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Abstract: In the intricate and dynamic infrared imaging environment, the detection of infrared
dim and small targets becomes notably challenging due to their feeble radiation intensity, intricate
background noise, and high interference characteristics. To tackle this issue, this paper introduces
a lightweight detection and recognition algorithm, named YOLOv5-IR, and further presents an
even more lightweight version, YOLOv5-IRL. Firstly, a lightweight network structure incorporating
spatial and channel attention mechanisms is proposed. Secondly, a detection head equipped with an
attention mechanism is designed to intensify focus on small target information. Lastly, an adaptive
weighted loss function is devised to improve detection performance for low-quality samples. Building
upon these advancements, the network size can be further compressed to create the more lightweight
YOLOv5-IRL version, which is better suited for deployment on resource-constrained mobile platforms.
Experimental results on infrared dim and small target detection datasets with complex backgrounds
indicate that, compared to the baseline model YOLOv5, the proposed YOLOv5-IR and YOLOv5-IRL
detection algorithms reduce model parameter counts by 42.9% and 45.6%, shorten detection time by
13.6% and 16.9%, and enhance mAP0.5 by 2.4% and 1.8%, respectively. These findings demonstrate
that the proposed algorithms effectively elevate detection efficiency, meeting future demands for
infrared dim and small target detection.

Keywords: object detection; lightweight; small infrared targets; attention mechanism

1. Introduction

Infrared detection imaging possesses robust anti-interference capabilities, enabling it
to cater to the all-weather reconnaissance and monitoring requirements in the military field
by providing stable and reliable target images. In recent years, it has garnered significant
attention from numerous scholars [1–3]. However, due to the small size of the targets
themselves or their great distance from the infrared sensor, coupled with the fact that
imaging is in grayscale, the actual targets in infrared source images appear relatively
small (occupying no more than 0.12% of the image) [1], lacking shape, color, and texture
information, and exhibiting low signal-to-noise ratios. Furthermore, complex backgrounds
and clutter interference pose significant challenges to the detection of infrared dim and
small targets. This paper addresses the issue of detecting infrared dim and small targets in
complex scenarios by proposing a lightweight detection algorithm based on deep learning,
with a focus on enhancing detection accuracy while also considering real-time performance.

Currently, the prevalent methods for detecting infrared dim and small targets encom-
pass traditional algorithms and deep learning algorithms. Traditional algorithms primarily
employ single-frame detection approaches, which can be categorized into three types:
filter-based detection algorithms [4–6], detection algorithms inspired by the human visual
system [7–10], and detection algorithms based on image data structures [11,12]. The core
principle of these methods involves extracting features such as grayscale and contrast of
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small targets within a single infrared frame and then precisely detecting the targets by
effectively suppressing background information while enhancing target features. Despite
their low computational complexity and high detection efficiency, single-frame detection
algorithms heavily rely on human prior knowledge, requiring manual adjustments to
parameters like segmentation thresholds and target scales. This limitation hinders their
adaptability to diverse application scenarios and target characteristics, resulting in poor
generalization capabilities. Moreover, due to their sensitivity to background variations,
traditional algorithms exhibit unsatisfactory accuracy and stability in infrared images with
complex backgrounds and low contrast.

On the other hand, deep learning algorithms, by leveraging deep networks to extract
typical target features, have achieved significantly higher accuracy than traditional detec-
tion methods, resulting in rapid progress in the detection of infrared dim and small targets.
Key examples include attention mechanism algorithms represented by Transformer [13]
and Swin-Transformer [14], two-stage detection algorithms such as R-CNN [15] and its
variants Fast R-CNN [16], Faster R-CNN [17], and Mask R-CNN [18], as well as single-stage
detection algorithms exemplified by SSD [19] and the YOLO [20–26] series. Furthermore,
strategies like data augmentation [27], multi-scale feature learning [28], and generative
adversarial networks [29] have been introduced to enhance the detection precision of dim
and small targets. Thanks to the powerful nonlinear fitting capabilities of neural networks,
these methods have significantly improved the feature extraction abilities for infrared dim
and small targets. Nevertheless, when confronted with scenarios with low signal-to-noise
ratios, the detection algorithms face significant challenges in balancing the false alarm rate
and miss detection rate, and their real-time performance remains inadequate. The main
reasons are as follows:

(1) Deep learning networks currently used for object detection perform well in general
scenes where objects are dispersed and do not exhibit overlap or occlusion. However,
for infrared small targets, which are excessively small and lack texture and structural
features, the average detection accuracy is poor.

(2) To obtain a larger receptive field, downsampling operations are often employed in
neural networks; however, excessive downsampling operations are prone to causing
information loss of small targets in deep-level features, thereby making it difficult for
the detector to extract effective features.

(3) As the number of layers and parameters in neural networks increases, deep learning
detection algorithms generally suffer from issues of high computational complexity
and large model sizes, posing challenges for deployment on resource-constrained
mobile platforms.

To address the above issues, this paper proposes a full-process lightweight target
detection algorithm that maintains high accuracy, based on the single-stage object detection
network YOLOv5. Firstly, focusing on the extraction of infrared dim and small target
feature information, we design separate modules for network feature extraction and fusion,
utilizing fewer parameters to achieve the extraction of key features. Secondly, an enhanced
head for small target detection is devised, placing greater emphasis on micro-targets
within the field of view. Thirdly, an adaptive weight loss function is developed to balance
the loss calculation between positive and negative samples and in overlapping regions,
thereby enhancing the model’s generalization ability and accuracy. Additionally, a pruning
architecture for the backbone network is introduced to further reduce the model parameter
count and shorten detection time. The optimized target detection network retains the
advantage of automatic feature extraction by deep learning methods while demonstrating
stronger adaptability to infrared dim and small targets. It can detect such targets in diverse
complex backgrounds, showcasing robustness and versatility. The main contributions of
this paper are as follows:

(1) A lightweight infrared target detection algorithm, YOLOv5-IR, specifically designed
for detecting infrared dim and small targets, is proposed in this paper. By optimizing
the network structure, the backbone network’s ability to recognize dim and small
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targets is enhanced, making it suitable for extracting features from infrared dim
and small targets. This optimization effectively reduces the model parameters and
computational cost.

(2) A loss function and a detection head in the head layer are designed, altering the
bounding box regression loss function to balance positive and negative samples. This
improves the detection accuracy of bounding boxes and enhances the network focus
on the infrared characteristics of targets.

(3) A pruning architecture for the backbone network is designed, integrating pruning
algorithms with network optimization. This improvement removes redundant chan-
nel weight parameters and further results in the lightweight version of the algorithm,
named YOLOv5-IRL in this paper.

(4) The detection performance of the proposed algorithm is validated on the dim-small
aircraft dataset, featuring a diverse range of target quantities, poses, and complex
scenes. Further comparisons with other advanced algorithms under varying signal-to-
noise ratio conditions are conducted. Comparison experimental results demonstrate
that the algorithm proposed in this paper achieves higher detection accuracy and
faster detection speed on the dataset.

2. Related Works
2.1. Deep Learning Algorithms for Infrared Dim and Small Target Detection

Infrared dim and small target detection is predominantly applied in military fields
such as early warning reconnaissance, aircraft guidance, and spatial situation awareness,
demanding high precision and real-time performance. To address this, researchers have
modified deep learning algorithms for infrared dim target detection. Liu et al. [30] intro-
duced an enhancement to YOLOv3 by integrating the Darknet-53 backbone network with
SPP (Spatial Pyramid Pooling) for feature extraction, enabling the fusion of local and global
features, thereby enhancing the representational capability of feature maps. However,
this approach yields lower accuracy and is tailored specifically for infrared ship detection
scenarios. Hou et al. [31] proposed ISTDU-Net (Infrared Small-Target Detection U-Net),
an infrared dim target detection network, which boosts the weights of small target feature
groups and incorporates fully connected layers to suppress backgrounds with similar
structures, effectively reducing false alarm rates. Fan et al. [32] leveraged a multi-head
self-attention mechanism to accurately capture target location information and replaced
the CIoU (Complete Intersection over Union) loss with NWD (Normalized Wasserstein
distance) loss, slightly improving target detection performance. Nonetheless, this approach
significantly increases the number of parameters, leading to a decrease in detection speed.
He [33] proposed the IRI-CNN detection algorithm for airborne infrared dim and small
targets, effectively reducing false alarm rates but with compromised real-time performance.
Mou [34] presented an improved algorithm based on a feature recombination sampling
method. Experimental results demonstrated that this approach outperforms the original
model in terms of precision and recall, albeit with a larger number of model parameters
and lower computational real-time performance. Yang R [35] modified YOLOv5 for small
targets, optimizing anchor boxes and introducing an attention mechanism to improve de-
tection accuracy, but real-time performance remained challenging. While these algorithms
have addressed infrared small target detection to some extent, they lack targeted research
on infrared dim and small target detection. Hence, to address the real-time issue in infrared
dim and small target detection, it is imperative to devise more lightweight network models.

2.2. Model Lightweighting Methods Based on Deep Learning Networks

In order to improve the efficiency of deep learning-based infrared dim and small
target detection and facilitate deployment on resource-constrained mobile platforms and
embedded devices, researchers have conducted extensive studies on network lightweight-
ing. The core of lightweight networks lies in compressing and optimizing the network
structure while maintaining accuracy, thereby improving the computational efficiency of
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the algorithm. SqueezeNet [36], as one of the earliest proposed lightweight networks,
achieves model parameter compression through the use of Fire modules and introduces
split convolutions to reduce the computational burden. In 2017, the Google team presented
MobileNetV1 [37], a lightweight convolutional neural network that employs depthwise
separable convolutions in place of standard 3 × 3 convolutions, significantly decreasing
the model parameter count and computational complexity. MobileNetV2 [38] introduced
inverted residuals and linear bottlenecks, enhancing the model performance and expressive
power. Building upon its predecessors, MobileNetV3 [39] underwent improvements and
optimizations, leveraging neural architecture search to determine the network architecture
and parameters, thereby reducing computational requirements and latency while main-
taining accuracy. ShuffleNet [40] incorporates pointwise group convolutions, dividing
convolution operations into multiple groups, which further reduces computation. Ghost-
Net [41] generates a few “intrinsic feature maps” through conventional convolutions and
then produces more similar “ghost feature maps” via depthwise separable convolutions,
yielding feature maps with the same number of channels as traditional convolutional layers
but at a significantly lower computational cost. Among these, Xception-SSD [42] and
MobileNet-SSD [43] are exemplary lightweight backbones for detection algorithms. They
apply the principles of ShuffleNet and MobileNet, respectively, to reduce SSD network pa-
rameters while maintaining detection accuracy, thereby simplifying the model complexity.

Apart from designing network architectures, researchers have also introduced various
model compression techniques: (1) Model pruning techniques, which are divided into
structured pruning and unstructured pruning [44]. Structured pruning reduces model
complexity by decreasing network structural modules, such as channel pruning and layer
pruning, while unstructured pruning directly eliminates weight parameters to shrink model
size; (2) low-rank factorization [45] employs matrix decomposition to reduce the complex-
ity of convolutional layers or fully connected layers in neural networks; (3) knowledge
distillation [46] transfers knowledge from large and complex models to lightweight models,
enabling model compression without sacrificing much accuracy.

Based on the aforementioned lightweight methods, Liu et al. [47] proposed the
MobileNet-YOLO network, which features low computational costs and can efficiently
operate on smart devices with limited power and resources. SHA et al. [48] introduced
a reusable residual network, utilizing a backbone network constructed with three-layer
reusable connection residual blocks for pedestrian feature extraction. This approach not
only reduces the model size but also enhances its feature extraction capabilities. Li et al. [49]
adopted the Ghost module in place of standard convolutions for pedestrian recognition on
the basis of YOLOv5s, making the model lighter while maintaining accuracy. In terms of
attention mechanism research, Zou et al. [50] presented a multi-mask correction attention
module to enhance pedestrian contour features. Li et al. [51] embedded an improved chan-
nel attention mechanism module into the FairMOT backbone network, effectively reducing
the missed detection rate of occluded pedestrians. Hao et al. [52] proposed a cross-scale
feature fusion attention mechanism module, significantly improving the detection of small
targets. However, while these lightweight networks significantly increase detection speed
in end-to-end detection, they are mostly suitable for visible light target detection. Infrared
images, due to their unique imaging characteristics such as long wavelengths, high noise
levels, poor spatial resolution, and sensitivity to ambient temperature changes, thus limit
the generalization ability of algorithms.

3. The Proposed Lightweight Infrared Small Target Detection Algorithm

In order to address the challenges faced by the YOLOv5 network model when detect-
ing small targets like aircraft, including slow inference speed, low accuracy, and missed
detections, this study proposes an enhanced network model, YOLOv5-IR, and an even
more streamlined version of YOLOv5-IRL. Figure 1 depicts the overall algorithmic frame-
work. Drawing inspiration from MobileNetV3 design principles, this model incorporates
a lightweight backbone feature extraction network as a substitute for YOLOv5 backbone
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component. By designing a feature fusion network and expanding its depth, additional
detection layers for small-sized targets are integrated into large-scale feature maps to en-
hance detection performance. Furthermore, to prioritize poor-quality targets, an adaptive
weight loss function is devised, which amplifies the prediction box loss proportion for
low-quality target images. Lastly, to facilitate efficient deployment on resource-constrained
platforms, network compression techniques are applied, enabling a significant reduction in
the number of parameters while maintaining acceptable accuracy levels.
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(c) Head.

3.1. Network Architecture Design and Optimization

By analyzing the structure of the YOLOv5 network, it is observed that the use of
standard convolutions leads to increased computational load in the convolution layers and
inefficient utilization of parameters. Therefore, the YOLOv5-IR backbone feature extraction
network structure opts to replace standard convolutions with depthwise separable convo-
lutions, which have a smaller computational load. It aims to maintain detection accuracy
while creating a lightweight network model by combining depthwise separable convolu-
tions with attention mechanisms. Specifically, the input feature map is set to 6406403, and
the feature map is processed multiple times using 1 Conv_bn_hwish convolution module
and 11 Mv3_block modules in sequence. Additionally, CBAM attention mechanisms are
added after the depthwise separable convolutions in the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th,
9th, 10th, and 11th Mv3_block modules, as shown in Figure 2.
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Figure 2. The backbone network architecture.

Based on the integration of channel attention and spatial attention, CBAM enables
the model to simultaneously focus on significant channels and spatial locations, thereby
enhancing the accuracy of infrared dim and small target feature representation and the
decision-making capability of the model. It is divided into two parts: a channel attention
block and a spatial attention block. The weighted results of the two blocks and the original
feature map are combined to obtain the output information. Its structure is illustrated in
Figure 3.
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Channel attention can identify and enhance the feature channels that are most crucial
for the current infrared target detection while filtering out irrelevant information from
the features, thereby enhancing the model sensitivity to key information about infrared
small targets. The channel attention block processes the input feature map through global
maximum pooling and global average pooling to transform it into one-dimensional vectors.
These two vectors are then passed through fully connected layers and activated with the
sigmoid function, and their sum is fused to obtain the channel attention weights. Its
structure is presented in Figure 4.
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Figure 4. CBAM channel attention chunking.

Spatial attention establishes global connections based on the interrelationships be-
tween each element within the target features, enabling feature enhancement within fea-
tures of the same level through attention mechanisms, thereby strengthening the feature
representation of useful information. The spatial attention block applies the channel atten-
tion weights to the input information. Different from the channel attention block, it expands
the channels through sequential global maximum pooling and average pooling and then
uses a standard convolution and sigmoid activation function to obtain two-dimensional
spatial features, as shown in Figure 5.
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To further enhance the model’s ability to extract infrared target features, in this paper,
the feature fusion network is improved; its structure is illustrated in Figure 1b.

(1) The proposed model incorporates an overall structure with one upsampling and one
downsampling process in the feature fusion network. Specifically, three upsampling
modules and three downsampling modules are designed.

(2) As the network deepens and learns deeper-level features continuously, it is prone to
losing shallow-level information. To retain the features from the backbone feature
extraction network, the output values of the 3rd layer from the backbone are fused
with the output values of the 22nd layer from the upsampling structure in the feature
fusion network. Similarly, the 5th layer is fused with the 19th layer and the 8th
layer is fused with the 14th layer. To prevent feature loss during upsampling and
downsampling operations in the feature fusion network, the output values of the
20th layer from the upsampling structure are fused with the output values of the 25th
layer from the downsampling process, the 16th layer is fused with the 28th layer, and
the 12th layer is fused with the 31st layer. This approach aims to fuse shallow and
deep features.

(3) Aiming at the challenges posed by the dim and insensitive target representation
characteristics of infrared small targets, an additional detection head suitable for small
targets is introduced in this improvement. Four detection heads are connected to the
23rd, 26th, 29th, and 32nd layers of the feature fusion network, respectively. The sizes
of their output feature maps are 20 × 20, 40 × 40, 80 × 80, and 160 × 160, respectively.
A preset anchor box specifically designed for detecting small and dim targets is also
added. The sizes of the anchor boxes, from large to small, are [(116, 90), (156, 198),
(373, 326)], [(30, 61), (62, 45), (59, 119)], [(10, 13), (16, 30), (33, 23)], and [(5, 6), (8, 14),
(15, 11)], respectively.
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The feature fusion network proposed in this paper incorporates a crucial module, C3,
designed to effectively extract fused network features. It primarily comprises two branches:
one utilizing standard convolution and the other featuring a residual module within.
The structure is depicted in Figure 6, where “Conv” represents the standard convolution
module, encompassing standard convolution, Batch Normalization (BN) for normalization,
and SiLU as the activation function, whereas “Bottleneck” denotes the residual module.
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3.2. Design of a Detection Head Oriented towards Infrared Characteristics

Infrared images are prone to significant interference due to their unique acquisition
principles and capture methods. The detection head, as a key structure that directly
processes infrared images, plays a crucial role in the overall network model. The YOLOv5
model processes input multi-scale feature maps through its detection head to detect objects
of varying sizes. The detection head typically incorporates convolutional layers, which are
utilized to extract crucial information from the feature maps and facilitate further analysis.

In the YOLOv5 model, the Detection Head receives as input three feature maps
of different sizes, which have undergone feature fusion. These feature maps undergo
convolutional operations, with 1 × 1 convolution kernels employed to adjust the number
of channels to suit subsequent prediction tasks. The 1 × 1 kernels facilitate dimensionality
expansion or reduction of channels without altering the spatial dimensions of the feature
maps, enhancing nonlinearity and integrating features through cross-channel information
interaction. This design aids the model in extracting richer feature representations while
preserving spatial information.

On the other hand, the SimAM attention mechanism is a parameter-free attention mod-
ule that discovers the importance of each neuron by optimizing an energy function, thereby
assigning a unique weight to each neuron in the feature map. This mechanism enables
the model to better focus on critical information of targets in infrared images, enhancing
detection accuracy. Notably, SimAM utilizes only a single weight to represent the feature
importance of an individual neuron. SimAM defines the importance of feature weights
through an energy function associated with each neuron, as illustrated in Equation (1):

et(wt, bt, y, xi) =
1

M − 1

M−1

∑
i=1

(y0 − x̂i)
2 +

(
yt − t̂

)2 (1)

In the equation, M = H × W represents the number of neurons within a channel of
the feature map, where wt and bt are the weights and biases for channel transformation,
respectively. xi and t denote other neurons and the focal neuron in the feature map, while y
is the output value of the feature map. To identify the linear relationship between neuron t
and other neurons within the same channel, the analytical solution of each channel energy
function is sought. This reveals that the lower the minimum energy of each channel, the
greater the distinction between neuron t and its surrounding neurons, indicating a higher
significance of this neuron. The SimAM attention mechanism is illustrated in Figure 7.
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Based on the designed backbone network, the simplistic 1 × 1 standard convolution in
the head layer output process is abandoned. Instead, a convolutional module resembling a
residual structure is constructed, and the SimAM attention mechanism is incorporated into
this module, as shown in Figure 8.
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3.3. Design of an Adaptive Weighting Loss Function

In the original YOLOv5, there are three types of loss functions: classification loss,
object confidence loss, and bounding box regression loss. Infrared images often suffer
from high noise or objective shooting conditions such as environmental disturbances
during acquisition, and the infrared targets in the images inevitably exhibit poor quality
characteristics. Moreover, there are differences between clear and low-quality samples
among different targets or even within the same target. Figure 9 illustrates a comparison of
high, medium, and low-quality sample images in the dataset.
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Addressing this characteristic of infrared images, this paper proposes a Wise_IOU loss,
which incorporates an adaptive weighting mechanism into IOU to adjust the loss weights
of clearer objects in infrared images. This approach aims to encourage the network model
to pay more attention to low-quality targets, thereby enhancing the overall prediction and
generalization capabilities of the model. The specific calculation for Wise_IOU is based on
Equations (2) and (3):

γWIOU = exp

(
(x1 − x2)

2 + (y1 − y2)
2(

W2
3 + H2

3
)∗

)
(2)
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Loss(WIOU) = Loss(IOU)·γWIOU (3)

In the formula: γWIOU represents the adjustment factor for IOU loss, x1 and y1 denote
the coordinates of the center point of the ground truth box, while x2 and y2 represent the
coordinates of the center point of the predicted box. W3 and H3 signify the length and width
of the smallest enclosing box of the ground truth box and the predicted box. The value
range of γWIOU is [1, e) , and its role is to enhance the weight proportion of low-quality
predicted boxes as much as possible. The step

(
W2

3 + H2
3
)∗ separates the smallest enclosing

box metrics from the anchor box’s own parameters, further accelerating the convergence
speed of the loss. The framework and formula descriptions presented above constitute the
proposed improved algorithm YOLOv5-IR in this paper.

3.4. Lightweight Design of the Proposed YOLOv5-IR

In order to meet the deployment needs of resource-constrained mobile platforms, this
paper proposes an enhanced lightweight model, YOLOv5-IRL (YOLOv5-IR Lightweight),
which incorporates channel pruning to compress and accelerate the previously designed
YOLOv5-IR network model. The entire process is illustrated in Figure 10.
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(1) Analysis of BN Layer Algorithm

Since the introduction of the Batch Normalization (BN) layer algorithm, due to its
powerful integration and convergence capabilities, subsequent deep learning algorithms
have nearly all incorporated the BN layer into each convolution operation. The BN layer
accelerates the training process by normalizing the layer input, yet it incorporates learnable
parameters, including scale and shift parameters.

Therefore, analyzing the algorithm structure of the BN layer can provide a strong basis
for judging the importance of channels in the convolution layers. The BN layer algorithm
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is mainly divided into three steps. First, calculate the mean µ and variance σ2 of a batch of
image data output from the preceding convolution layer. If the number of image data is n,
the calculation formulas are as follows:

µ =
1
n

n

∑
i=1

Xi (4)

σ2 =
1
n

n

∑
i=1

(Xi − µ)2 (5)

Then, the input image data is standardized and normalized, transforming the data
into a normal distribution with a mean of 0 and a variance of 1. To avoid dividing by zero,
ε is used as a small approximate value that is not equal to 0. The calculation formula is
as follows:

Xi − µ√
σ2 + ε

= X̂i (6)

(2) Sparse Training Method

Sparse training is a method that introduces sparsity during model training, aiming
to reduce model complexity and enhance generalization ability. In deep learning, sparse
training is typically achieved through regularization techniques, such as L1 regularization,
which encourages the model to learn fewer non-zero parameters during training. For Batch
Normalization (BN) layers, sparse training can be implemented by pruning the scaling
parameter γ.

In a BN layer, each channel has a scaling parameter γ and a small shift parameter
β, which are learned during training to adjust the output of each channel. The goal of
sparse training is to identify and retain γ parameters that significantly contribute to model
performance while eliminating those with lesser contributions. This approach reduces the
number of model parameters, thereby decreasing model complexity.

The purpose of the BN layer is to normalize the input of the layer, ensuring that
the output of each channel has a zero mean and unit variance. Due to the loss of spatial
distribution information resulting from normalized image data, spatial transformations
such as scaling and translation are necessary. These transformations enable the image after
normalization to be linearly transformed back to the original image while preserving its
features. The transformation formula is as follows:

Yi = γX̂i + β = γ
Xi − µ√

σ2 + ε
+ β (7)

where Yi represents the output value of the original image after passing through the BN
layer, γ is the scaling parameter for the linear transformation performed by the BN layer,
and β is the translation parameter. The pruning operation on the convolution layer channels
can prune the scaling parameters after the BN layer normalizes the input image, removing
the γ parameters with less control over channel importance to achieve compression of the
number of convolution layer channels.

Before pruning the γ parameters, sparse training is required. Firstly, it is necessary to
measure the importance of different channel γ parameters. Therefore, L1 regularization is
introduced for the γ parameters, and the obtained L1 regularization norm sr can serve as a
penalty parameter for the network training loss function. The regularization loss is defined
as Equations (5) and (6):

Z(γ)=|γ| (8)

L = ∑
(x,y)

l( f (x, w), y) + α ∑
γ∈τ

Z(γ) (9)

In the formula, w represents the trained weights, and l( f (x, w), y) represents the loss
obtained from network training. Since the L1 regularization norm sr of the γ parameters
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may reduce the prediction accuracy of the weights obtained after network training, it
is necessary to introduce an appropriately sized balancing factor α to control the weight
between the regularization term and the original loss term, ensuring that the model pursues
sparsity without excessively compromising accuracy. After sparse training, channels
corresponding to γ parameters close to zero can be considered unimportant and pruned,
while those with larger γ values are deemed important and should be retained.

(3) Pruning and Fine-tuning

After the completion of sparse training, the importance of each channel in the model
was evaluated, allowing for pruning to be performed. By setting a pruning threshold,
redundant channels corresponding to the γ parameters after regularization in the BN layer
of the convolution module are pruned. The specific operation process is shown in Figure 11.
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Figure 11. Sparse training combined with channel pre-pruning. The green dashed line indicates
the channel layer that can be pruned. The blue solid line indicates the channel layer that cannot
be pruned.

In the above figure, each of the n channels in convolution layer i has a corresponding
γ parameter value. If the pruning threshold is set to 0.15, channels such as Cin2, Cin4, and
Cin6, which have γ values of 0.01, 0.13, and 0.09, will be removed. Channels like Cin1, Cin3,
and Cin5, with evaluation values greater than the threshold, will be retained and passed
to the next convolution layer i + 1. Therefore, the number of channels will be reduced in
subsequent convolution operations, resulting in a decrease in the network parameter count.
The pruned network is shown in Figure 12 below.

Since channels with small γ values have relatively low importance, pruning them
does not have a significant impact on the convolution operation and the overall prediction
accuracy of the network model. However, after pruning, the reduced number of model
parameters may affect its performance, necessitating fine-tuning to restore accuracy. Fine-
tuning is an iterative process that involves adjusting the learning rate and repeatedly
training to optimize the remaining parameters. During each iteration, the pruning threshold
is adjusted based on the model performance feedback to strike the optimal balance between
increasing the pruning rate and maintaining predictive accuracy.
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4. Experimental Verification

This paper describes the metrics and datasets used in this study and presents the
results. The experiments were conducted using Python 3.8, PyTorch 1.10.0, and Cuda 11.3
on an NVIDIA GeForce RTX 3090 with an Intel Core i9-10980XE CPU @ 3 GHz.

4.1. Dataset

Due to the scarcity of publicly available infrared small target image datasets, the
limited availability of measured data samples, and the majority of them being unsuitable
for missile-borne guidance systems, this paper has created a custom infrared small target
detection dataset based on the dim and small aircraft series [53] for detecting and tracking
small aircraft targets in ground/air backgrounds. This image series focuses on detecting
one or multiple fixed-wing unmanned aerial vehicle (UAV) targets by simulating tracking
and detection of low-altitude flying small aircraft targets. It serves as the foundation for
providing precise identification data of infrared dim and small targets. The infrared data
has a wavelength of 3~5 µm, and the image size is 256 × 256 pixels. The acquisition
scenarios include various backgrounds, such as sky and ground, totaling 22 data segments,
30 trajectories, 16,177 image frames, and 16,944 targets. This dataset is characterized by
a rich number and variety of targets, low target brightness and contrast, complex and
extensive scenes, and the loss of texture and color information, making it representative
of real infrared small targets. Sample images are shown in Figure 13. The data collection
targets were aerial fixed-wing UAVs (fuel-powered), and the basic parameters of the UAV
targets used in the supplementary experiments are presented in Table 1.

Table 1. Basic parameters of unmanned aerial vehicles (UAVs).

Indicator Items Parameter

Fuselage length 2.0 m
Wingspan length 2.6 m

Flight speed Airspeed: 30 km/h
Turning radius 130 m

Near and far ends of the flight route Near end: 500 m, Far end: 5000 m
Flight altitude Near end: 50 m, Far end: 500 m
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To verify the effectiveness of the improvements made to the network model in this
paper, six data segments (Data1, Data2, Data3, Data7, Data16, and Data20) from the dim and
small aircraft image series representing six types of targets were selected as experimental
data for dataset creation. The dataset includes 399 images from Data1, 599 images from
Data2, 100 images from Data3, 399 images from Data7, 499 images from Data16, and 400
images from Data2, totaling 2396 images and 2995 targets. The dataset was divided into
training, validation, and testing sets in a ratio of 6:3:1. The backgrounds consist of three
scenarios: noisy sky, mountain peaks meeting the sky, and complex ground, with target
states all affected by complex backgrounds or interactions between targets. The main
information of the dataset is shown in Table 2.

Table 2. Key information for each segment in the self-made dataset.

Data
Segments

Number of
Images

Number of
Targets

Training Set
Validation

Set
Test Set Background State

Data1 399 399 240 120 39 Noise sky
The target moves in close

proximity

Data2 599 1198 360 180 59 Noise sky
The two targets gradually

intersect

Data3 100 100 60 30 10
The mountain peaks

meet the sky
The target moves over long

distances

Data7 399 399 240 120 39 Complex ground The target is from near to far

Data16 499 499 300 150 49 Complex ground The target is from far to near

Data20 400 400 240 120 40
The mountain peaks

meet the sky
The target is from near to far
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4.2. Training Design

The parameter settings for the training process are as follows: The input infrared image
size was set to 640 × 640, scale transformation and data augmentation were performed
before training, the number of training epochs was 200, the batch size for each training
iteration was 16, the initial learning rate (Lr0) was set to 0.01, the SGD momentum was
set to 0.937, the network model depth (Depth_multiple) was 0.33, and the network model
width (Width_multiple) was 0.50.

4.3. Evaluation Metrics

In different deep learning tasks and application scenarios, appropriate evaluation
metrics and the comprehensive performance of multiple metrics can effectively demonstrate
the effectiveness of deep learning network models. In this paper, three evaluation metrics
are used to assess the model performance: the number of model parameters (parameters),
the time taken to detect each image (ms/img), and the mean Average Precision (mAP).

(1) Model Parameters

Model parameters refer to the total number of parameters that need to be learned
during model training, including various weight and bias parameters. They can be used
to evaluate the size and expressive power of the model. For each convolutional layer,
Cin represents the number of input image channels, Cout represents the number of output
channels, kw and kh respectively represent the width and height of the convolution kernel,
and w represents the bias. The weight parameters obtained from one convolution operation
are Cin × kw × kh. Therefore, the number of model parameters for each convolutional layer
is calculated as Equation (9):

Parameters = (Cin × kw × kh + w)× Cout (10)

(2) Time taken to detect each image (ms/img)

The time taken to detect each image, also known as the inference time, refers to the
duration required by the network model to process and analyze a single infrared image or
a frame of video. This metric is used to evaluate the detection and inference speed of the
network model.

(3) Mean Average Precision (mAP)

To measure the detection effectiveness of a network model for different predetermined
targets in detection tasks, mean average precision (mAP) is a classic evaluation metric.
It refers to the average level of detection accuracy for classified targets under different
Intersection over Union (IOU) threshold settings, and can effectively express the quality
of the network model detection performance. The calculation of mAP is closely related to
precision, recall, and average precision (AP).

If TP represents true positive samples, FP represents false positive samples, TN
represents true negative samples, and FN represents false negative samples, then precision
indicates the proportion of true positive samples among the positive samples predicted by
the network model. The calculation formula for precision is as follows:

Precision =
TP

TP + FP
(11)

Recall refers to the proportion of true positive samples predicted by the network model
out of the total true positive samples. The calculation formula for recall is as follows:

Recall =
TP

TP + FN
(12)
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Average Precision (AP) is the area integral between the P(R) curve, which relates
precision and recall, and the coordinate axes. The calculation formula is as follows:

AP =
∫ 1

0
P(R)D(R) (13)

Therefore, the mean Average Precision (mAP) is the arithmetic mean of the Average
Precision (AP) across multiple target categories.

4.4. Detection Results and Quality Evaluation

To demonstrate the superiority of the proposed algorithm in this paper, it is compared
with classical object detection algorithms, including SSD, YOLOv3, YOLOv5, and YOLOv7.
Additionally, comparisons are also made with two typical lightweight object detection
algorithms: Xception-SSD and MobileNet-SSD. The SSD employs an anchor strategy,
presupposing anchors with different aspect ratios, and each output feature layer predicts
multiple detection boxes based on these anchors. SSD is capable of multi-scale detection,
with shallow layers used for detecting small objects and deeper layers for large objects.
Xception-SSD and MobileNet-SSD replace the original backbone network in SSD with
Xception and MobileNet, respectively, achieving higher detection accuracy while reducing
the number of parameters.

YOLOv3 divides the input image into grids, with each grid responsible for predicting
objects whose centers fall within it. YOLOv3 uses Darknet-53 as its backbone, adopting a
residual structure to improve training depth and stability. By predicting multiple bounding
boxes and class probabilities within each grid, YOLOv3 can quickly and accurately detect
objects in images. YOLOv5 utilizes CSPDarknet53 as its efficient backbone network and
introduces a Path Aggregation Network (PANet) to enhance feature fusion. It also employs
Mosaic data augmentation to improve the model’s ability to detect small objects. YOLOv7
incorporates techniques such as model reparameterization, dynamic label assignment, and
compound scaling, enhancing detection accuracy while maintaining real-time processing
speed. These algorithms exhibit certain advantages in detecting infrared dim and small
targets, making them suitable as comparison algorithms for the proposed algorithm in this
paper. Table 3 presents a comparison of model sizes and performance among different
algorithms, with the best results highlighted in bold.

Table 3. Comparison of model size and performance.

Model Precision Recall mAP0.5 Parameters/M ms/img

YOLOv3 [22] 0.647 0.641 0.634 61.53 10.5

YOLOv5m [35] 0.702 0.709 0.699 20.95 7.6

YOLOv5s [32] 0.689 0.697 0.684 7.04 5.9

SSD(VGG) [19] 0.652 0.645 0.657 90.6 15.5

Xception-SSD [42] 0.675 0.672 0.663 56.8 14.92

MoblieNet-SSD [43] 0.679 0.683 0.674 43.6 11.76

YOLOv7 [26] 0.658 0.664 0.652 71.3 16.8

YOLOv5-IR 0.712 0.719 0.708 4.02 5.1

YOLOv5-IRL 0.698 0.705 0.702 3.83 4.9

The best results highlighted in bold.

From the experimental results presented in Table 3, it can be observed that the detection
algorithm model proposed in this paper, specifically tailored for the characteristics of
infrared dim and small targets, exhibits a smaller number of parameters, strong real-time
performance, and achieves the best detection accuracy. Among all the detection algorithms,
YOLOv5-IR stands out with the highest precision of 0.712, recall of 0.719, and mAP0.5 of
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0.708, despite having a relatively low number of parameters at 4.02 and a fast processing
speed. Furthermore, the proposed lightweight version, YOLOv5-IRL, demonstrates only a
slight decrease in detection accuracy, but with an even smaller number of parameters and
enhanced real-time performance.

Comparisons of detection effects on some images are shown in Figures 14 and 15. In
Data1, the target is in a high-noise sky background and undergoing attitude changes during
close-range flight. In Data2, the targets are flying at a long distance, transitioning from
parallel to crossing flights, with unremarkable characteristics causing mutual interference.
Data3 also features a high-noise sky background, with the target flying in a tilted attitude,
providing very limited features for extraction. Data7 is in a rural field and muddy ground
boundary area, where the background of the target changes continuously during flight.
Data16 features a dense and complex forest background, with low contrast between the
target and the background. Data20 is in a boundary area between a town and mountain
peaks, with an overall low brightness in the background and the target appearing as a point.
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As demonstrated by Figures 14 and 15, the YOLOv5s network model shows more pro-
nounced detection effects for targets with simple backgrounds like Data1, but its detection
accuracy decreases for crossing and tilted flight targets in Data2 and Data3. When dealing
with Data7, Data16, and Data20, due to factors such as overall low background brightness,
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significant background variations, large target attitude changes, and small target feature
areas, the detection accuracy is not high, and missed detections may occur. The YOLOv5-IR
network model, on the other hand, can better handle these influencing factors, not only
slightly improving detection accuracy but also better avoiding missed detections. The re-
sults indicate that the algorithm presented in this paper has better recognition outcomes for
situations where the target background is difficult to effectively distinguish. Furthermore,
the detection results of the algorithm have bounding boxes that fit the targets more closely,
providing higher localization accuracy for small targets. Therefore, the algorithm in this
paper offers higher detection accuracy for small infrared targets in complex environments.

In summary, the algorithm proposed in this paper shows higher detection accuracy for
infrared dim and small targets in complex environments, while requiring a smaller number
of model parameters and achieving shorter detection times.

4.5. Ablation Experiment

To illustrate the advantages of the improvements in the proposed YOLOv5-IR algo-
rithm, ablation experiments were conducted in this paper. The experiment consisted of
four groups: Group 1 was the original YOLOv5s network model; Group 2 replaced the
backbone of the original network with an improved attention convolutional module; Group
3 added a small target detection layer based on Group 2; Group 4 replaced the CIOU loss
function of the network model in Group 3 with the WIOU loss function. The experimental
results for each group are shown in Table 4. The results indicate that Group 2 did not show
significant improvement in metric parameters compared to Group 1, primarily because the
improvement focused on reducing convolutional computations for network lightweighting.
The addition of the detection layer in Group 3 provided larger feature maps and smaller
detection anchor boxes during detection, enhancing the network model sensitivity to small
infrared targets, resulting in a 1.4% increase in precision, a 2.5% increase in recall, and a
2.1% increase in mean average precision. Group 4 further adjusted the loss weight configu-
ration using an improved loss function to balance samples of varying quality in the dataset,
leading to a 1.1% increase in precision and a 0.2% increase in mean average precision com-
pared to the original network model, showing slight improvements in evaluation metrics.
Figure 16 provides a vertical comparison of the ablation experiment metrics.

Table 4. Comparison of ablation experiment indicators.

Groups Backbone Head WIOU Precision Recall mAP0.5

1 68.9% 69.7% 68.4%

2
√

68.7% 69.3% 68.5%

3
√ √

70.1% 72.2% 70.6%

4
√ √ √

71.2% 71.9% 70.8%
A checkmark (

√
) indicates that this improvement has been added.

In order to validate the effectiveness and superiority of the improvements to the
backbone model and feature network of YOLOv5s in this paper for infrared dim and small
target detection, the original YOLOv5s was trained using the same dataset under identical
training parameters and hardware conditions. The model with the best performance
across all batches was then tested to evaluate its detection performance. A comprehensive
analysis and comparison of the training convergence and detection performance between
the improved and original YOLOv5s models was conducted based on all performance
evaluation metrics. During training, the mean Average Precision at 0.5 IoU (mAP0.5),
Precision, and Recall are presented in Figure 17, where the YOLOv5s-Mv3-st model refers
to the third group of models.
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The effects of the two network models on various metrics during training are shown
in Figure 17. As can be seen from Figure 17, the orange curve represents the changes in the
performance of the YOLOv5-Mv3-st network model with training rounds, while the blue
curve represents the same for the YOLOv5s network model. As the number of training
rounds increases, the changes in the two curves initially fluctuate within a small range.
When the training reaches 40 rounds, a turning point is reached, and the training effect
becomes significant. When the training proceeds to around 80 rounds, the increase in
evaluation metrics slows down, and finally, they gradually stabilize. Furthermore, analysis
of the numerical metrics shows that the lightweight model constructed in this chapter has
slightly improved overall detection and recognition capabilities for small infrared targets
compared to the original YOLOv5s model. The original YOLOv5s model has an mAP0.5
of 68.4%, a Precision of 68.9%, and a Recall of 69.7% for dataset detection. The improved
YOLOv5-Mv3-st network model has an mAP0.5 of 70.6%, a Precision of 70.1%, and a Recall
of 72.2%, which are increased by 2.2%, 1.2%, and 2.5%, respectively. In addition, the yellow
curve shows a significant improvement over the blue curve in a smaller number of training
rounds, indicating that YOLOv5-Mv3-st has stronger adaptability and sensitivity to the
training and recognition of small infrared targets and can reach the optimal detection
effect faster.

For the further lightweight YOLOv5-IRL algorithm, the level of pruning significantly
influences the model accuracy. In order to validate the optimization effect and effectiveness
of pruning on the network model in this experiment, a comparison was made between the
mean Average Precision at 0.5 IoU (mAP0.5) of models under various pruning degrees and
that of the YOLOv5-IR model. The experimental results are summarized in Table 5 below.
The bold font in Table 5 denotes the proposed YOLOv5-IRL.

Table 5. Comparison of the pruning results.

Model Pruning Rate Original Network
mAP0.5

After Fine-Tuning
mAP0.5 Parameters/M ms

YOLOv5-IR
0 70.8% - 4.02 5.1

0.2 68.9% 70.2% 3.83 4.9

0.3 67.8% 68.3% 3.56 4.6

0.4 64.7% 65.1% 3.25 4.3

0.5 59.9% 61.5% 3.09 3.9

The bold font in the Table 5 denotes the proposed YOLOv5-IRL.

As shown in Table 5, with the increase in pruning rate, the number of network model
parameters gradually decreases, leading to a slight reduction in the detection time for a
single image. However, this is accompanied by a continuous decrease in the mean Average
Precision at 0.5 IoU (mAP0.5). When the pruning rate is 20%, the mAP0.5 of the fine-tuned
model decreases by only 0.6% compared to the original model, with a reduction of 0.19 MB
in model parameters and a 0.2 ms decrease in detection time. At a pruning rate of 30%, the
mAP0.5 further drops by 2.5%, accompanied by a 0.27 MB reduction in model parameters
and a 0.3 ms decrease in detection time. However, when the pruning level is too high, while
the detection time still decreases to some extent, the detection accuracy of the fine-tuned
model decreases significantly, with mAP0.5 values of 65.1% and 61.5%, respectively. These
results indicate that an excessively high pruning rate can lead to the removal of weights that
effectively represent key target features, reducing the network model size but significantly
impacting its detection accuracy. Therefore, this paper selects the YOLOv5-IR version
with a pruning rate of 20% as the more lightweight version, YOLOv5-IRL, to enhance
the feasibility of deploying the network model on resource-constrained platforms and the
effectiveness of detection.
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5. Discussion

In this paper, YOLOv5-IR and YOLOv5-IRL algorithms are proposed to achieve per-
formance improvements in the field of infrared small and dim flying target detection.
By integrating the MobileNetv3 depthwise separable convolution module, the model
parameter count was successfully reduced while maintaining high detection accuracy.
Experimental results indicate that compared to YOLOv5s, the improved models exhibit
increased performance in mAP, Precision, and Recall, demonstrating that the modification
enables better detection outcomes with fewer parameters. This improvement stems from
several factors: Firstly, the incorporation of numerous attention mechanisms in the back-
bone feature extraction network effectively retains spatial and channel-wise key features
of interest during the deep convolutional process, facilitating the next convolution step.
Secondly, the increased upsampling and convolution layers in the feature fusion network,
through cross-fusion, further deepen the integration of shallow and deep features, enabling
the model to prioritize shape characteristics over semantic features. Additionally, the
inclusion of target detection heads at higher levels of the feature fusion network, along with
small-sized anchor boxes scanning over larger feature maps rich in detailed features, allows
the model to detect even smaller targets. Lastly, a novel pruning structure designed for the
YOLOv5-IR backbone network enables the proposed YOLOv5-IRL model to achieve faster
detection speeds on resource-constrained devices with minimal precision compromise.

However, despite the advancements in lightweighting achieved by YOLOv5-IR and
YOLOv5-IRL, limitations persist. Firstly, while the model parameter count has been re-
duced, its performance in handling target detection tasks under extremely low contrast
and high noise environments still has room for improvement. Secondly, while the modified
loss function WIOU enhances the model generalization ability for low-quality samples to
some extent, further adjustments may be necessary for complex real-world scenarios to
adapt to diverse target characteristics and background conditions. Future works will focus
on addressing these two limitations.

6. Conclusions

In this paper, an innovative algorithm YOLOv5-IR is proposed for infrared small and
dim target detection in complex environments, along with its further lightweighted version
YOLOv5-IRL. Through analysis and systematic experimental validation, the following
conclusions are derived:

(1) Network structure optimization: YOLOv5-IR outperforms the original YOLOv5s
model in key evaluation metrics such as mean Average Precision (mAP), Precision,
and Recall. This demonstrates that despite fewer parameters, the rational design
of spatial attention and channel management mechanisms effectively extracts in-
frared target features. The addition of an enhanced head layer, sensitive to small
targets, significantly enhances the focus on infrared small and dim targets. As a
result, the proposed model effectively improves the detection of such targets in
complex environments.

(2) Loss function optimization: By introducing an adaptive weighting loss function, the
model has intensified its focus on targets within low-quality samples, resulting in en-
hanced detection performance. This demonstrates the paramount importance of loss
function design in improving the model adaptability and generalization capabilities
in complex scenarios.

(3) Lightweight design: Through the integration of lightweight modules and model
pruning techniques, the proposed YOLOv5-IR and YOLOv5-IRL have faster detection
speeds while maintaining high accuracy in detecting infrared small and dim targets.
This supports the deployment and real-time application of the algorithms on mobile
devices.

Compared to YOLOv5, the proposed YOLOv5-IR and YOLOv5-IRL algorithms exhibit
a 42.9% and 45.6% reduction in model parameters, respectively, and a 13.6% and 16.9%
decrease in detection time. Additionally, they achieve a 2.4% and 1.8% improvement in
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mAP0.5, respectively. The algorithms presented in this paper demonstrate exceptional
performance in infrared small and dim target detection, striking a balance between detection
accuracy and real-time performance. They provide an effective solution for edge device
deployment in infrared target detection, particularly suitable for domains with stringent
requirements on computational resources and real-time capabilities. Future works will aim
to further optimize the model structure and enhance its robustness in detecting infrared
small and dim targets under extreme conditions.
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