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Abstract: Detecting tiny objects in aerial imagery presents a major challenge regarding their limited
resolution and size. Existing research predominantly focuses on evaluating average precision (AP)
across various detection methods, often neglecting computational efficiency. Furthermore, state-of-
the-art techniques can be complex and difficult to understand. This paper introduces a comprehensive
benchmarking analysis specifically tailored for enhancing small object detection within the DOTA
dataset, focusing on one-stage detection methods. We propose a novel data-processing approach to
enhance the overall AP for all classes in the DOTA-v1.5 dataset using the YOLOv8 framework. Our
approach utilizes the YOLOv8’s darknet architecture, a proven effective backbone for object detection
tasks. To optimize performance, we introduce innovative pre-processing techniques, including data
formatting, noise handling, and normalization, in order to improve the representation of small
objects and improve their detectability. Extensive experiments on the DOTA-v1.5 dataset demonstrate
the superiority of our proposed approach in terms of overall class mean average precision (mAP),
achieving 66.7%. Additionally, our method establishes a new benchmark regarding computational
efficiency and speed. This advancement not only enhances the performance of small object detection
but also sets a foundation for future research and applications in aerial imagery analysis, paving the
way for more efficient and effective detection techniques.

Keywords: small object detection; remote sensing object detection; one stage; DOTA-v1.5; YOLO-v8

1. Introduction

Small object detection in remote sensing involves identifying and precisely locating
small-sized features in large-scale aerial or satellite images [1]. In applications like urban
monitoring, traffic planning, agriculture, maritime surveillance, disaster management,
military operations, and environmental conservation, small objects offer crucial insights.
These objects, such as small buildings, vehicles, trees, or specific land-use patterns, serve
as indicators of significant phenomena or Earth’s surface changes [2]. In urban planning,
environmental monitoring, disaster management, and precision agriculture, small objects
like buildings aid in assessing population density, monitoring vegetation health, estimating
yields, and tracking land-use changes. They play a pivotal role in understanding transfor-
mations over time, enabling the observation of deforestation, climate change impact, and
other crucial developments.

Detecting tiny instances in remote imagery is particularly challenging due to variations,
occlusion, and low contrast in spectral and shape characteristics [3]. These challenges are
further exacerbated by illumination variations, atmospheric effects, and noise, all of which
underscore the importance of accurate detection for enabling informed decision making.
Annotated training datasets, although requiring considerable labor for their creation, serve
as critical resources for the development of effective methods [4]. Researchers commonly
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employ one-stage and two-stage methods for tiny object detection. One-stage methods,
like SSD (single shot detector) and YOLO (You Only Look Once), predict object bounding
boxes and class labels in a single pass, offering efficiency but potentially struggling with
localizing small objects [5–7]. Two-stage methods, such as Faster R-CNN, follow a two-step
approach, achieving significant success in small object detection tasks [8].

The choice between one- and two-phase methods depends on the specific requirements
of the task. One-stage methods, with their simpler architecture, offer calculation efficacy
and are well-suited for autonomous driving and video analysis [9,10]. They excel in
detecting and localizing large, well-represented objects, demonstrating higher recall rates
for significant-sized, clearly visible items. One-stage methods may enhance generalization
to unseen data with fewer parameters and also reduce overfitting [11]. Additionally, one-
stage methods simplify the training process by allowing for a direct, end-to-end approach,
eliminating the requirement for separate stages of region proposals and object detection,
which reduces the associated computational expenses. The complexity of small object
detection in remote sensing arises from several factors such as low occlusion, contrast,
and variations in spectral and shape characteristics [12–15]. Additionally, atmospheric
effects, illumination variations, and noise further complicate the task [16]. Despite these
challenges, accurate small object detection is vital for extracting meaningful information
from remote sensing imagery and enabling informed decision making across various
applications. Existing research for small object detection lacks proper investigations in
terms of speed, time, and score analysis. Most of the existing studies focus either on
two stages or both stages at a time. As a result, it is nearly impossible to identify the
state-of-the-art one-stage method based on speed, time, and score.

Therefore, this study solely focuses on one-stage methods. In order to address the
challenges of small object detection in remote sensing, this study proposes a novel pre-
processing method to train YOLOv8 to achieve better performance metrics. This study also
conducts a benchmarking analysis on one-stage methods for tiny object detection in terms
of time, accuracy, and speed. The pre-processing methods focus on enhancing the quality
of data for better object detection. This tackles noise reduction and data normalization,
indirectly enhancing contrast by making object features more distinguishable from the
background. Standardizing the dataset and removing noise improves the clarity of object
boundaries, thereby aiding in handling occlusion to some extent. This method streamlines
data formatting by converting object names into numerical representations, standardiz-
ing the representation of objects with different shapes and spectral characteristics and
thus aiding in detection. This method explicitly addresses noise by employing regular
expressions to remove extraneous strings from the dataset, ensuring that the model is
trained on clean and relevant data. Additionally, data normalization helps mitigate the
effects of illumination variations by scaling dataset values within a standardized range,
making the model less sensitive to such variations during training. Moreover, the proposed
method contributes to understanding the state of the art not only through the mean average
precision but also in terms of speed and computational efficiency. This comprehensive
evaluation aids in selecting the most practical method for real-world implementation,
considering all relevant parameters.

In summary, the main objective of this research is to perform a benchmarking analysis
of the existing one-stage object detection method under the same environment and to
propose a pre-processing method aimed at achieving better mean average precision for all
classes. The main contributions of this paper are as follows:

• Pre-processing: a novel pre-processing method is proposed to train the YOLOv8 model
with the DOTA v1.5 dataset in order to achieve a better mean averaged precision.

• Benchmarking analysis: a benchmarking analysis is performed with one-stage meth-
ods for small object detection DOTA-v1.5 datasets.

The rest of this article is structured as follows. Related works are analyzed in Section 2.
The methodology is delineated in Section 3. Section 4 illustrates the performance evaluation
and discussion section. Finally, Section 5 concludes this article.
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2. Related Work

This section describes the studies related to one-stage object detection. Table 1 shows
the comparison between the proposed studies and other studies.

Table 1. An overview of existing research on one-stage object detection. Here, AP means average
precision. FPS means frame per second. ✓ means that the studies support the parameter. - means the
study does not support the parameter.

Studies DOTAv AP Analysis Speed Analysis Time Analysis FPS Analysis 100 Epoch

Yang et al. [17] 1 ✓ - - - -

Wang et al. [18] 1 ✓ - - ✓ -

Qian et al. [19] 1 ✓ - - - -

Yassin et al. [20] 1 ✓ - - - -

Li et al. [21] 1 ✓ - - ✓ -

Qian et al. [22] 1 ✓ - - - -

Hou et al. [23] 1 ✓ - - ✓ -

Lin et al. [24] 1.5 ✓ - - - -

Cao et al. [25] 1 ✓ - - - -

This study 1.5 ✓ ✓ ✓ ✓ ✓

Yang et al. [17] propose the Small, Cluttered, and Rotated Object Detector++ (SCRDet++),
focusing on reducing noise in object detection, particularly for small and crowded objects. They
perform individual-level denoising on the feature map in order to improve detection accuracy.
Wang et al. [18] introduce feature-merged single-shot detection (FMSSD), a comprehensive
framework that combines contextual information from various scales by using the atrous
spatial feature pyramid (ASFP) module. In addition, they also adjust the loss function to
give priority to small objects. Qian et al. [19] introduced rotated object detection with RSDet,
offering advantages such as an adjusted rotation loss and predicting object corners and thus
improving performance. Jiang et al. [26] present an Information Balanced Fusion Network
(IBFF), a detector for small objects operating at multiple scales, featuring different attention-
based context feature fusion (DACFF) modules. Zakaria et al. [20] integrate Instance Level
Denoising (ILD) from SCRDet++ into S2A-Net.

Cheng et al. [27] present the Anchor-Free Oriented Proposal Generator (AOPG), elimi-
nating horizontal box-related operations by utilizing a Coarse Location Module (CLM) for
initial coarse-oriented box generation without anchors. A Fast Region-based Convolutional
Neural Network (R-CNN) head refines these boxes for high-quality oriented proposals. Li
et al. [21] propose the Dense Path Aggregation Feature Pyramid Network (DPAFPN) as a
single-stage detector for remote sensing data. It aims to use both high-level semantic and
low-level location information of the images. Qian et al. [22] suggest a Unified Transferring
Strategy (UTS) for bounding box regression (BBR) in oriented object detection, introducing
Rotated-Intersection of Union (RIoU) loss. Chen et al. [28] extend Faster R-CNN with
Weighted Fusion and Refinement (WFR), Affine Transformation-Based Feature Decoupling
(ATFD), and Post-Classification Regression (PCR) modules for improved performance.

Gao et al. [29] propose a repulsion constraint for point representation, assessing
centeredness quality and introducing oriented repulsion regression for densely packed
targets in remote sensing. Hou et al. [23] present G-Rep, a unified representation using
Gaussian distributions for the OBB, QBB, and PointSet, optimizing parameters through
maximum likelihood estimation. Wei et al. [30] offer a lightweight method for proposals
of arbitrary-oriented objects, using a rotated region proposal network and a rotation-
equivariant backbone. Lin et al. [24] augment foreground features in a one-stage object
detection system by including a keypoint attention module and a prototype contrastive
learning module. Cao et al. [25] integrate semantic edge detection with arbitrary-oriented
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object detection, introducing a feature-enhancement network and a rotation-invariant
spatial pooling pyramid. Zheng et al. [31] proposed crossNet, an end-to-end deep neural
network using cross-scale warping, which improves reference-based super-resolution
accuracy and efficiency by performing spatial alignment at the pixel level. Law et al. [32]
proposed cornerNet, a single convolution neural network, which effectively detects objects
as paired key points, outperforming the existing one-stage detectors on MS COCO with
a 42.2% accuracy. Duan et al. [33] proposed centerNet, which improves object detection
precision and recall by detecting each object as a triplet of key points, outperforming
existing one-stage detectors by at least 4.9%.

The studies referenced above primarily emphasize both one-stage and two-stage
detection methods, focusing exclusively on the mean average precision (mAP) without
considering other crucial factors such as speed, processing time, and additional relevant
parameters. However, a comprehensive evaluation of all metrics is essential to gain a more
thorough understanding of the performance of these approaches. To address this gap,
the current study introduces a novel pre-processing approach designed to improve the
training process of YOLOv8. Additionally, a comprehensive benchmarking evaluation
was conducted on the DOTA-v1.5 dataset to assess the effectiveness of the proposed
approach in enhancing the performance of small object detection against state-of-the-art
one-stage methods.

3. Methodology

The computer environment utilized for the studies has an Intel(R) Core(TM) i7-9700
CPU running at 3.00 GHz, 32.0 GB of RAM (31.8 GB useable), and runs on a 64-bit Windows
11 Pro system with version 22H2 (OS build 22621.1702) and Windows Feature Experience
Pack 1000.22641.1000.0. The experimental server configuration is far more robust, with
improved connectivity and computational capabilities.

It comprises network connectivity with four InfiniBand 100 Gbps EDR and two 10 GbE
connections. The server uses 8x NVIDIA Tesla V100 GPUs, each with 16 GB of RAM,
for a total of 40,960 NVIDIA CUDA cores and 5120 Tensor cores. These GPUs are linked
together via the NVIDIA NVLink Hybrid Cube Mesh, which ensures high-bandwidth
communication between them. The system memory is significant, comprising 512 GB
DDR4 LRDIMM, and the CPU configuration comprises two 20-core Intel Xeon E5-2698 v4
processors operating at 2.2 GHz.

The server’s storage subsystem has four 1.92 TB SSDs deployed in a RAID 0 array,
giving fast data access and a total storage capacity of 7.68 TB. The power needs are handled
by four 1600 W power supply units (PSUs) with a combined thermal design power (TDP)
of 3500 W, which provides enough power for the high-performance components. The
system’s cooling is tuned for optimal front-to-back airflow, ensuring stable operation even
under high computational loads. This high-performance configuration shown in Table 2
allows for full benchmarking and analysis, which supports the study’s need to efficiently
handle massive amounts of data and sophisticated computations.

Table 2. The experimental setup for the benchmarking analysis.

System 1 Windows 11 Pro edition, version 22H2, 64-bit
GPU 4 GB NVIDIA GeForce GTX 1050 Ti
RAM 32.0 GB DDR4
CPU Intel(R), Core(TM), i7-9700 CPU @ 3.00 GHz

System 2 Ubuntu 18.4 server
GPUs 8x 32 GB NVIDIA Tesla V100
RAM 512 GB DDR4 LRDIMM
CPUs 2x 20-Core Intel Xeon E5-2698 v4 2.2 GHz

GPU interconnect NVIDIA NVLink Hybrid Cube Mesh
Storage 4x 1.92 TB SSDs RAID
Cooling Efficient Front-to-Back Airflow
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Table 2. Cont.

Network interconnect 4x InfiniBand 100 Gbps EDR 2x 10 GbE
Power 4x 1600 W PSUs (3500 W TDP)

3.1. Datasets

The identification in aerial images (DOTA) dataset is a well-known benchmark in
the field of object identification, designed particularly for high-resolution aerial images.
It has contributed significantly to the development and assessment of object detection
algorithms. The DOTA dataset has gone through multiple revisions, with each iteration
bringing new features that improve its usability for academics and practitioners. The
following is a complete summary of the many versions of the DOTA dataset, highlighting
their contributions and advancements.

DOTA-v1.0, released in 2018, was the first version of the DOTA dataset. This first
edition includes 2806 aerial photographs taken in a variety of geographic regions and
settings, including urban and rural areas. The collection includes annotations for 15 item
categories, covering a wide range of real-world things typically seen in aerial images. The
categories include airplanes (PL), ships (SH), storage tanks (ST), and basketball courts (BC),
among others. Each object in the photos is tagged with bounding box coordinates and
categorization names, making it easier to create and test object recognition algorithms.
DOTA-v1.0 provided a fundamental dataset for assessing object identification algorithms
in aerial photos, answering the demand for high-resolution, diversified, and annotated
datasets. The annotations in this version were created to help researchers train and test
object detection algorithms, allowing them to compare their predictions to a consistent
collection of data.

Building on the success of DOTA-v1.0, DOTA-v1.5 was released as an expansion of
the original dataset. DOTA-v1.5, which included enhanced annotations, was designed
to improve both the precision and dependability of item labeling. While the dataset size
remained comparable with DOTA-v1.0, improved annotations resulted in higher coverage
and more exact classifications of items inside the photos. DOTA-v1.5 aimed to solve
problems identified in the previous version, notably in terms of annotation quality and
object categorization. This version sought to remove ambiguities and inconsistencies in
the annotations, which would improve the performance of detectors for objects trained on
the dataset. The improved annotations made it easier to evaluate model performance and
helped to progress object recognition algorithms in aerial photography.

The DOTA-v2.0 version, published in 2019, significantly expanded the dataset. This
iteration retains the original 2806 photos while making numerous significant changes. One
of the most important innovations to DOTA-v2.0 was the introduction of a new object
category, the backdrop class, which increased the overall number of object categories to
15 + 1. This update was intended to offer a more thorough portrayal of the many objects
and backdrops found in aerial images. The annotations in DOTA-v2.0 were improved,
increasing both the accuracy and coverage of item tagging. This version also added a wider
range of item categories and enhanced annotation consistency, resulting in a more rigorous
benchmark for assessing object detection methods. Better annotations and an enlarged
dataset made it possible to compare and analyze model performance in more detail, which
aided in the creation of increasingly sophisticated object recognition techniques.

The current work makes use of DOTA-v1.5, which provides a comprehensive collection
of classifications of objects for evaluation and building models. This version includes the
following object categories: bridge (BR), helicopter (HC), storage tank (ST), soccer ball field
(SBF), small vehicle (SV), plane (PL), large vehicle (LV), ground track field (GTF), tennis
court (TC), ship (SH), swimming pool (SP), container crane (CC), basketball court (BC),
harbor (HA), roundabout (RA), and baseball diamond (BD). This wide set of categories
includes a variety of items and buildings typically seen in aerial images, making the dataset
extremely useful for training and assessing object identification algorithms. The DOTA-v1.5
dataset is described in full in Figure 1. Figure 1a depicts the frequency of the various item
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labels, while Figure 1b displays a correlogram of the labels. The frequency plot displays the
distribution of object labels in the dataset, indicating how frequently every group appears
throughout the photos. The correlogram, on the other hand, shows the associations between
multiple labels, demonstrating linkages and combination patterns across different item
types. The DOTA-v1.5 dataset is separated into subsets for model training and assessment,
with 70% for training, 20% for validation, and 10% for testing [34]. This segmentation
enables a thorough evaluation of object detection algorithms, guaranteeing that models
are evaluated on previously unknown data and their performance is correctly measured at
various phases of development.

(a) Frequency of labels (b) Correlogram of labels

Figure 1. Description of DOTA-v1.5 dataset.

3.2. Method

The existing research on tiny item recognition frequently skips a thorough examina-
tion of one-stage approaches, especially when it comes to critical performance variables
like speed, computing time, and detection scores. Because of the absence of extensive
assessments, it is difficult to identify and use the most effective strategies for detecting
tiny objects. To solve these deficiencies, our research focuses on a detailed benchmarking
analysis and the development of innovative pre-processing algorithms for the YOLOv8
model. The DOTA-v1.5 dataset, which is notable for its wide range of item categories and
high-resolution photos, is used to assess the efficacy of one-step algorithms. This dataset
provides a solid foundation for evaluating how well different algorithms perform under
difficult settings, such as spotting tiny, densely packed objects. Using DOTA-v1.5, we want
to give a complete comparison of existing one-stage approaches, highlighting their merits
and limitations while taking into account both speed and accuracy.

Further, our work provides novel pre-processing strategies for YOLOv8 that improve
its performance, particularly for tiny object recognition. Pre-processing is crucial for en-
hancing the quality of input data and, hence, the accuracy of detection models. Traditional
pre-processing approaches may be insufficient to address the special issues of tiny object
identification, resulting in an inferior performance. Our suggested solutions shown in
Figure 2 include enhanced noise reduction and adaptive histogram equalization to improve
picture contrast, allowing for the better separation of tiny objects. These pre-processing
stages are combined with YOLOv8, which was chosen for its higher efficiency and accuracy
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than earlier one-stage models. YOLOv8’s sophisticated design and training capabilities
make it ideal for processing refined input data. The creation of models consists of three
stages: data processing, model training, and assessment metrics. Data processing focuses
on removing noise and reformatting pictures in order to increase input quality. YOLOv8
is then trained on these processed photos to determine its performance in spotting tiny
things. The assessment step entails employing extensive metrics to assess not just the
detection accuracy but also speed and computing economy. By concentrating on these
characteristics, we want to give a more nuanced understanding of one-stage approaches
and their practical consequences, ultimately leading to more effective and efficient tiny-item
identification solutions.

Figure 2. System overview of the proposed model.

3.2.1. The Proposed Pre-Processing Approach

The DOTA dataset uses an annotation style for every item indicated by an orientated
bounding box (OBB). The coordinates of the i-th vertex of the oriented bounding box
(OBB) are represented by (xi, yi), while the overall format includes (x1, y1, x2, y2, x3,
y3, x4, y4, categories, complex). These vertices are ordered clockwise to establish the
object’s bounding box. This work describes a new pre-processing strategy for improving a
DOTA-v1.5 dataset in order to train the YOLOv8 algorithm, which is critical for good object
detection. The pre-processing approach consists of three critical steps: noise reduction, data
presentation, and data standardization. Each of these actions is intended to improve the
dataset’s efficiency in the YOLOv8 model.

Noise handling: The first part of the pre-processing procedure handles the issue of
noise in the dataset. The DOTA-v1.5 dataset includes two sorts of files: photos and their
labels. The label files include not only the locations and class names of objects but also
unnecessary text and information, which might inject noise into the dataset. To clean up
the dataset, regular expressions are utilized to detect and delete any extraneous strings.
This challenge uses two regular expressions, (1) and (2):

ˆ .(imagesource).\n? (1)

ˆ .(gsd).\n? (2)

After dealing with noise, the next stage is data formatting. During this step, the label
file’s last column, which provides further labeling information, is removed. Instead, a
different strategy is used: each item is allocated a unique identification number using
a dictionary. This dictionary converts object names, which are initially in string format,
into numerical values. This transformation produces a new labeling column to replace the
previous one. The new column, which contains numerical IDs, is subsequently added as the
first column in the dataset. This update simplifies the dataset and guarantees that it meets
the criteria of the YOLOv8 training procedure. By translating item names to numerical
representations, the dataset becomes more effective and standardized, making the training
process easier and the model more accurate.

Data normalization is the last stage of the pre-processing technique. This phase
involves dividing each value in the label files by the height and width of the relevant
picture, with the exception of the recently added labeling column. Through this process
of normalization, the values are scaled to fall between 0 and 1. Normalization is used
to minimize problems that could arise during training, like burst gradients. The model
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becomes less sensitive to changes in the input data and more resilient as a result of scaling
the values. By ensuring that every input feature is on the same scale, this phase stops
certain characteristics from controlling the learning process because of their higher values.
Because normalization keeps the model from being too sensitive to specific characteristics,
it promotes faster convergence and a more seamless training procedure.

The comparison between the original DOTA dataset and the dataset following the use
of the suggested pre-processing strategy is shown in Table 3. The processed dataset demon-
strates how the data formatting, normalization, and noise-management processes were
applied successfully. The addition of a new labeling column including normalized values
and numerical representations suggests that the dataset is now well-structured and ready
for YOLOv8 training. Finally, by addressing noise, ensuring appropriate normalization,
and improving data formatting, this thorough pre-processing method raises the overall
standard of the DOTA-v1.5 dataset. Using the YOLOv8 algorithm for accurate and reliable
object recognition is made possible by this improved dataset.

Table 3. A comparison of the dataset is presented before and after the application of the pre-processing
approach. The ground sample distance (GSD), which represents the physical size of a single image
pixel in meters, is also provided.

Explanation of Original Dataset

imagesource:GoogleEarth
gsd:0.145268458746

846.0 569.0 541.0 775.0 854.0 567.0 752.0 874.0 plane 0
459.0 785.0 574.0 468.0 627.0 518.0 851.0 797.0 ship 0

Explanation of Processed Dataset

0 0.48... 0.24... 0.64... 0.87... 0.54... 0.61... 0.45... 0.78...
1 0.54... 0.78... 0.65... 0.12... 0.47... 0.57... 0.87... 0.87...

3.2.2. YOLOv8 Model

The YOLOv8 model is a cutting-edge object identification model that forecasts bound-
ing boxes and class probabilities for every grid cell by dividing the input image into a grid.
Localization loss, categorization loss, and confidence loss are combined to form the total
loss function. Figure 3 [35] illustrates the structure of YOLOv8.

The model divides the input into N grid cells. For each cell i and corresponding
bounding box j, it predicts four coordinates (x, y, w, h) that define the bounding box’s
location, along with a confidence score c. The class probabilities are encoded in the vector
P. The predicted coordinates of the bounding box, (x̂j

i , ŷj
i , ŵj

i , ĥj
i), are calculated according

to the following equations:

x̂j
i = σ(bj

x,i) + i (3)

ŷj
i = σ(bj

y,i) + i (4)

ŵj
i = pj

w,i · ebj
w,i (5)

ĥj
i = pj

h,i · ebj
h,i (6)

Given the sigmoid function σ; the predicted parameters bj
x,i, bj

y,i, bj
w,i, and bj

h,i; as well

as the dimensions of the anchor box pj
w,i and pj

h,i, the confidence score cj
i for each bounding

box is defined as

cj
i = σ(bj

c,i) (7)
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Figure 3. Internal architecture of YOLOv8.

The predicted confidence parameter is denoted by bj
c,i. The class probabilities Pi are

obtained by applying the softmax activation function:

Pi = softmax(bclass,i) (8)

The term bclass,i represents the vector of predicted class parameters. The total loss function
is formulated as a linear combination of three components: the localization loss, confidence
loss, and classification loss:

L = λcoord ∑
i,j
(Localization Loss)+ (9)

λconf ∑
i,j
(Confidence Loss) + λclass ∑

i
(Classification Loss) (10)
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The hyperparameters λcoord, λconf, and λclass are used to control the weighting of each
individual loss component within the overall loss function.

4. Results Analysis

This section provides a performance analysis and discussion of the proposed pre-processing
approaches. Table 4 illustrates the performance analysis based on the mean average precision
(mAP) and average precision (AP). The evaluation metrics were the AP for each class. It is
important to note that all the experiments were executed under the same conditions such as
50 epochs where 80% of the data are set for training and 20% of the data are set for testing.

Table 4. A performance evaluation and comparison of the proposed pre-processing techniques
utilizing YOLOv8 is carried out by comparing the mean average precision (mAP) against leading
one-stage small object detection models. In this context, TS denotes this study, which refers to the
suggested approach. The categories considered in the evaluation include bridge (BR), helicopter (HC),
storage tank (ST), soccer ball field (SBF), small vehicle (SV), plane (PL), large vehicle (LV), ground
track field (GTF), tennis court (TC), ship (SH), swimming pool (SP), container crane (CC), basketball
court (BC), harbor (HA), roundabout (RA), and baseball diamond (BD).

Study PL SH ST BD TC BC GTF HA BR LV SV HC RA SBF SP CC mAP

[17] 87.9 65.8 71.4 85.2 90.8 87 73.7 69.3 49.7 77.8 42.8 51.5 62.9 61 65.5 1.4 65.2
[18] 88.2 73.4 68.4 81.4 90.7 82.8 66.5 67.1 43.2 68.5 41.9 47.3 62.5 47.4 75.6 1.9 62.9
[19] 86.4 74 70.6 82.5 87.4 83.4 71.4 65.8 49.6 66.2 43.3 49.8 57.9 67.2 67.3 2.1 64.1
[20] 80 73.9 70.3 85 90.8 81.3 80 73.4 53.2 75.5 44.5 52.9 64.7 64.1 71 1.8 66.4
[21] 79.5 68.2 67.5 74.8 81 65.5 54.7 60.2 45.7 44.8 33.2 49 61.5 39.8 68.2 1.3 55.9
[22] 88.8 74 71 83.2 90.8 81.2 80.2 74.7 51.2 78.6 44.7 50.7 60.1 65.3 67.5 3.6 66.6
[23] 86.6 73.8 72.1 81.4 89.9 80.9 77.4 70.1 56.3 78 44.8 48.6 62.4 60.9 74.2 3.4 66.3
[24] 80.2 70.2 69.9 83.8 90.8 80.1 76.2 71.3 48.3 77.5 39.4 50.6 59.6 56.7 70.2 4.8 64.4
[25] 88.4 71.6 69.8 85.7 90.8 84.7 72.3 67.8 45.53 68.9 43.6 49.9 62.8 59.8 71.6 3.7 64.8

TS 90 74.1 72.3 84 96.6 64 75.1 83 57.5 78.1 44.9 53.1 65.2 54.1 69.2 6.1 66.7

The proposed pre-processing approach outperforms other one-stage methods for the
majority of the object classes in terms of the mAP with YOLOv8. This table presents a
thorough performance comparative of the proposed pre-processing approach (denoted
as “TS”) against various state-of-the-art one-stage object detection algorithms utilizing
YOLOv8, focusing on the mean average precision (mAP) across multiple object categories.
The aim is to highlight the effectiveness of the proposed method in improving detection
accuracy for a range of objects including planes, ships, storage tanks, baseball diamonds,
tennis courts, basketball courts, ground track fields, harbors, bridges, large vehicles, small
vehicles, helicopters, roundabouts, soccer ball fields, swimming pools, and container cranes.

The table provides mAP scores for each algorithm across these categories, reflecting how
well each method performs in detecting and classifying objects. The mAP is a crucial metric
in object detection, representing the average precision across all classes and thus giving a
comprehensive measure of a model’s performance. The comparison data consist of many
studies, each with a reference number that indicates how well it detected distinct object types.

The study by [17] achieves an mAP score of 65.2, with its highest scores in detecting
planes (87.9) and its lowest in container cranes (1.4). Similarly, [18] scores 62.9 overall,
with its best performance in detecting planes (88.2) and a lower score for container cranes
(1.9). The performance of [19] is noteworthy with an overall mAP of 64.1, excelling in
detecting planes (86.4) but with less effectiveness in detecting container cranes (2.1). The
authors of [20] present an mAP of 66.4, showing competitive results across most categories,
particularly in detecting baseball diamonds (85) and tennis courts (90.8), although the score
for container cranes is relatively low at 1.8. The study [21] demonstrates an overall mAP
of 55.9, with strengths in detecting larger objects like storage tanks (67.5) but a weaker
performance in detecting smaller objects like container cranes (1.3). The authors of [22]
report an overall mAP of 66.6, highlighting its efficacy in detecting several object types,



Remote Sens. 2024, 16, 3753 11 of 18

notably achieving high scores for tennis courts (90.8) and large vehicles (78.6), yet with a
lower score for container cranes (3.6). The study by [23] shows an overall mAP of 66.3, with
a good performance in detecting large vehicles (78) and tennis courts (89.9), but its detection
of container cranes is also on the lower side (3.4). The study [24] achieves an mAP of 64.4,
with a notable performance in detecting tennis courts (90.8) but a lower score for container
cranes (4.8). Lastly, [25] reports an mAP of 64.8, excelling in detecting tennis courts (90.8)
and planes (88.4) but with a relatively lower performance in container cranes (3.7).

The proposed method, TS, achieves an overall mAP score of 66.7, making it the
top performer among the compared methods. The detailed breakdown reveals that TS
excels particularly in detecting tennis courts (96.6) and planes (90), showing substantial
improvements over other methods. It maintains a competitive performance across several
categories, including storage tanks (72.3), baseball diamonds (84), and harbors (83), with
varying effectiveness in detecting smaller objects like container cranes (6.1) and soccer ball
fields (54.1). The exceptional performance of TS in several categories provides evidence
that the pre-processing methods employed in this approach greatly improve the YOLOv8
model’s capacity to reliably detect and classify objects. The proficiency of the suggested
approach in attaining the best scores in specific categories, such as tennis courts and planes,
highlights its efficacy in enhancing detection accuracy; this may be ascribed to the improved
data representation and feature extraction procedures employed in TS.

The comparison demonstrates that the proposed pre-processing method (TS) not
only achieves the highest overall mAP score but also exhibits significant improvements
in specific categories where other methods demonstrate an inferior performance. For
example, whereas TS has outstanding accuracy in identifying tennis courts and airplanes,
properly detecting container cranes remains difficult, as shown by the lower score of
6.1. This underscores the possible domains in which additional improvements in the pre-
processing practices might result in even better detection results. Furthermore, the table also
demonstrates that while other methods exhibit robust performance in specific categories,
they frequently fail to meet expectations in others. Methods such as [20,22] demonstrate
improved mean average precision (mAP) scores in identifying tennis courts and large
vehicles but exhibit a poor performance in detecting smaller items such as container cranes.
In contrast, the proposed method demonstrates a more balanced performance across
various categories, therefore highlighting its overall efficacy and adaptability.

In summary, the table compellingly illustrates the benefits of the newly proposed pre-
processing approach (TS) in enhancing the efficacy of object detection using the YOLOv8
framework. The notable increase in the mean average precision (mAP) score and the
method’s exceptional ability to detect particular object classes indicate the effectiveness
of the employed pre-processing approach. Such enhancements are primarily due to the
improved data management and feature extraction techniques, leading to increased accu-
racy in detection. The results emphasize the potential of TS to enhance the state of the art
in object detection, offering valuable insights for future research and progress in this field.
Overall, the proposed approach is a substantial improvement in object detection technology,
offering a reliable solution for precisely detecting and categorizing a diverse array of objects.
The comprehensive comparison of the performance highlights the efficacy of the approach
and establishes a standard for future enhancements in object detection systems.

The speed and time analyses of the suggested technique are presented in Table 5.
None of the research that focuses on one-stage tiny object detection on the DOTA dataset
has addressed their Giga Floating-point Operations Per Second (GFLOPs), speed, epoch,
gradients, and other necessary evaluation parameters. Based on Table 5, it is clear that
the proposed pre-processing methods are suitable for real-time applications. This paper
provides a comprehensive comparison of various studies focusing on small object detection
within the DOTA dataset, specifically emphasizing their GFLOPs (Giga Floating-point
Operations Per Second), speed, epochs, gradients, and pre-processing, inference, loss, and
postprocessing times. In this analysis, the goal is to highlight the efficiency and effectiveness
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of the proposed method relative to existing methods. Here is a detailed explanation of each
aspect presented in the table.

Table 5. Time and speed analysis of the proposed method.

Studies Gradients GFLOPs Epoch Pre-Process Inference Loss Postprocess

[17] 0.3 268.7 50 1.5 ms 59.7 ms 0.5 ms 7.2 ms
[18] 0.1 274.1 50 1.6 ms 60.2 ms 0.5 ms 9.3 ms
[19] 0.5 270.4 50 1.4 ms 69.1 ms 0.5 ms 8.4 ms
[20] 0.5 265.9 50 1.6 ms 75.3 ms 0.4 ms 7.5 ms
[21] 0.9 264.5 50 1.4 ms 71.4 ms 0.5 ms 7.1 ms
[22] 0.2 260.2 50 1.6 ms 63.9 ms 0.5 ms 6.9 ms
[23] 0.1 259.3 50 1.7 ms 67.7 ms 0.5 ms 6.8 ms
[24] 0.5 263.8 50 1.5 ms 64.5 ms 0.5 ms 7.5 ms
[25] 0.3 266.1 50 1.7 ms 60.1 ms 0.7 ms 8.2 ms

This study 0 263.2 50 1.2 ms 57.4 ms 0 ms 6.0 ms

Table 5 summarizes key performance metrics for different studies and the proposed
approach in the context of small object detection. The table includes columns for the
following: Studies: references to the various studies evaluated. Gradients: the gradient
computation time or amount, which reflects the amount of information used during the
learning phase. GFLOPs: this indicates the computational complexity of the method,
with lower values suggesting more efficient algorithms. Epoch: the number of times the
learning algorithm iterates over the entire dataset. Pre-process: the time taken for data pre-
processing. Inference: the time required to make predictions on new data. Loss: the time to
compute the loss function. Postprocess: the time required for any additional processing
after inference.

The study by [17] demonstrates a relatively balanced approach with gradients taking
0.3 ms, GFLOPs at 268.7, and a pre-processing time of 1.5 ms. The inference time is
59.7 ms, and postprocessing takes 7.2 ms. The loss calculation is quick at 0.5 ms. In [18],
the gradients are slightly lower at 0.1 ms with GFLOPs of 274.1. This study shows a
marginal increase in the pre-processing and inference times, but the postprocessing time is
notably higher at 9.3 ms compared to other studies. The study by [19] shows the highest
gradient computation time at 0.5 ms and GFLOPs of 270.4. The pre-processing time is
the lowest among the studies (1.4 ms), but the inference time is the highest at 69.1 ms.
The postprocessing time is 8.4 ms. In [20], with 0.5 ms for gradients and GFLOPs of
265.9, this study maintains a reasonable pre-processing time of 1.6 ms. The inference time
is quite high at 75.3 ms, and postprocessing takes 7.5 ms. The study by [21] features a
gradient computation time of 0.9 ms, GFLOPs of 264.5, and a pre-processing time of 1.4 ms.
The inference time is 71.4 ms, and the postprocessing time is relatively low at 7.1 ms.
In [22], gradients take 0.2 ms, the GFLOPs are 260.2, and the pre-processing time is 1.6 ms.
The inference time is lower at 63.9 ms, with the postprocessing time at 6.9 ms. In [23],
with the lowest gradient time of 0.1 ms and GFLOPs of 259.3, this study has a slightly
higher pre-processing time of 1.7 ms. The inference time is 67.7 ms, and postprocessing
is 6.8 ms. In [24], the gradient computation time is 0.5 ms, the GFLOPs are 263.8, and the
pre-processing time is 1.5 ms. The inference time is 64.5 ms and postprocessing takes 7.5 ms.
In [25], the gradient time is 0.3 ms, the GFLOPs are 266.1, and the pre-processing time is
1.7 ms. The inference time is 60.1 ms, with a postprocessing time of 8.2 ms.

The proposed method shows the following metrics: Gradients: 0 ms, indicating
that gradient computation is either negligible or integrated differently, possibly through
optimized methods or precomputed gradients. GFLOPs: 263.2, a value that is competitive
with other methods, suggesting efficient computation. Epoch: 50, consistent with the other
studies, providing a comparable basis for training duration. Pre-process: 1.2 ms, which
is the lowest pre-processing time among all methods listed, highlighting efficient data
handling and preparation. Inference: 57.4 ms, which is the lowest inference time, indicating
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faster prediction capabilities compared to other methods. Loss: 0 ms, suggesting that
the loss calculation might be embedded within the training loop or otherwise optimized.
Postprocess: 6.0 ms, the lowest postprocessing time, further emphasizing efficiency.

Comparative Analysis and Implications: Speed and efficiency: The proposed method
demonstrates a superior efficiency in pre-processing, inference, and postprocessing times.
Specifically, the proposed method’s pre-processing time of 1.2 ms is notably faster than other
studies, which range from 1.4 ms to 1.7 ms. Furthermore, the inference time of 57.4 ms is
the lowest, suggesting faster object detection capabilities. Additionally, the postprocessing
time of 6.0 ms is also the shortest, therefore enhancing the overall efficiency of the system.
Computational complexity (GFLOPs): the proposed method’s GFLOPs value of 263.2 is
competitive and shows that while the method is computationally efficient, it does not sacrifice
the complexity of the operations required for detection. Gradient computation and loss: The
zero gradient time and zero loss time are particularly remarkable. These values suggest that
the proposed method has redefined or optimized the typical gradient and loss computation
processes, potentially integrating them into other stages of the pipeline or using advanced
techniques that reduce their traditional computational overhead. Epochs: consistent with
other studies, the proposed method uses 50 epochs, which provides a fair basis for comparison
in terms of training duration. Conclusion: The data in Table 5 provide a clear illustration of
the proposed method’s efficiency and effectiveness in small object detection. The reduced
pre-processing, inference, and postprocessing times compared to other studies underline its
suitability for real-time applications. Moreover, the competitive GFLOPs value shows that this
efficiency is achieved without compromising the computational complexity. This combination
of low computational overhead and effective processing makes the proposed method highly
advantageous for real-time and resource-constrained environments.

The proposed method’s confusion matrices are presented in Figure 4. Figure 4a depicts
the general confusion matrix, while Figure 4b illustrates the normalized version. Clearly,
the normalized confusion matrix offers a more refined representation of the data compared
to the general one. All training batches are illustrated in Figure 5, and the true and predicted
validation images are displayed in Figure 6. It is evident that the proposed pre-processing
approach with YOLOv8 has delivered exceptional results in terms of correctly identifying
the true labels during predictions. Refer to Figure 7 for the confidence curves (the P curve,
R curve, F1 curve, and PR curve) of the presented pre-processing approach using YOLOv8.
The graph in Figure 7a demonstrates the balance between precision and confidence, two
vital metrics in object detection. The precision of a model quantifies the proportion of
accurate detections, which is determined by dividing the number of true positives by
the total number of true positives and false positives. Confidence, on the other hand,
reflects how certain the model is about the correctness of its detection, usually represented
as a probability score between 0 and 1. The graph depicts how precision shifts as the
confidence threshold is adjusted. The confidence threshold is the minimum value that the
model’s confidence score must meet for a detection to be considered valid. Raising the
confidence threshold increases the model’s accuracy, though it also reduces the total number
of detections made. The various lines on the graph correspond to different object categories.
For instance, the line marked “small-vehicle” illustrates the precision–confidence curve,
indicating the model’s performance in identifying small vehicles. The optimal area on a
precision–confidence curve is the top-right side, where the approach illustrates both high
confidence and high accuracy. Figure 7b provides a graphical depiction of the trade-off
between two essential object detection metrics: recall and confidence. Recall measures
the model’s ability to locate all relevant instances of objects, reflecting the proportion of
correctly identified objects in the images. In contrast, confidence shows how certain the
model is about its predictions. The lines in the graph represent different object classes.
For example, the “small-vehicle” line illustrates the model’s recall at diverse confidence
levels for tiny vehicles. The “all classes” curve represents the average recall across all
categories. The figure’s bottom-left value, “0.69 at 0.000,” represents the model’s recall
when the confidence threshold is set to zero, indicating that the model correctly identifies
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approximately 69% of objects even with no confidence. Overall, the graph illustrates the
model’s detection performance across varying confidence levels.

(a) General confusion matrix (b) Normalized confusion matrix

Figure 4. Confusion matrix of the proposed approach.

(a) Batch 1 in training (b) Batch 2 in training (c) Batch 3 in training

Figure 5. Images for three different batches.

(a) Batch 1 true_labels in validation (b) Batch 1 predicted_labels in validation

(c) Batch 2 true_labels in validation (d) Batch 2 predicted_labels in validation

Figure 6. Cont.



Remote Sens. 2024, 16, 3753 15 of 18

(e) Batch 3 true_labels in validation (f) Batch 3 predicted_labels in validation

Figure 6. Validation set true and predicted labels.

(a) P curve (b) R curve

(c) F1 curve (d) PR curve

Figure 7. Confidence curves.

Discussion

Research in the domain of detecting tiny objects in aerial imagery has consistently
highlighted the challenges posed by the small size and low resolution of these objects.
Previous studies, such as those by Yang et al. [17] and Wang et al. [18], primarily focused
on enhancing detection accuracy through innovative architectures and loss functions,
often neglecting critical aspects like data pre-processing and comprehensive evaluation
metrics. Many existing works typically report the mean average precision (mAP) without
considering the impacts of noise reduction and data normalization, which are essential for
improving object visibility and discriminative features.

In contrast, our study introduces a robust data pre-processing technique for YOLOv8,
which includes noise reduction, data restructuring, and normalization. These strategies
significantly enhance the clarity of small object boundaries and improve detection accu-
racy across all classes in the DOTA-v1.5 dataset. By utilizing 50 epochs for training and
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encompassing all relevant categories for small object detection, our approach not only
achieves a higher mAP but also establishes a new standard for processing speed and effi-
ciency. Furthermore, our comprehensive evaluation—encompassing confusion matrices
and performance metrics—addresses gaps left by prior studies [19,20,26,27], underscoring
the importance of rigorous evaluation and thorough analysis in advancing the field.

Future research directions should focus on enhancing the model’s capabilities for
detecting small objects. This could involve integrating multi-scale detection techniques
to identify small objects at various resolutions or exploring advanced architectures, such
as YOLOv10, that may offer improved feature-extraction capabilities. Additionally, ex-
perimenting with hybrid approaches that combine traditional object detection methods
with deep learning techniques could yield beneficial results. Although our benchmarking
analysis provides valuable insights, there remains significant potential for improving model
performance in detecting small objects, particularly by addressing the limitations of current
pre-processing techniques.

Moreover, future research should explore the implementation of more robust data-
augmentation strategies that simulate diverse real-world scenarios, enhancing model
robustness against varying conditions. While our evaluation metrics offer a clearer un-
derstanding of model effectiveness, ongoing development and refinement are necessary
to advance small object detection in aerial imagery. By acknowledging these limitations
and pursuing these research directions, we aim to contribute to the ongoing advancement
of accurate and efficient techniques for small object detection, ultimately improving the
applicability and reliability of such models in practical applications.

5. Conclusions

Our study provides a benchmarking of one-stage tiny object recognition algorithms
on the DOTA dataset with YOLOv8. We also propose a novel reprocessing approach that
significantly improves tiny object representation by managing noise, formatting data, and
normalizing it, resulting in an increased mean average precision and setting new perfor-
mance and efficiency benchmarks for real-time applications. Our study emphasizes the
importance of evaluating parameters such as speed, parameters, GLPFS, epochs, and gradi-
ents, often overlooked in prior research. The confusion matrices and training/validation
batches underscore the model’s effectiveness, with all the experimental results collected un-
der consistent conditions. Furthermore, the suggested approach enhances comprehension
of the current state of the art by evaluating not just the mean average precision but also the
speed and computational efficiency. This thorough assessment facilitates the selection of
the most suitable method for practical deployment, taking into account all pertinent factors.

This study’s limitation lies in the exclusive use of YOLOv8 for our proposed pre-
processing methods. Additionally, it does not address the potential to enhance the training
speed and reduce the training time of YOLOv8. Future research should explore novel
pre-processing methods for object detection that could substantially improve the training
speed and reduce training time across various models.
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