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Abstract: In digital soil mapping, machine learning models have been widely applied. However, the
accuracy of machine learning models can be limited by the use of a single model and a small number
of soil samples. This study introduces a novel method, semi-supervised classification combined
with stacking learning (SSC-SL), to enhance soil classification mapping in hilly and low-mountain
areas of Northern Jurong City, Jiangsu Province, China. This study incorporated Gaofen-2 (GF-2)
remote sensing imagery along with its associated remote sensing indices, the ALOS Digital Elevation
Model (DEM) and their derived topographic factors, and soil parent material data in its modelling
process. We first used three base learners, Ranger, Rpart, and XGBoost, to construct the SL model.
In addition, we employed the fuzzy c-means clustering algorithm (FCM) to construct a clustering
map. To fully leverage the information from a multitude of environmental variables, understand
the distribution of data, and enhance the effectiveness of the classification, we selected unlabelled
samples near the boundaries of the patches on the clustering map. The SSC-SL model demonstrated
superior stability and performance, with optimal accuracy at a 0.9 confidence level, achieving an
overall accuracy of 0.77 and a kappa coefficient of 0.73. These metrics exceeded those of the highest
performing base learner (Ranger model) by 10.4% and 12.3%, respectively, and they outperformed
the least effective base learner (Rpart model) by 27.3% and 32.9%. It notably improves the spatial
distribution accuracy of soil types. Key environmental variables influencing soil type distribution
include soil parent material (SPM), land use (LU), the multi-resolution valley bottom flatness index
(MRVBF), and Elevation (Ele). In conclusion, the SSC-SL model offers a novel and effective approach
for enhancing the predictive accuracy of soil classification mapping.

Keywords: SSC-SL; stacking learning; semi-supervised classification; FCM; digital soil mapping; GF-2

1. Introduction

Soil is a loose layer of material on the Earth’s surface and is an important part of the
Earth’s ecosystem [1]. It provides a foundation for plant growth and a habitat for animals,
while also storing water and nutrients. Soils also play a key role in climate regulation and
food security [2]. It is therefore essential to understand the distribution of soil types and
to produce accurate soil type maps. Soil maps are useful for making optimal land use
decisions [3] and analysing land suitability [4].

Recently, machine learning, as a method often applied to regression and classification
tasks in various scientific fields, has become more widely used in digital soil mapping and
has gradually become one of the most mainstream methods in digital soil mapping. The
machine learning applications in soil attribute mapping are mainly used for determining
organic carbon [5], pH [6], soil texture [7], soil temperature [8], and soil salinity [9]. Similarly,
many studies have used machine learning to predict soil type maps. For example, Najmeh
Asgari et al. [10] produced soil maps of the Jouneqan district in Chaharmahal and Bakhtiary
Province, Iran. Teng et al. [11] updated the Australian soil classification map. These studies
used various machine learning methods, including quantile regression forests, random
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forests, support vector machines, and multinomial logistic regression. These methods
achieve the rapid prediction of soil properties and types by fitting non-linear relationships
between environmental variables and soil properties and types and have proven to be a
well-established tool.

However, the current problem is that while a single machine learning method can
predict soil types, sometimes it does not perform well in terms of prediction accuracy.
The solution to this problem is to have the ability to combine multiple machine learning
methods to improve the prediction accuracy in soil classification [12,13]. Stacking learning
(SL) is a branch of ensemble learning that combines multiple base learners into a single
advanced learner. Typically, stacking learning is robust and adaptive and can achieve
better results than a single base learner [14]. In addition, in digital soil mapping research,
especially in soil type mapping, the soil sampling point dataset is, in most cases, a small
sample dataset. A small sample point dataset sometimes cannot capture the environmental
variables corresponding to each soil type very well. Therefore, the prediction results are not
a good representation of the real soil distribution when using machine learning methods for
predictive mapping. It is worth noting that in many studies of soil type mapping, a small
number of actual sampling point data are often used for training and prediction, while large
numbers of unlabelled environmental variable data are not fully utilised [15,16]. In contrast,
semi-supervised classification (SSC) methods are based on learning from labelled data
and predictive classification from unlabelled data, resulting in some unlabelled data for
training [17]. Semi-supervised classification makes full use of the existing data to improve
the classification accuracy of the model when data resources are limited [18]. Therefore,
semi-supervised classification can be used to achieve higher soil mapping accuracy in
digital soil mapping.

Currently, although some studies have proposed the application of stacking learning in
soil attribute prediction [19] and semi-supervised classification in soil type prediction [20],
we have not seen any application of stacking learning for soil type prediction or for the
research application of combining stacking learning and semi-supervised classification for
soil type prediction. Furthermore, in the selection of unlabelled sample points in semi-
supervised classification and considering the need to ensure a more reasonable delineation
of soil type patch boundaries, we employ the fuzzy c-means clustering algorithm (FCM)
to obtain clustering results and add the positions of unlabelled sample points near the
boundaries of the clustering results. This is because unlabelled samples closer to the
centre of the patches have more similar environmental variables to labelled samples, and
selecting unlabelled samples closer to the centre of the patches can make the model less
stable. The aims of this study are to combine multiple base learners and make the best
use of a large volume of environmental variable data by combining stacking learning and
semi-supervised classification (SSC-SL), and to achieve high prediction accuracy with this
method in the case of few soil sampling points.

2. Materials and Methods
2.1. Study Area

The study area is located in the northern part of Jurong City, Jiangsu Province, China
(115◦45′22′′ to 117◦14′44′′E and 31◦16′16′′ to 29◦47′3′′), on the south side of the lower
reaches of the Yangtze River, with an area of 50.46 km2 (Figure 1). The study area is located
in the subtropical monsoon climate zone, with a mild climate, favourable temperatures,
moderate rainfall, and sufficient light. The geomorphology of the study area is mainly
hilly, with an overall distribution of north–south-trending bar-shaped hills, large changes
in elevation, and distinct topographic relief [21]. In the northeastern part of the study area,
there is the Lunshan Reservoir and Gaoli Mountain [22], and the total elevation of the study
area ranges from 28 m to 403 m.
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The land used in the area is primarily forest lands, followed by cultivated lands and 
gardens. The forest lands are widely distributed, with their natural vegetation mainly con-
sisting of subtropical evergreen broadleaf forests and shrublands, typically found on the 
mid and upper slopes. The forest lands are most extensively spread in Gaoli Mountain. In 
the paddy fields, the artificially cultivated crops are mainly rice and wheat, distributed in 
a north–south-oriented strip pattern along the valleys. Drylands and orchards are gener-
ally located in the middle parts of the hills. The soil parent materials include light purple 
sandstone, Quaternary red clay, and other soil parent materials. Light purple sandstone 
is sparsely distributed in the central part of the study area, while Quaternary red clay is 
found in the middle of the southern slopes of Gaoli Mountain, with the remainder being 
other soil parent materials. The type of land use, topography, and soil parent material 
influence or reflect the formation and distribution of soils in the study area, with the spe-
cific spatial distribution detailed in Figure 2. 

Figure 1. (a,b) Location of the study area; (c) distribution of sampling points and remote sensing image.

The land used in the area is primarily forest lands, followed by cultivated lands and
gardens. The forest lands are widely distributed, with their natural vegetation mainly
consisting of subtropical evergreen broadleaf forests and shrublands, typically found on the
mid and upper slopes. The forest lands are most extensively spread in Gaoli Mountain. In
the paddy fields, the artificially cultivated crops are mainly rice and wheat, distributed in a
north–south-oriented strip pattern along the valleys. Drylands and orchards are generally
located in the middle parts of the hills. The soil parent materials include light purple
sandstone, Quaternary red clay, and other soil parent materials. Light purple sandstone is
sparsely distributed in the central part of the study area, while Quaternary red clay is found
in the middle of the southern slopes of Gaoli Mountain, with the remainder being other
soil parent materials. The type of land use, topography, and soil parent material influence
or reflect the formation and distribution of soils in the study area, with the specific spatial
distribution detailed in Figure 2.
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Figure 2. Main environmental variables in the study area: (a) map of land use; (b) map of DEM;
(c) map of soil parent material.
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2.2. Soil Data

The soil sample collection followed the principles of uniformity and representativeness
to ensure that all sampling points were relatively uniform in spatial distribution, while
single sampling points represented the same or similar landscapes within a certain range,
i.e., having the same or similar topography, soil parent material, and land use. In addition,
all sampling points covered different landscapes within the study area. We collected
183 soil profile samples (0–120 cm) from March 2021 to November 2022. We identified
10 soil subgroups according to the Chinese Soil Taxonomy [23], which are Typic Purpli-Udic
Cambosols, Typic Hapli-Udic Cambosols, Typic Hapli-Udic Argosols, Typic Fe-accumuli-
Stagnic Anthrosols, Typic Claypani-Udic Argosols, Red Ferri-Udic Cambosols, Red Ferri-
Udic Argosols, Mottlic Hapli-Udic Argosols, Lithic Udi-Orthic Primosols, and Endogleyic
Fe-accumuli-Stagnic Anthrosols. The spatial distribution of the soil sampling points is
shown in Figure 1.

2.3. Environmental Variables Data

Soil type is influenced by five main factors: climate, topography, biology, time, and
parent material [24]. However, in smaller study areas, common environmental variables
used for larger regions, such as macroclimate or annual average rainfall, show limited
variation and, thus, are not applicable. Given this, and considering the relationship between
the soil types and environmental variables in our study area, we obtained data on two
types of environmental variables (topographic data and remote sensing data) from existing
sources and generated some derived environmental variables. In addition, the soil parent
material data were obtained from actual investigations based on historically retained
geologic maps. The definitions of the three types of environmental variables (including
derived environmental variables) are given in Table 1.

Table 1. Selected set of environmental variables.

Type Name of Environmental Variables/Definition Abbreviation

Remote Sensing

Simple Ratio (NIR/R) SR
Normalised Difference Vegetation Index ((NIR − R)/(NIR + R)) NDVI

Green Ratio Vegetation Index (NIR/G) GRVI
Normalised Difference Water Index ((G − NIR)/(G + NIR)) NDWI

Green Leaf Index ((2 ×G − B −R)/(2 × G + B + R)) GLI
Land Use LU

Terrain

Elevation (m) Ele
Aspect Asp
Slope Slo

Plan Curvature PlC
Profile Curvature PrC

Topographic Position Index TPI
Topographic Wetness Index TWI

Multi-Resolution of Ridge Top Flatness Index MRRTF
Multi-Resolution Valley Bottom Flatness Index MRVBF

Horizontal Distance to Ridge Line HDRL
Horizontal Distance to Valley Line HDVL

Soil Parent Material Soil Parent Material SPM

NIR: near-infrared band of GF-2; R: red band of GF-2; G: green band of GF-2; B: blue band of GF-2.

2.3.1. Remote Sensing Data

In related studies, various bands and derivatives of remote sensing images have been
proposed to serve as environmental variables for soil type mapping [25] and to be effective
in improving the prediction of soil classification [26]. We downloaded the Gaofen-2 (GF-
2) image data from the China Centre for Resources Satellite Data and Application (https:
//data.cresda.cn/#/home, accessed on 2 December 2023). We chose the image period of low
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cloudiness during the crop flowering–irrigation period; the feature information is clearer,
and the resulting feature reflectance spectral differences are more significant and easier
to distinguish and identify. The GF-2 image includes panchromatic images (0.45–0.90 µm)
and multispectral images (near-infrared band: 0.77–0.89 µm; red band: 0.63–0.69 µm; green
band: 0.52–0.59 µm; blue band: 0.45–0.52 µm). The spatial resolution of the multispectral
images is 1 m, while that of the panchromatic images is 4 m. The images were captured
on September 19, 2019. The following pre-processing steps were performed on the GF-2
image: (1) multi-spectral image: radiometric calibration, atmospheric correction, ortho-
rectification; (2) panchromatic image: radiometric calibration, ortho-correction; (3) image
fusion of multi-spectral image and panchromatic image. Based on the fused images, we
calculated the following vegetation indices as environmental variables, including Simple
Ratio (SR), Normalised Difference Vegetation Index (NDVI), Green Ratio Vegetation Index
(GRVI), Normalised Difference Water Index (NDWI), and Green Leaf Index (GLI).

Additionally, based on remote sensing image data, we initially utilised the random
forest model to obtain a pre-processed land use map (LU). To prevent the excessive frag-
mentation of patches, we merged those smaller than 600 m2 and manually adjusted their
boundaries. The revised land use maps were subsequently incorporated into our model
as environmental variables. Given the impact of land use classification features on soil
classification accuracy, we refined the land use types within the study area as much as
possible. We divided the land use in the study area into 11 categories, including cultivated
land (paddy field and dry land), forest land (arbour forest land and shrub land), garden
(tea plantation, orchard, and other gardens), mudflat, bare land, water body, and building.
For instance, paddy fields were considered for distinguishing Anthrosols from other soil
types. Arbour forest land and shrub lands can be used to differentiate between Argosols
and Cambosols, while gardens help to distinguish the subcategories within Argosols. Tidal
flats and bare lands usually reflect soil types that are categorised into the main soil types
near the patches.

2.3.2. Terrain Data

Terrain factors are a major important factor affecting the variation in soil types. The
change in topography affects the change in the spatial distribution of soil types [27]. A
more accurate map of soil types can be obtained after adding topographic attributes [28].
We downloaded the ALOS digital elevation model (DEM) data from the Alaska Satellite
Facility (https://search.asf.alaska.edu/, accessed on 2 December 2023) with a resolution
of 12.5 m and calculated the following topographic metrics in SAGA-GIS (version 8.4.1):
aspect, slope, plan curvature (PlC), profile curvature (PrC), Topographic Position Index
(TPI), and Topographic Wetness Index (TWI). In addition, we additionally calculated two
other topographic indicators: horizontal distance to ridge line (HDRL) and horizontal
distance to valley line (HDVL).

2.3.3. Soil Parent Material Data

Soil parent material is the basis of soil formation and plays an important role in soil
classification [29]. Soil parent material data have been used as one of the environmental
variables to predict soil types in many studies investigating soil classification [28,30].
We roughly determined the distribution boundaries of the soil parent material based
on historical geology maps. Finally, the soil parent material map was obtained from
field surveys.

2.3.4. Pre-Processing of Environmental Variables

We conducted one-hot encoding for incorporating the factor-type data (SPM and
LU) into the modelling analysis. We filtered the appropriate environmental variables
from the remaining environmental variables for modelling analysis. The importance of
the remaining environmental variables was calculated without using any specific model,
and this served as the basis for selecting suitable environmental variables. This analysis

https://search.asf.alaska.edu/
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was implemented using the filterVarImp function of the “caret” package in R [31]. We
analysed each environmental variable using the ROC curve, using the area under the curve
as the score, and deleted the environmental variables with a weighted average score of
0.85 or less; the deleted environmental variables included Asp, PlC, PrC, and TPI. The
remaining 12 environmental variables were obtained as SR, NDVI, GRVI, NDWI, GLI, Ele,
Slo, TWI, MRRTF, MRVBF, HDRL, and HDVL. Finally, the above 14 environmental variables
were selected as the environmental variables involved in the modelling (environmental
variables in bold in Table 1). To ensure consistency in the spatial resolution of the various
environmental variables, as well as to maintain good analytical and operational efficiency,
we employed the nearest neighbour method to resample the environmental variables to a
2 m spatial resolution. Figure 2 shows the main environmental variables in the study area.

2.4. Stacking Learning (SL)

Machine learning methods are widely used in digital soil mapping, but the dominant
approaches today use a single machine learning method to predict soil properties or types.
Ensemble learning is an important part of the machine learning field, which includes
three different methods, namely, bagging, boosting, and stacking learning techniques [32].
Stacking learning is a branch of ensemble learning. It was first proposed by Wolpert in
1992 [33]. It combines different base learners by constructing a meta-model, which can
be any type of model, e.g., decision tree, neural network, or linear regression. Typically,
stacking learning can achieve high accuracy because it has the advantage of combining
multiple base learners in a weighted way, which can compensate for the shortcomings of a
single base learner in model prediction and improve the overall prediction performance.
Figure 3 shows that stacking learning can achieve more accurate prediction results.
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2.4.1. Ranger

The Ranger model is a fast implementation of the random forest model, which is more
computationally efficient than traditional random forests. Ranger trains and analyses the
data using a large number of decision trees, and a subset of features is randomly selected
from the full set of features when training each tree [34]. Each tree is trained on a slightly
different set of data, and the final prediction is made by voting or averaging the predictions
from all of the decision trees. In this way, the model can handle a large number of features
and has good generalisation capabilities.

2.4.2. Rpart

The Rpart model generates a decision tree by recursively partitioning the data. At
each segmentation stage, the model searches for the split variables and the best split points
to minimise the uncertainty or variance of the target variables in the nodes. This process
continues until certain stopping criteria are met, such as the maximum depth of the tree
or a minimum number of samples per node [35]. A notable advantage of this model is its
ease of understanding and explanation. It allows for clear visibility into which features
are pivotal in the prediction process and how the values of these features impact the
predicted outcomes.

2.4.3. XGBoost

XGBoost uses a gradient boosting framework, developed by Tianqi Chen [36] in 2014.
In this framework, the model is improved incrementally by adding new decision trees, with
each new tree attempting to correct the prediction errors of the previous tree. This approach
helps the model to fit the data better and usually results in better prediction performance
than the decision trees alone. XGBoost makes many improvements on the basis of gradient
boosting, including regularisation, the parallelisation of computation, and the automatic
handling of missing values, in order to improve the accuracy and computational efficiency
of the model. In addition, the efficiency and flexibility of XGBoost make it a good choice
for large-scale data and complex prediction problems.

2.4.4. Model Parameter Setting

We used the stacking learning method to combine three base learners to construct
an ensemble learning model for predicting soil subgroups in the study area. The three
base learners are Ranger, Rpart, and XGBoost. We set the hyperparameters for each base
learner. The Ranger model adjusted the two parameters of mtry and num.trees; the Rpart
model used the default parameters; and the XGBoost model adjusted the five parameters
of booster, eta, max_depth, subsample, and colsample_bytree. The specific parameters
given to each base learner are shown in Table 2. The models were implemented in R
(version 4.0.2) [37] and RStudio (version 1.3.1093) [38] using the sl3 package [39]. The sl3
package implements the stacking learning algorithm proposed by van der Laan et al. [40].
It integrates a set of base learners and assigns the weights of each base learner by the
minimum risk value from cross-validation to obtain the optimal model. According to the
results of Van der Laan [40] and others, the algorithm is robust and the accuracy of the
results obtained is usually better than that of the best single base learner.
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Table 2. Specific parameters of the three base learners.

Base Learner Definition Hyperparameters Hyperparameter Values References

Ranger A fast implementation
of random forests

mtry 4
[34]num.trees 500

Rpart Recursive partitioning
and regression trees defaults - [35]

XGBoost
Extreme gradient

boosting

booster gbtree

[36]
eta 0.3

max_depth 6
subsample 1

colsample_bytree 1

2.5. Selection of Unlabelled Sample Points

We used the fuzzy c-means algorithm (FCM) for the cluster analysis of the environ-
mental variable factors. FCM was proposed by Dunn in 1973 [41]. Compared to traditional
clustering algorithms, the advantage of FCM is that it is not directly and rigidly assigned to
a particular clustering category; rather, the relationship between each data point and each
clustering category is expressed as a weight, which means it can be assigned to more than
one clustering result, giving the clustering results a high degree of robustness, especially
when there is noise in the data.

The FCM algorithm can control the extent of multiple clustering categories corre-
sponding to each data point by setting the degree of fuzziness. Among the many clustering
algorithms, the FCM algorithm has been widely and successfully applied. For example,
Li et al. [42] used FCM to classify annual mean soil temperatures at 20 cm from 141 ST
observation sites on the Tibetan Plateau from 1981 to 2020, and Peng et al. [43] used FCM to
map nine Danish terron classes. As soil types and landscapes are closely related, changes
in the landscape may reflect changes in soil types. When mapping soil types, the same
soil type often has the same landscape. The purpose of using FCM prior to applying the
semi-supervised classification method is to delineate a clustering result to determine the
location of the added unlabelled sample points in order to obtain more accurate map plot
boundaries for soil type mapping. In a similar study, Dunkl et al. [44] used environmental
variables to cluster the landscapes within the study area into spatial units and used them to
help delineate soil texture in predictive mapping.

We constructed the FCM using the geocmeans package [45] in R and determined the
clustering category to which each soil sample point belonged. We set the number of clusters
(k) from 10 to 20 with a step of 1, and the degree of fuzziness (m) from 1.1 to 2 with a step of
0.1. The maximum value of Silhouette was used to determine the corresponding values of k
and m (Figure 4), which ultimately determined k to be 17 and m to be 2. After merging the
areas where the patch area is less than 600 m2, we finally obtained 14 clustering categories
(Figure 5).

s(i) =
b(i)− a(i)
(a(i), b(i))

, (1)

where s(i) ranges from −1 to 1, a(i) denotes the similarity between object i and other
objects in the cluster, and b(i) denotes the similarity between object i and all objects in the
nearest cluster.

2.6. Semi-Supervised Classification (SSC)

Traditional digital soil mapping methods typically require a large amount of labelled
soil sample data, and the purpose of soil mapping is achieved by fitting the non-linear
relationship between environmental variables and soil samples [46]. However, collecting a
large number of soil samples requires significant human and material resources, as well as
considerable time. Semi-supervised classification, an important branch of machine learning,
is particularly effective for datasets with a small number of samples. This method relies
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on a limited amount of labelled data combined with self-training on unlabelled data. This
approach helps to address the challenge of small sample sizes and ultimately enhances the
predictive performance of the model [47]. Figure 6 shows that more accurate classification
boundaries can be obtained after adding unlabelled samples using clustering methods.
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soil samples; (b) more accurate boundary obtained by applying semi-supervised classification with
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variables for original soil sample locations. Red squares and circles indicate environmental variables
for unlabeled samples. White squares and circles indicate environmental variables at other locations.

We selected one unlabelled sample point every 100 m at 15 m intervals from the
boundary of each patch in the cluster map obtained using FCM and obtained a total
of 8703 unlabelled sample points. We used the random forest as a self-training learner
for semi-supervised classification by first training the labelled sample point data and
then predicting all unlabelled sample points. Then, the unlabelled sample points with a
confidence threshold of 0.9 were added to the training set and retrained to generate the
four models: SSC-SL, SSC-Ranger, SSC-Rpart, and SSC-XGBoost. The SSLR package [48]
was used to implement the semi-supervised classification models in R.

2.7. Model Prediction

The research method of this paper is as follows (Figure 7):

(1) Ranger, Rpart, and XGBoost were selected as the base learners to model and predict
the unlabelled data. The optimal tuning of the model hyperparameters and modelling
prediction on unlabelled data were carried out. Finally, the prediction results of each
of the three base learners were obtained.

(2) Using random forest as a meta-learner, the prediction results of the three base learners
were combined to obtain the stacking learning model.

(3) The cluster analysis of the environmental variables was performed using the FCM
model to generate a cluster map, and then the unlabelled dataset was selected near
the patch boundaries of the cluster map.

(4) An initial model was trained with labelled data and then the unlabelled dataset
was predicted.

(5) We established a confidence threshold range from 0.55 to 0.95, with increments of 0.05.
Within this range, we filtered the unlabelled datasets that met or exceeded a specific
confidence threshold and subsequently merged them with the labelled data.

(6) Steps 4–5 were repeated until no new data reached the preset confidence threshold,
and the final training set, extended by the semi-supervised classification method,
was obtained.

(7) The training set expanded by the semi-supervised classification method in the SL
model and its three base learners were remodelled to obtain the four models of SSC-SL,
SSC-Ranger, SSC-Rpart, and SSC-XGBoost, and the original four models (SL, Ranger,
Rpart, and XGBoost) were outputted for comparison.

(8) The soil map was predicted using eight models.



Remote Sens. 2024, 16, 405 12 of 20

Remote Sens. 2024, 16, 405 12 of 22 
 

 

We selected one unlabelled sample point every 100 m at 15 m intervals from the 
boundary of each patch in the cluster map obtained using FCM and obtained a total of 
8703 unlabelled sample points. We used the random forest as a self-training learner for 
semi-supervised classification by first training the labelled sample point data and then 
predicting all unlabelled sample points. Then, the unlabelled sample points with a confi-
dence threshold of 0.9 were added to the training set and retrained to generate the four 
models: SSC-SL, SSC-Ranger, SSC-Rpart, and SSC-XGBoost. The SSLR package [48] was 
used to implement the semi-supervised classification models in R. 

2.7. Model Prediction 
The research method of this paper is as follows (Figure 7): 

(1) Ranger, Rpart, and XGBoost were selected as the base learners to model and predict 
the unlabelled data. The optimal tuning of the model hyperparameters and model-
ling prediction on unlabelled data were carried out. Finally, the prediction results of 
each of the three base learners were obtained. 

(2) Using random forest as a meta-learner, the prediction results of the three base learn-
ers were combined to obtain the stacking learning model. 

(3) The cluster analysis of the environmental variables was performed using the FCM 
model to generate a cluster map, and then the unlabelled dataset was selected near 
the patch boundaries of the cluster map. 

(4) An initial model was trained with labelled data and then the unlabelled dataset was 
predicted. 

(5) We established a confidence threshold range from 0.55 to 0.95, with increments of 
0.05. Within this range, we filtered the unlabelled datasets that met or exceeded a 
specific confidence threshold and subsequently merged them with the labelled data. 

(6) Steps 4–5 were repeated until no new data reached the preset confidence threshold, 
and the final training set, extended by the semi-supervised classification method, was 
obtained. 

(7) The training set expanded by the semi-supervised classification method in the SL 
model and its three base learners were remodelled to obtain the four models of SSC-
SL, SSC-Ranger, SSC-Rpart, and SSC-XGBoost, and the original four models (SL, 
Ranger, Rpart, and XGBoost) were outputted for comparison. 

(8) The soil map was predicted using eight models. 

 
Figure 7. Overall framework of the research method. 

  

Figure 7. Overall framework of the research method.

2.8. Assessment of Model Accuracy

To assess the accuracy of the soil mapping, we randomly divided the soil sampling
points into two parts, selecting 70% of the soil sampling points as training sampling points
and 30% of the soil sampling points as validation sampling points. In this study, two
evaluation metrics were calculated for 100 repeats of 5-fold cross-validation to analyse the
model performance: overall accuracy (OA) and kappa coefficient. Higher values of OA
and kappa coefficient indicate better classification.

2.9. Importance Analysis of Environmental Variables

In order to explore the importance of each environmental variable in each model, by
removing an environmental variable and keeping the remaining environmental variables
unchanged, the difference in the negative log-likelihood obtained by removing the variable
and not removing the variable was compared, with a larger difference indicating that the
variable was more important in the model’s predictions.

3. Results
3.1. Prediction Accuracy of Different Models

Through the validation of 52 sampling points, the accuracy of eight different models
was assessed, yielding overall accuracy (OA) and kappa coefficients for each (as shown
in Figures 8 and 9). Figures 8 and 9 demonstrate that the SSC-SL model, integrating
semi-supervised and stacking learning methods, achieved the best predictive performance
among the eight models. The SSC-SL model’s optimal OA and kappa were 0.77 and 0.73,
respectively, surpassing the three base models (Ranger, Rpart and XGBoost) by margins
of 2.8%, 21.1%, and 2.8% for OA, and 3.0%, 25.8%, and 3.0% for kappa. Within the
SL model’s base learners, the performance ranking from highest to lowest was Ranger,
XGBoost, and Rpart. The SL model, by combining the strengths of these three base learners,
achieved superior predictive performance with OA and kappa coefficients of 0.71 and 0.66,
respectively. The OA of the SL model exceeded the three base learners by 2.8%, 21.1%, and
2.8%, while its kappa coefficients were 4.7%, 4.7%, and 36.7% higher.
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When integrated with semi-supervised classification methods, the models SSC-SL, SSC-
Ranger, and SSC-XGBoost consistently outperformed their counterparts SL, Ranger, and
XGBoost across various threshold settings in terms of predictive effectiveness. However,
at thresholds between 0.55 and 0.7, the performance of SSC-Rpart was lower than that of
the Rpart model. The optimal confidence level for SSC-SL, SSC-Ranger, and SSC-XGBoost
was 0.9, while for SSC-Rpart, it was 0.85. At these optimal thresholds, the predictive
performances of SL and the three base learners improved to some extent.

When SSC-SL, SSC-Ranger, SSC-Rpart, and SSC-XGBoost were set at their optimal
confidence thresholds, their overall accuracy (OA) rates improved by 7.8%, 2.8%, 9.7%, and
5.5%, respectively, compared to scenarios where semi-supervised classification methods
were not integrated. The kappa coefficients also showed enhancements of 9.6%, 3.0%,
12.5%, and 7.2%, respectively. In terms of the enhancement of predictive accuracy, the
SSC method’s effectiveness for various foundational learners was ranked from highest to
lowest as Rpart, SL, XGBoost, and Ranger. The SSC-SL model, in particular, offered the
most consistent high-precision predictions, proving to be a viable approach for improving
the accuracy of digital soil mapping.
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3.2. Spatial Distribution of Soil Subgroups

Figure 10 presents the soil maps generated by SL, Ranger, Raprt, and XGBoost, and
their semi-supervised counterparts SSC-SL, SSC-Ranger, SSC-Raprt, and SSC-XGBoost at
their respective optimal confidence threshold. We can see that the soil maps generated
by the different models are generally consistent. Lithic Udi-Orthic Primosols are found
at the summit of Gaoli Mountain in the northeastern part of the study area, where the
higher elevation and weaker soil development led to the formation of this soil subgroup.
As the elevation decreases, the soil develops gradually and Typic Hapli-Udic Cambosols
are formed on the upper and middle slopes of Gaoli Mountain, which are also distributed
in small quantities in the upper regions of other hills in the study area. Red Ferri-Udic
Cambosols and Red Ferri-Udic Argosols are also formed in the middle and lower parts
of the southern slope of Gaoli Mountain, which are two subgroups of soils formed by the
weak and strong development of the Quaternary red clay. In the inter-slope valleys of the
study area, Endogleyic Fe-accumuli-Stagnic Anthrosols and Typic Fe-accumuli-Stagnic
Anthrosols have been formed due to the long-term artificial cultivation of rice. The bottom
of the Endogleyic Fe-accumuli-Stagnic Anthrosols is affected by groundwater and remains
in a reduction state all year round, and its distribution area is more low-lying than Typic
Fe-accumuli-Stagnic Anthrosols. A small amount of Typic Purpli-Udic Cambosols is found
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in the central part of the study area, and this small area of soil is due to soil parent material.
The formation of Mottlic Hapli-Udic Argosols requires some accumulation of soil clay
particles and redox reactions within the soil layer. This means that a combination of
groundwater and surface water infiltration is required, which is why this soil subgroup
is mainly found in arid areas on the lower and middle parts of slopes. Typic Hapli-Udic
Argosols do not require redox reactions within the soil layer and are therefore mainly found
in dryland areas in the upper and middle parts of slopes. Typic Claypani-Udic Argosols
have a smaller area and are mainly interspersed between Mottlic Hapli-Udic Argosols and
Typic Hapli-Udic Argosols.
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Comparing the distribution of soil subgroups obtained by three learners and the SL
method, we can observe that the distribution of soil types obtained by the SL method is more
reasonable compared to the base learners. Additionally, the soil subgroup distributions
obtained using the Ranger and XGBoost methods are notably superior to those obtained
using Rpart. For instance, in the Rpart model, the distribution of Typic Claypani-Udic
Argosols is excessively broad, whereas in Ranger and XGBoost, it is more constrained,
and SL presents a more accurate range. Similarly, while the Rpart model fails to predict
Red Ferri-Udic Argosols correctly, SL, integrating the strengths of Ranger, XGBoost, and
Rpart, achieves accurate predictions of this soil type. Additionally, soil spatial distributions
derived from the same category of machine learning methods exhibit similar characteristics,
as evidenced by the notable similarity between Ranger and SSC-Ranger compared to
Rpart and XGBoost. Moreover, machine learning models employing semi-supervised
classification methods reveal more detailed content at the boundaries of soil category
distributions, aligning more closely with the actual subgroup distributions. For instance,
SSC-SL builds upon the foundation of SL by providing a clearer delineation of the details
of Endogleyic Fe-accumuli-Stagnic Anthrosols. It more accurately depicts the spatial
distribution characteristics of this soil type compared to SL.

3.3. Importance Analysis of Environmental Variables

Figure 11 shows the importance ranking of each environmental variable for SL, Ranger,
Raprt, and XGBoost and their semi-supervised counterparts, SSC-SL, SSC-Ranger, SSC-
Raprt, and SSC-XGBoost at their respective optimal confidence threshold. As can be seen
from Figure 11, the importance ranking of each model did not change much after the
addition of the semi-supervised classification method. There were only a few changes in
the ranking positions of the importance ranking of each environmental variable.
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SPM, LU, MRVBF, and Ele have high importance rankings in each of the eight models.
SPM is the basis of soil formation and is the first influence on soil formation. For instance,
it can be employed here to distinguish between Red Ferri-Udic Cambosols, Red Ferri-
Udic Argosols, Typic Purpli-Udic Cambosols, and other types of soils. LU identifies soil
subgroups by the difference in the type of land use in which they are located. For example,
Endogleyic Fe-accumuli-Stagnic Anthrosols and Typic Fe-accumuli-Stagnic Anthrosols
are generally found in paddy fields, while Typic Hapli-Udic Argosols are found in dry
lands or forested areas. MRVBF and Ele reflect the changes in the soil subgroups from
the perspective of terrain variation. For instance, Typic Hapli-Udic Cambosols and Lithic
Udi-Orthic Primosols exhibit distinct characteristics: the former shows lower MRVBF
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values and higher Ele values, while the latter demonstrates higher MRVBF values and
lower Ele values.

4. Discussion

In this study, we innovatively apply the combination of semi-supervised classification
and stacking learning methods in a model named SSC-SL for predicting soil types. Our
results demonstrate that the SSC-SL model outperforms seven other methods in terms
of prediction accuracy. In particular, the combination of SL and SSC-SL assembles their
respective base learners and leverages their strengths to achieve a higher prediction ac-
curacy. This finding aligns with the research outcomes of Taghizadeh-Mehrjardi and Tao
et al., who asserted that SL can achieve a higher level of accuracy than any single base
learner [19,49]. Other researchers, such as Amin Sharififar et al. [50] created a soil map
for the North Bikomi District in North Central Timor, East Nusa Tenggara Province, us-
ing only KNN, RF, and SVM to compare their OA, which ranged between 0.55 and 0.75.
Tarek Assami et al. [51] produced a soil map for the Zeb El Gherbi region in the southern
piedmont of the Saharan Atlas Mountains in Southeast Algeria, employing six machine
learning models: bagged classification tree, random forest, linear support vector machines,
radial basis support vector machines, single-hidden-layer neural networks, and multilayer
perceptron neural network. They compared their kappa coefficients, which varied from
0.38 to 0.47. The accuracy of their cartographic results was largely dependent on the chosen
machine learning models.

Furthermore, the SSC-Ranger and SSC-XGBoost models demonstrate overall consistent
predictive performance, characterised by an initial increase followed by a decrease as the
confidence level rises, peaking at optimal predictive efficiency when the confidence level
reaches 0.9. The predictive capabilities of both the SSC-Ranger and SSC-XGBoost models are
enhanced across various confidence levels via semi-supervised classification methods, albeit
to varying degrees. The SSC-Ranger model exhibits a smaller extent of improvement in
predictive performance. Numerous studies have shown that Ranger is a relatively accurate
model, making significant precision improvements in SSC-Ranger challenging. This aligns
with the findings by Zhang et al. [20] regarding the performance of random forests in
semi-supervised classification models. On the other hand, the predictive performance of
SSC-XGBoost is comparable to SSC-Ranger, possibly due to SSC-XGBoost’s higher accuracy
in the unlabelled dataset compared to Ranger, which contributes to its more substantial
precision enhancement. Meanwhile, the SSC-Rpart model outperforms the Rpart model in
predictive accuracy at confidence levels ranging from 0.7 to 0.9, while it underperforms at
confidence levels between 0.55 and 0.7. This could be attributed to the relative simplicity
of the Rpart model and its lower predictive precision. At lower confidence levels, the
generated unlabelled dataset has lower accuracy, leading to the inclusion of a significant
amount of incorrect pseudo-label data, resulting in a decline in predictive performance,
even falling below that of the Rpart model itself. Additionally, due to the lower accuracy of
the Rpart model, SSC-Rpart is likely to achieve a greater degree of precision improvement at
the optimal threshold. SSC-SL maintains a stable enhancement in predictive performance
across various confidence levels. SSC-SL is a robust model that combines the features
of SSC-Ranger, SSC-Rpart, and SSC-XGBoost, effectively mitigating the risk of reduced
predictive performance experienced when using a single model, such as the SSC-Rpart.
Additionally, by comparing the overall accuracy (OA) and kappa coefficients of various
models across 100 repeated trials, we observe that the SSC-SL, SSC-Ranger, SL, and Ranger
models demonstrate relatively lower uncertainty. In contrast, the SSC-Rpart, SSC-XGBoost,
Rpart, and XGBoost models exhibit comparatively higher uncertainty. This suggests that
the Ranger model is relatively robust. Similarly, the SL model, which integrates three basic
learners including Ranger, is also exceptionally robust. In summary, the SSC-SL model
combines multiple base learners and effectively utilises a significant amount of unlabelled
data, addressing the issue of low predictive accuracy and limited soil sample data in the
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digital soil mapping process. It can serve as an effective method to enhance the accuracy of
digital soil mapping predictions.

According to the spatial distribution maps of soil subgroups, we can see that the
overall distribution range of Fe-accumuli-Stagnic Anthrosols (Typic Fe-accumuli-Stagnic
Anthrosols and Endogleyic Fe-accumuli-Stagnic Anthrosols) is essentially consistent across
all models. These soils are typically located in paddy field areas, whereas Typic Hapli-
Udic Argosols are found in dry or forest lands. This underscores the necessity of remote
sensing data, particularly land use data, in determining the distribution ranges of these
soil types. Similarly, remote sensing data, in conjunction with topographic data, plays
a crucial role in distinguishing Typic Hapli-Udic Cambosols from other soil types. For
instance, Typic Hapli-Udic Cambosols are mainly distributed in composite areas of arbour
forest land and the mid-slopes of Gaoli Mountain. Additionally, soil parent material affects
the distribution of Red Ferri-Udic Argosols, Red Ferri-Udic Cambosols, Typic Purpli-Udic
Cambosols, and other soils. Notably, Red Ferri-Udic Argosols and Red Ferri-Udic Cam-
bosols are influenced by both soil parent material and topographic location. Topographic
variation is also significant in differentiating Typic Fe-accumuli-Stagnic Anthrosols and
Endogleyic Fe-accumuli-Stagnic Anthrosols. This indicates that soil types are influenced
or characterised by multiple factors, with remote sensing data, soil parent material, and
topographic elements all playing key roles. It is worth noting that the Rpart model showed
the lowest prediction accuracy for Typic Udi-Orthic Primosols, failing to adequately depict
their spatial distribution, unlike other models. This may be due to the stony soils being
primarily influenced by topographical factors, predominantly located at the top of Gaoli
Mountain. The Rpart model, being relatively simplistic, struggles to depict the spatial distri-
bution of soil types formed under these extreme conditions with the existing environmental
variables. In contrast, all models showed high prediction accuracy for Typic Purpli-Udic
Cambosols, as their distribution within the study area is solely influenced by soil parent
material, which is well represented in existing soil parent material maps. Additionally,
the prediction accuracy for Fe-accumuli-Stagnic Anthrosols (Typic Fe-accumuli-Stagnic
Anthrosols and Endogleyic Fe-accumuli-Stagnic Anthrosols) was also high due to their
distribution in paddy fields being well represented in current land use maps, highlighting
the potential of remote sensing data in effectively identifying certain soil types.

5. Conclusions

This study successfully developed and evaluated the SSC-SL model, integrating SSC
with SL using foundational learners Ranger, Rpart, and XGBoost, combined with FCM for
selecting unlabelled samples. The results indicate the following:

1. The SSC-SL model exhibits robust performance in soil classification mapping, signif-
icantly enhancing prediction accuracy. By incorporating unlabelled sample points
through the SSC approach and leveraging the compounded strengths of individual
models in the SL framework, the SSC-SL model effectively addresses the limitations
of the prediction degradation caused by the selection of a simple machine learn-
ing model.

2. The soil subgroup spatial distribution maps generated by the SSC-SL model are more
rational, improving upon the spatial distribution ranges of different soil types in the
foundational models. This model also offers a clearer depiction of details.

3. SPM, LU, MRVBF, and Ele consistently rank as highly important in all eight models,
indicating that they are the primary environmental variables influencing the soil types
in the study area.
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