
Citation: Shao, C.; Nerger, L. The

Impact of Profiles Data Assimilation

on an Ideal Tropical Cyclone Case.

Remote Sens. 2024, 16, 430. https://

doi.org/10.3390/rs16020430

Academic Editors: Gang Zheng and

Yuriy Kuleshov

Received: 6 November 2023

Revised: 22 December 2023

Accepted: 17 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Communication

The Impact of Profiles Data Assimilation on an Ideal Tropical
Cyclone Case
Changliang Shao 1,2,* and Lars Nerger 2

1 China Meteorological Administrator Meteorological Observation Centre, Beijing 100081, China
2 Alfred-Wegener-Institute, Helmholtz-Zentrum für Polar-und Meeresforschung (AWI),

27570 Bremerhaven, Germany; lars.nerger@awi.de
* Correspondence: shaocl@cma.gov.cn

Abstract: Profile measurements play a crucial role in operational weather forecasting across diverse
scales and latitudes. However, assimilating tropospheric wind and temperature profiles remains
a challenging endeavor. This study assesses the influence of profile measurements on numerical
weather prediction (NWP) using the weather research and forecasting (WRF) model coupled to the
parallel data assimilation framework (PDAF) system. Utilizing the local error-subspace transform
Kalman filter (LESTKF), observational temperature and wind profiles generated by WRF are as-
similated into an idealized tropical cyclone. The coupled WRF-PDAF system is adopted to carry
out the twin experiments, which employ varying profile densities and localization distances. The
results reveal that high-resolution observations yield significant forecast improvements compared to
coarser-resolution data. A cost-effective balance between observation density and benefit is further
explored through the idealized tropical cyclone case. According to diminishing marginal utility and
increasing marginal costs, the optimal observation densities for U and V are found around 26–27%.
This may be useful information to the meteorological agencies and researchers.
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1. Introduction

Profile observations have gained considerable attention in recent years for their po-
tential to enhance the performances of atmospheric models and weather forecasting for
the deeply developed weather systems, e.g., the tropical cyclones. These profiles can be
derived from various remote-sensing instruments, including radiosondes, dropsondes,
wind profiler radar, ground and space-based lidars, and microwave radiometers. Assimi-
lating profiles into atmospheric models using techniques like ensemble Kalman filtering
(EnKF) has shown a significant impact on improving the accuracy and performance of
global models [1], mesoscale models [2], and even small-scale models [3]; however, the
solution for mitigating typhoon disasters through the use of these models, considering the
observation cost and forecast benefit, is still under-explored. Therefore, the cost accounting
of profile observations used to improve numerical forecasting is of great significance for
both practical numerical weather forecasting and observation network construction.

Data assimilation (DA) plays a pivotal role in enhancing the accuracy and reliability
of numerical weather prediction (NWP) models. It serves as the bridge between model
simulations and real-world observations, elevating the accuracy, skill, and reliability of
atmospheric simulations. DA has wide-ranging applications, including weather forecasting,
climate studies, and environmental assessments [4,5]. NWP model outputs have witnessed
continuous improvements, owing in part to advancements such as more precise initial
states, an increased volume of observations, enhanced utilization of DA, and improved
background fields.

The assimilation of profiles has shown positive impacts on weather forecasting, partic-
ularly in enhancing short-term forecasts. This assimilation plays a crucial role in capturing
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mesoscale weather phenomena, such as convective systems, thunderstorms, and localized
rainfall patterns. It contributes to a more accurate representation of atmospheric processes,
thereby improving the overall skill of weather forecasts, especially in regions with lim-
ited traditional observations [6]. Assimilating profiles provides a better understanding of
the vertical structure of the atmosphere, facilitating accurate estimations of temperature,
wind, and other variables’ vertical distributions. Thus, it is of benefit for the analysis of
atmospheric stability [7]. The real-time assimilation of profiles enables timely updates of
atmospheric models, improving nowcasting and short-term forecasts [8]. This capabil-
ity allows models to capture rapidly changing atmospheric conditions, providing crucial
information for severe weather events and rapid weather developments [9].

Tropical cyclones exhibit increasing nonlinearity and dynamic instability in high-
resolution models. Thus, it is essential to optimize the accuracy of forecasts through
improved data assimilation. At the same time, the scarcity of real profile observations over
the ocean results in significant challenges when evaluating assimilation results in oceanic
regions. A comparison of the relative impacts of ocean-surface wind measurements and
three-dimensional profiles on hurricane forecasts highlights the advantages of 3D wind
measurements [10]. The different effects of assimilating only temperature, only winds,
and both data types of temperature and wind observations in tropical regions concerning
the background state in a perfect model have been explored [11]. However, due to cost
limitations and practical constraints, the number of profile instruments cannot be infinite.
Consequently, determining a cost-effective profile density that strikes a balance between
construction costs and the error reduction benefits from assimilation effects becomes
a crucial area of study. Simultaneously, the reduction in errors in data assimilation is
influenced not only by profile density but also by the localization radius. In practical
applications, a tuned localization radius of 1000 km is common for global modeling and
data assimilation systems. However, for convective weather systems employing high-
resolution models and observations, a much shorter radius of 10 km has been found to
be more suitable [12]. Nevertheless, real-data experiments conducted by Dong et al. [13]
indicated that a smaller localization radius is necessary to achieve a better analysis accuracy
with denser observing networks. Periáñez et al. [14] derived an optimal localization
radius through high-level heuristic arguments, assuming a uniform observing network,
and they also recommend using a smaller localization radius for denser observations.
These studies suggest a potentially intricate relationship between observing networks and
localization radii.

To solve the consideration of both the observation cost and forecast benefit within data
assimilation during the numerical forecast for mitigating typhoon disasters, this research
aims to find a possibly resolved cost-effective profile density, that is an optimal density
based on the relationship between the localization radius and the error reduction. The local
error-subspace transform Kalman filter (LESTKF) [15] is applied for assimilating profile data
into an atmospheric model named WRF-PDAF, which couples the WRF model [16] with
a PDAF system (http://pdaf.awi.de, last accessed: 21 February 2023) [17]. The flowchart
for this study is illustrated in Figure 1. This study conducts idealized case experiments
to analyze assimilation results, with a primary focus on the online assimilation of profile
data. In comparison to prior research, this study evaluates and contrasts the influence of
assimilating profiles containing temperature (T), zonal wind (U), and meridional wind (V)
at different densities on tropical cyclones. Additionally, twin experiments are performed
with varied observation localization radii, aiming to identify the optimal localization
radius for each observation density. Drawing on economic theories such as diminishing
marginal utility [18] and increasing marginal costs [19], the study discusses and provides
recommendations for achieving cost-effective profile density.

http://pdaf.awi.de
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The subsequent sections of this study are structured as follows: Section 2 introduces
the DA system setup and ensemble filters used for DA. Section 3 provides details of the
experimental design for the idealized case studies. Section 4 presents the results, with
a focus on profiles assimilated with different densities and selected localization radii.
Section 5 offers a discussion and concludes the study.

2. Methodology

The main numerical model and assimilation method for solving the cost-effective
profile density mainly includes WRF-PDAF, LESTKF, and the profile observation operator.
The EnKF technique is a DA method that leverages an ensemble of model states and
observations to update the model state variables. In this section, we introduce the WRF-
PDAF model, LESTKF assimilation scheme, and the profile observation operators.

2.1. WRF-PDAF

The WRF model [16] is a widely used numerical weather prediction system known
for its modular structure, allowing customization for specific research or operational
forecasting objectives. The parallel data assimilation framework (PDAF) [17] offers a
generic framework encompassing fully implemented and parallelized ensemble filter
algorithms like LETKF, LESTKF, NETF, and LKNETF, along with related smoothers. PDAF
facilitates model parallelization for parallel ensemble forecasts and includes routines for
parallel communication between the model and filters. To introduce data assimilation
capabilities, PDAF is integrated into the existing WRF framework.

WRF-PDAF, as developed by Shao and Nerger [20], couples WRF-ARW version 4.4.1
with PDAF to enable data assimilation. This coupling allows for the assimilation of profile
data into WRF to enhance its initial conditions and, consequently, improve forecasts [21].
WRF-PDAF employs an online coupling strategy for data assimilation, utilizing a fully
parallel structure. Sufficient processes are employed to run the data assimilation program
concurrently with all ensemble states, ensuring each model task integrates only one model
state, and the model consistently advances in time. This approach ensures high-efficiency
data assimilation.

2.2. LESTKF

The LESTKF has found application in diverse studies involving the assimilation of
satellite data into atmosphere, ocean, atmosphere–ocean coupled models, and hydrolog-
ical models [22–25]. The LESTKF represents an efficient formulation of the EnKF and is
introduced here to discuss the particularities of DA concerning the ensemble filter.

In the mathematical framework, each state vector is represented as X f , transforming
model fields into a one-dimensional vector. The analysis in Equation (1) transforms the
forecast ensemble X f , consisting of Ne model states, into the analysis ensemble Xa:

Xa = X f
(

w1T
Ne

+
∼
W

)
+

∼
x

f
1T

Ne
(1)



Remote Sens. 2024, 16, 430 4 of 13

Here,
∼
x

f
is the forecast ensemble mean state and 1T

Ne
is the transpose of a vector of size Ne

holding the value one in all elements. w is a vector of size Ne, which transforms the ensemble

mean, and
∼
W is a matrix of size Ne × Ne, which transforms the ensemble perturbations:

w = TA(HX f T)
T

R−1(y − H
∼
x

f
) (2)

∼
W =

√
Ne − 1TA1/2TT (3)

A is a transform matrix in the error subspace.

A−1 = α(Ne − 1)I +
(

HX f T
)T

R−1HX f T (4)

α is the forgetting factor [26] used to inflate the ensemble to avoid underestimation of
the forecast uncertainty. It leads to an inflation of the variance by 1/α. The forecast ensemble
represents an error subspace of dimension Ne − 1, and the ensemble transformation matrix
and vector are computed in this subspace. Practically, one computes an error-subspace
matrix by L = X f T, where T is defined by Equation (5):

Tj,i =


1 − 1

Ne
1

1√
Ne

+1
f or i = j, j < Ne

− 1
Ne

1
1√
Ne

+1
f or i ̸= j, j < Ne

− 1√
Ne

f or i = Ne

(5)

H is the observation operator. R is the observation error covariance matrix. The matrix
A1/2 is computed using the eigenvalue decomposition of A−1. A1/2 and A are computed
using Equations (6)–(8):

USUT = A−1 (6)

A = US−1UT (7)

A1/2 = US−1/2UT (8)

where U and S denote the matrices of eigenvectors and eigenvalues.
The update on each grid point of the model is independent through a local analysis

step. Observation localization is conducted based on horizontal and vertical influence radii
when updating a grid point. Additionally, each observation is weighted according to its

distance from the grid point [27], resulting in individual transformation weights w and
∼
W

for each local analysis domain.

2.3. Profile Observation Operators

Observation operators are employed to transform model variables into observation
space, effectively computing the model equivalent of actual observations. In the context of
profile data, the operators for temperature (T), zonal wind (U), and meridional wind (V)
act directly on the model grid locations without any interpolations. Each profile comprises
a vertical column of observations located on grid points, and each observation includes the
three variables T, U, and V.

3. Experimental Design

Assimilation experiments considering both the observation cost indicated by the
observation density and the model benefit indicated by the assimilation error reduction
have been conducted, focusing on an ideal case. In this section, we outline the experimental
design for conducting assimilation experiments with the WRF-PDAF model and describe
the specifics of this ideal case, the twin experiments involving various profile densities and
localization distances, and the objectives of these experiments.
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3.1. Setup of the Twin Experiment

Tropical cyclones, known as hurricanes or typhoons, are formidable meteorological
phenomena that originate over warm equatorial ocean waters. These powerful storms
draw energy from the latent heat released as moist air rises and condenses into clouds
and precipitation. Their rotation is influenced by the Coriolis effect, with the direction
of spin determined by the hemisphere in which the cyclone forms. Given the severe
impacts of tropical cyclones on coastal regions and infrastructure, accurate forecasting
and monitoring are essential for mitigating their effects. For this study, we employ an
idealized tropical cyclone case provided by the weather research and forecasting (WRF)
model. This case serves as a simplified representation of real-world atmospheric conditions
and offers a controlled environment for evaluating data assimilation methods through
identical twin experiments.

The model domain spans 3000 km× 3000 km× 25 km, containing 200× 200× 20 grid points.
The horizontal grid spacing is set at 15 km, and the vertical grid spacing is 1.25 km. The
simulation covers a six-day period, starting from 1 September, at 00:00 UTC (010000), and
concluding on 7 September, at 00:00 UTC (070000). The model time step is configured
as 60 s. The initial state is characterized by motionlessness (u = v = 0) and horizontal
homogeneity, except for the inclusion of an analytic axisymmetric vortex in hydrostatic and
gradient-wind balance. Furthermore, periodic lateral boundary conditions are applied. The
simulation employs the Kessler microphysics scheme and the YSU boundary-layer physics,
with no utilization of radiation schemes. In the LESTKF method, an adaptive scheme [28]
is adopted for the forgetting factor. Observation errors are assigned for temperature
(T), horizontal wind (U), and vertical wind (V) at values of 1.2 K, 1.4 m/s, and 1.4 m/s,
respectively, following Li et al. [11].

The true atmospheric state, encompassing temperature and wind fields, is derived
from a forward run of the model and serves as the known reference for comparison with the
assimilation results. This “truth” state is used to generate synthetic observations. A control
state is separately generated from 3 September, at 12:00 UTC (031200), to 7 September, at
00:00 UTC (070000). This control state is generated with identical initial fields as those used
for the true state. Thus, the control and true states are identical in all aspects except for
their respective start times. The control simulation provides the initial state estimate for the
subsequent data assimilation.

Synthetic observations are generated from the true state starting from 040800 and
concluding at 051400, with hourly intervals. These observations include horizontal wind
components (U and V) and temperature (T), and they are generated at all grid points within
the model domain. Gaussian noise, with observation-error standard deviations, is added
to all these synthetic observations.

In the twin experiments, an initial perturbation is introduced into the control state at
031200 to generate 40 ensemble members. This ensemble undergoes a 20 h spin-up period.
Subsequently, observations are assimilated hourly into the ensemble during the analysis
period from 040800 to 051400. Finally, an ensemble forecast is conducted without further
assimilation from 051400 to 070000.

3.2. Experimental Design for the Cost-Effective Balance

The experimental design for data assimilation involves the incorporation of synthetic
profile data into the WRF model. The impact of assimilating these observations on the
model’s representation of atmospheric variables, including temperature (T), horizontal
wind (U), and vertical wind (V), is assessed through a comparison between the assimilated
and true states. By conducting these experiments within an idealized setting, we aim
to evaluate the performance and effectiveness of the WRF-PDAF system in assimilating
observations and improving the model’s representation of atmospheric variables. To
achieve the most cost-effective balance, we need to determine the appropriate localization
distance and profile density.
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Two single runs are utilized to generate the true state (Experiment 4, ‘True’) and the
control state (Experiment 5, ‘CTRL’), as outlined in Section 3.1. These distinct states serve
as the foundation for further analysis and experimentation in this study. To establish the
initial ensemble, perturbations are introduced to the initial control state using second-order
exact sampling [26] based on the model variability observed in hourly snapshots from
010000 to 031200. The central state is set to the control state at 031200. Subsequently, a
free ensemble run involving 40 members (Experiment 6, ‘ENS’) is conducted. The purpose
of this ensemble run is to generate a collection of model states encompassing a range of
potential variations and uncertainties. The same initial ensemble members are employed
in the assimilation experiments. Building on the results of the ensemble run, assimilation
experiments are carried out using profiles from 30 analysis cycles.

In this study, we consider the localization radius and profile densities as key factors for
determining the most cost-effective profile density. Various localization radii are examined,
including 0dx, 3dx, 5dx, 10dx, 20dx, and 30dx, where dx represents the grid distance in
the x-direction (set at 15 km), with the grid distance in the y-direction also equal to dx.
The profile density is determined based on the placement of observations. When observa-
tions are located on all grid points, the density is defined as 100%. Consequently, when
observations are placed at every 2 grid points in both the x and y directions, the density
is 25%. Observations at every 3 grid points in both directions result in a density of 1/9,
approximately 11.1%. Similarly, observations at every 5 grid points in both directions yield
a density of 4%, while observations at every 10 grid points in both directions correspond
to a density of 1%. Assimilation experiments are conducted using profiles with different
densities, including 100%, 25%, 11.1%, 4%, and 1%. Various experiments assimilating U,
V, and T variables with different localization radii and densities, as listed in Table 1, are
performed to evaluate the impact of assimilating observations from profiles with different
densities on the model state. The aim of these tests is to select the most suitable profile
density that achieves the most cost-effective balance.

Table 1. The design for localization radii and profile densities.

Exp Name Member(s) Profile Density (%) Localization (km) DA-Cycle (s)

1 True 1 - - -
2 CTRL 1 - - -
3 ENS 40 - - -
4 D100L0 40 100 0dx 30
5 D100L3 40 100 3dx 30
6 D100L5 40 100 5dx 30
7 D100L10 40 100 10dx 30
8 D25L0 40 25 0dx 30
9 D25L3 40 25 3dx 30

10 D25L5 40 25 5dx 30
11 D25L10 40 25 10dx 30
12 D11L0 40 11.1 0dx 30
13 D11L5 40 11.1 5dx 30
14 D11L10 40 11.1 10dx 30
15 D11L20 40 11.1 20dx 30
16 D4L0 40 4 0dx 30
17 D4L5 40 4 5dx 30
18 D4L10 40 4 10dx 30
19 D4L20 40 4 20dx 30
20 D1L0 40 1 0dx 30
21 D1L5 40 1 5dx 30
22 D1L10 40 1 10dx 30
23 D1L20 40 1 20dx 30
24 D1L30 40 1 30dx 30
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4. Results and Analysis
4.1. Relationship between Localization Radii and Observation Densities

Figure 2 shows the RMSEs of U and V from 031200 to 070000 using different obser-
vation densities and localization radii. With fixed observation errors, a sparser observing
network (the density less than 4%) favors a larger localization radius to achieve the best
filter performance, and a denser network favors a smaller localization radius, which is
consistent with findings from the study of Ying et al. [29]. It is worth noting that the
optimal localization radii for the different densities are not the smallest when the density is
greater than 11.1%. Furthermore, in time series, the RMSEs reached the minimum value
at 051400, and no significant improvement was observed thereafter during the analysis
period. Therefore, RMSEs at 051400 are also selected to find the optimal localization radii.
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In our study, we firstly focus on determining the optimal localization radius in data
assimilation (DA) for different observation densities, as this plays a critical role in DA
effectiveness. We use the root-mean-square error (RMSE) as a key metric to evaluate
the performance of different combinations of localization radii and observation densities.
Table 2 shows the RMSEs for the temperature (T) and horizontal wind components (U
and V) at a specific time (051400) for various experiments listed in Table 1. The RMSEs for
the ensemble forecast (ENS) are consistently lower than those for the control run (CTRL)
based on the true state (True). This suggests that the ensemble approach itself improves the
accuracy of the model prediction, and the ensemble mean provides an accurate forecast.
When assimilating U, V, and T data, the RMSEs are generally lower than those of ENS.

Table 2. The RMSEs of T, U, and V for experiments in Table 1 at 051400. The numbers in bold
represent the smallest values in each density group.

Exp Name RMSE_T (K) RMSE_U (m/s) RMSE_V (m/s)

1 True - - -
2 CTRL 1.112 1.929 2.063
3 ENS 0.939 1.799 1.910
4 D100L0 0.185 0.294 0.294
5 D100L3 0.145 0.233 0.234
6 D100L5 0.148 0.229 0.230
7 D100L10 0.251 0.337 0.337
8 D25L0 0.430 0.553 0.567
9 D25L3 0.249 0.361 0.389
10 D25L5 0.239 0.339 0.361
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Table 2. Cont.

Exp Name RMSE_T (K) RMSE_U (m/s) RMSE_V (m/s)

11 D25L10 0.273 0.361 0.371
12 D11L0 0.583 0.790 0.811
13 D11L3 0.310 0.418 0.450
14 D11L5 0.285 0.393 0.418
15 D11L10 0.300 0.396 0.409
16 D4L0 0.765 1.21 1.26
17 D4L5 0.381 0.468 0.501
18 D4L10 0.353 0.454 0.471
19 D4L20 0.405 0.513 0.522
20 D1L0 0.895 1.617 1.709
21 D1L5 0.673 0.710 0.727
22 D1L10 0.566 0.580 0.611
23 D1L20 0.481 0.563 0.579
24 D1L30 0.486 0.666 0.677

Figure 3 displays the values listed in Table 2. These experiments include the control
run (CTRL), ensemble forecast (ENS), and different DA experiments with varying local-
ization radii (D) and observation densities (L). This figure shows the relationship between
assimilating different observation densities and RMSE in the case of variable influence
radius. This figure proves that the value we selected from Table 2 is indeed the smallest.
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4.2. The Most Cost-Effective Balance

The lowest RMSEs are selected from Table 2 for each combination of observation
densities. Then, the relationships between RMSEs for T, U, V, and observation densities are
shown in Figure 4. These relationships are characterized by high correlation coefficients, as
indicated by all the coefficients of determination (R2) exceeding 0.99.
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To identify the most cost-effective balance between observation density (x) and bene-
fit/cost, we introduce two essential functions: the benefit function f (x) and the cost function
g(x). Here are two key assumptions and steps for finding the most cost-effective balance:

• The cost is defined as the deployment of observations. The cost function is defined as
the linear relationship between the cost and density, i.e., g(x) = x. Thus, the total cost
of fully deploying observations at 100% density is considered 100%, and no cost if no
deployment (0 density).

• The benefit is defined as the property saved due to the reduction in the RMSE. Here, the
total property can be saved is defined as a. The relationship between the property saved
and the RMSE reduction in wind is linear [30,31]. The RMSE–density relationship
follows Figure 4 and is denoted as r(x). Therefore, the relationship between the benefit
and density is f (x) = a − r(x), representing the benefit function. Thereby, when
density is 100%, the benefit is a. Conversely, when density is 0, the benefit is 0.

Based on these assumptions and economic theories like diminishing marginal util-
ity [18] and increasing marginal costs [19], the most cost-effective balance is reached when
the reduction rate of the benefit function f ′(x) equals 1. In this context, the optimal ob-
servation densities for U and V are found to be 26.6% and 27.2%, respectively. When
the observation density is lower than this balance density, the rate of benefit increment
exceeds the rate of cost increment, resulting in significant benefits and willingness for
construction. Conversely, when the density is higher than the balance density, the rate of
benefit increment is smaller than the rate of cost increment, leading to smaller benefits and
willingness for construction. This analysis helps to identify the observation densities that
provide the most cost-effective balance for various atmospheric variables in the context of
data assimilation.

5. Discussion and Conclusions

The study presented herein delves into the realm of data assimilation (DA) within
meteorology, with a particular focus on the impact of observation density and localization
radius. Several noteworthy points emerge from this investigation.

• Significance of Profile DA

This study reaffirms the pivotal role of profile DA techniques in enhancing the preci-
sion of meteorological models. The meticulous assimilation of profile data into numerical
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models is imperative for the accurate prediction of weather phenomena, especially complex
events like tropical cyclones.

• Influence of Observation Density and Localization Radius

The research extensively examines the influence of two critical parameters: observa-
tion density and localization radius. The investigation reveals that these parameters are
intrinsically intertwined and significantly affect the accuracy of DA outcomes. Especially
when the density is small, a larger localization radius is essential. The empirical results
suggest that a careful balance must be struck between the two.

Observation Density: The study demonstrates that observation density plays a pivotal
role in the efficacy of DA. It highlights that excessively sparse observations can lead to a
reduced accuracy in model predictions. Conversely, excessive observation density may
not yield commensurate improvements and could incur unwarranted costs. The findings
indicate that a sweet spot exists, typically around 26–27% observation density for the U and
V variables in the context of this study. Beyond this optimal point, the incremental benefits
in forecast accuracy diminish relative to the cost of deploying additional instruments.

Localization Radius: Equally crucial is the localization radius, which determines
the spatial influence of observations on the model. The research emphasizes that the
localization radius must be carefully tailored to the observation density. For instance, when
the observation density is relatively low, a larger localization radius might be necessary to
effectively incorporate sparse data into the model. Conversely, higher observation densities
may require smaller localization radii to avoid overfitting.

• Practical Implications

These findings have practical implications for meteorological data collection efforts. It
underscores the importance of strategically deploying observation instruments. An optimal
balance between cost-effectiveness and forecast accuracy must be struck. Moreover, the
study encourages meteorological agencies to consider not only the quantity of observations
but also their spatial distribution and the appropriate scale of influence.

Figure 5 shows the wind distributions of the TC at 051400 on the surface level (10 m
wind), which could have possibly the greatest impact on the layout of observation equip-
ment as they usually cause accountable disasters during its application process. It is clear
that the surface wind vectors from ENS and 11.1% density are denser than the ideal truth,
but miss the spatial details and also have a weak strength. This indicates that the spatial
layout density or cost can somewhat greatly affect the numerical forecast or benefit. More-
over, surface wind vectors from 26 to 27% and the 100% observation density are almost
equitable to the ideal truth (not shown). This indicates that almost 1/4 of the numerical
gridded resolution could be the possible best solution for the ground-based profile obser-
vation layout when considering mitigating the disasters caused by typhoon winds. It is
worth noting that the ensemble mean fields in Figure 5 are simply averaged over ensemble
members, disregarding the TC structures in individual ensemble members. As an alterna-
tive, the ensemble mean fields can be calculated based on the feature-oriented mean (FM)
method, to avoid the unrealistic smoothing of the TC structure and an underestimation of
the intensity [32].

In conclusion, this study sheds light on the critical interplay between observation
density and localization radius in data assimilation. The research underscores that the
pursuit of higher observation densities should be tempered by careful consideration of the
localization radius. The identified sweet spot of around 26–27% observation density for U
and V variables, coupled with appropriately matched localization radii, is indicative of a
cost-effective balance that maximizes the utility from forecast accuracy. These insights are
invaluable for meteorological agencies and researchers, guiding them in making informed
decisions about observation network designs and improving the precision of weather
predictions. In the future, we will deploy real profile observations partly according to
this study. Then, we can carry out observation system experiments based on the real TC
cases. In addition, target observation, i.e., the approach of conditional nonlinear optimal
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perturbation (CNOP), proposed by Mu et al. [33], will be considered, and may provide
better recommendations for observation network designs. The CNOP has been applied to
the studies of target observations associated with TCs, which have achieved positive effects
on TC forecasts [34,35].

1 
 

 
Figure 5. The distributions of TC at 051400 on the surface level (10 m wind: m/s).
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