
- Su, S.; Li, B.; Cui, S.; Tao, S. Sulfur Dioxide Emissions from Combustion in China: From 1990 to 2007. Environ. Sci. Technol. 2011, 45, 8403–8410. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, R.; Liu, Y.; Bi, J. Effects of Air Pollution Control Policies on PM2.5 Pollution Improvement in China from 2005 to 2017: A Satellite-Based Perspective. Atmos. Chem. Phys. 2019, 19, 6861–6877. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Z.; Wei, X.; Zhang, M.; Li, Z. Comparison of Optical Properties of Nitrate and Sulfate Aerosol and the Direct Radiative Forcing Due to Nitrate in China. Atmos. Res. 2012, 113, 113–125. [Google Scholar] [CrossRef]
- Shaheen, A.; Wu, R.; Aldabash, M. Long-Term AOD Trend Assessment over the Eastern Mediterranean Region: A Comparative Study Including a New Merged Aerosol Product. Atmos. Environ. 2020, 238, 117736. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Wang, S.; Sun, S. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [Google Scholar] [CrossRef]
- Li, L. An Empirical Analysis of Rural Labor Transfer and Household Income Growth in China. J. Chin. Hum. Resour. Manag. 2023, 14, 106–116. [Google Scholar] [CrossRef]
- Zhai, S.; Jacob, D.J.; Wang, X.; Shen, L.; Li, K.; Zhang, Y.; Gui, K.; Zhao, T.; Liao, H. Fine Particulate Matter (PM2.5) Trends in China, 2013–2018: Separating Contributions from Anthropogenic Emissions and Meteorology. Atmos. Chem. Phys. 2019, 19, 11031–11041. [Google Scholar] [CrossRef]
- Shang, K.; Xu, L.; Liu, X.; Yin, Z.; Liu, Z.; Li, X.; Yin, L.; Zheng, W. Study of Urban Heat Island Effect in Hangzhou Metropolitan Area Based on SW-TES Algorithm and Image Dichotomous Model. SAGE Open 2023, 13. [Google Scholar] [CrossRef]
- Ali, M.A.; Bilal, M.; Wang, Y.; Qiu, Z.; Nichol, J.E.; de Leeuw, G.; Ke, S.; Mhawish, A.; Almazroui, M.; Mazhar, U.; et al. Evaluation and Comparison of CMIP6 Models and MERRA-2 Reanalysis AOD against Satellite Observations from 2000 to 2014 over China. Geosci. Front. 2022, 13, 101325. [Google Scholar] [CrossRef]
- Lu, Z.; Streets, D.G.; Zhang, Q.; Wang, S.; Carmichael, G.R.; Cheng, Y.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q. The Trend of Sulfur Dioxide Emissions in China after 2000. In Proceedings of the 19th Annual International Emission Inventory Conference “Emissions Inventories—Informing Emerging Issues”, San Antonio, TX, USA, 27–30 September 2010. [Google Scholar]
- Shang, M.; Luo, J. The Tapio Decoupling Principle and Key Strategies for Changing Factors of Chinese Urban Carbon Footprint Based on Cloud Computing. Intern. J. Environ. Res. Public Health 2021, 18, 2101. [Google Scholar] [CrossRef] [PubMed]
- Mardini, M.K.; Frebel, A.; Ezzeddine, R.; Chiti, A.; Meiron, Y.; Ji, A.P.; Placco, V.M.; Roederer, I.U.; Meléndez, J. The Chemical Abundance Pattern of the Extremely Metal-Poor Thin Disk Star 2MASS J1808-5104 and Its Origins. Mon. Not. R. Astron. Soc. 2022, 517, 3993–4004. [Google Scholar] [CrossRef]
- Chen, L.; Chen, T.; Lan, T.; Chen, C.; Pan, J. The Contributions of Population Distribution, Healthcare Resourcing, and Transportation Infrastructure to Spatial Accessibility of Health Care. INQUIRY J. Health Care Organ. Provis. Financ. 2023, 60, 1438227527. [Google Scholar] [CrossRef]
- Pan, J.; Deng, Y.; Yang, Y.; Zhang, Y. Location-allocation modelling for rational health planning: Applying a two-step optimization approach to evaluate the spatial accessibility improvement of newly added tertiary hospitals in a metropolitan city of China. Soc. Sci. Med. 2023, 338, 116296. [Google Scholar] [CrossRef]
Data Type | Parameters | Period | Date Sources |
---|---|---|---|
SO2 Data | SO2 concentrations | 1980–2021 | Monthly MERRA-2 reanalysis dataset at 0.5° × 0.625° spatial resolution https://disc.gsfc.nasa.gov, accessed on 15 March 2023 |
Total column SO2 | 2007–2021 | Monthly CAMS reanalysis dataset at 0.75° × 0.75° spatial resolution https://ecmwf.int/, accessed on 15 May 2023 | |
Total column SO2 | 2007–2021 | Monthly OMI satellite dataset at 0.25° × 0.13° spatial resolution https://disc.gsfc.nasa.gov, accessed on 15 May 2023 | |
SO2 concentrations | 2013–2021 | Monthly ground observation http://www.cnemc.cn/, accessed on 15 May 2023 | |
Driving factors | Population count | 1990–2020 | 5-year intervals of GPW V 3 and 4 http://sedac.ciesin.columbia.edu, accessed on 15 March 2023 |
LULC | 1990–2020 | 5-year intervals of six primary land use categories http://www.resdc.cn/, accessed on 15 March 2023 | |
GDP | 1990–2020 | 5-year intervals of grid map using Chinese governmental data https://www.resdc.cn/, accessed on 15 March 2023 |
Urban Regions | Rural Regions | |||||||
---|---|---|---|---|---|---|---|---|
Regions/Data and Periods | YRD | BTH | PRD | SCB | NER | MR | WR | TR |
Trend/Change | Trend/Change | Trend/Change | Trend/Change | Trend/Change | Trend/Change | Trend/Change | Trend/Change | |
MERRA-2 1980–2021 | 0.71 | 0.50 | 0.52 | 0.35 | 0.04 | 0.06 | 0.01 | 0.012 |
137% | 142% | 232% | 157% | 38% | 176% | 33% | 256% | |
MERRA-2 1980–1997 | 0.57 | 0.44 | 0.37 | 0.22 | 0.01 | 0.03 | 0.007 | 0.008 |
50% | 65% | 89% | 45% | 5% | 66% | 120 % | 190% | |
MERRA-2 1997–2001 | −0.92 | −0.91 | −0.38 | −0.33 | −0.10 | −0.01 | −0.01 | 0.03 |
−25% | −28% | −11% | −18% | −40% | −6% | −13% | 80% | |
MERRA-2 2001–2010 | 2.42 | 1.68 | 1.52 | 1.23 | 0.21 | 0.16 | 0.04 | 0.014 |
98% | 89% | 119% | 129% | 74% | 73% | 40% | 34% | |
MERRA-2 2007–2021 | −0.04 | −0.05 | −0.01 | −0.03 | −0.02 | 0.02 | −0.008 | 0.003 |
−7% | −4% | −10% | −8% | −14.2% | 5% | −15% | 7% | |
CAMS 2007–2021 | −0.15 | 0.07 | −0.05 | −0.06 | −0.04 | −0.008 | −0.01 | −0.004 |
−14% | 13% | −10% | −13% | −24% | −5% | −5% | −6% | |
OMI 2007–2021 | −0.024 | −0.03 | −0.002 | −0.02 | 0.001 | −0.001 | −0.001 | −0.001 |
−51% | −65% | −18% | −54% | −4% | −20% | −6% | −11% |
Urban Regions | Rural Regions | ||||||||
---|---|---|---|---|---|---|---|---|---|
Regions/Periods | YRD | BTH | PRD | SCB | NER | MR | WR | TR | |
Trend | Trend | Trend | Trend | Trend | Trend | Trend | Trend | ||
11th FYP (2006–2010) | MERRA-2 | 2.05 | 1.06 | 1.16 | 1.02 | 0.23 | 0.025 | 0.025 | 0.015 |
CAMS | −0.45 | −0.56 | −0.16 | −0.02 | −0.001 | −0.06 | −0.02 | −0.01 | |
OMI | −0.03 | −0.08 | −0.004 | −0.017 | −0.003 | −0.023 | −0.004 | 0.001 | |
12th FYP (2011–2015) | MERRA-2 | 0.224 | −0.37 | −0.3 | −0.28 | −0.02 | −0.04 | −0.04 | −0.006 |
CAMS | −0.24 | 0.17 | −0.15 | −0.26 | 0.08 | 0.001 | −0.05 | −0.001 | |
OMI | −0.02 | −0.05 | 0.002 | −0.03 | 0.008 | 0.002 | −0.002 | 0.001 | |
13th FYP (2016–2021) | MERRA-2 | −0.95 | −0.53 | −0.65 | −0.56 | −0.07 | 0.045 | −0.017 | −0.015 |
CAMS | −0.45 | −0.26 | −0.014 | −0.24 | −0.04 | −0.04 | −0.004 | −0.008 | |
OMI | −0.03 | −0.02 | −0.007 | −0.01 | 0.01 | −0.01 | 0.002 | −0.007 | |
(2013–2021) | MERRA-2 | −0.189 | −0.32 | −0.18 | −0.18 | −0.07 | 0.03 | −0.009 | −0.005 |
CAMS | 0.01 | −0.02 | 0.04 | −0.13 | −0.08 | 0.004 | −0.02 | 0.003 | |
OMI | −0.023 | −0.014 | 0.003 | −0.017 | −0.001 | −0.005 | −0.002 | −0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Shaheen, A.; Yousefi, R.; Ge, Q.; Wu, R.; Lelieveld, J.; Kaskaoutis, D.G.; Lu, Z.; Zhan, Y.; Zhou, Y. Long-Term Dynamics of Atmospheric Sulfur Dioxide in Urban and Rural Regions of China: Urbanization and Policy Impacts. Remote Sens. 2024, 16, 391. https://doi.org/10.3390/rs16020391
Wang F, Shaheen A, Yousefi R, Ge Q, Wu R, Lelieveld J, Kaskaoutis DG, Lu Z, Zhan Y, Zhou Y. Long-Term Dynamics of Atmospheric Sulfur Dioxide in Urban and Rural Regions of China: Urbanization and Policy Impacts. Remote Sensing. 2024; 16(2):391. https://doi.org/10.3390/rs16020391
Chicago/Turabian StyleWang, Fang, Abdallah Shaheen, Robabeh Yousefi, Quansheng Ge, Renguang Wu, Jos Lelieveld, Dimitris G. Kaskaoutis, Zifeng Lu, Yu Zhan, and Yuyu Zhou. 2024. "Long-Term Dynamics of Atmospheric Sulfur Dioxide in Urban and Rural Regions of China: Urbanization and Policy Impacts" Remote Sensing 16, no. 2: 391. https://doi.org/10.3390/rs16020391
APA StyleWang, F., Shaheen, A., Yousefi, R., Ge, Q., Wu, R., Lelieveld, J., Kaskaoutis, D. G., Lu, Z., Zhan, Y., & Zhou, Y. (2024). Long-Term Dynamics of Atmospheric Sulfur Dioxide in Urban and Rural Regions of China: Urbanization and Policy Impacts. Remote Sensing, 16(2), 391. https://doi.org/10.3390/rs16020391