Tectonic Activity Analysis of the Laji-Jishi Shan Fault Zone: Insights from Geomorphic Indices and Crustal Deformation Data
Abstract
:1. Introduction
2. Geological Background
3. Data and Methodology
3.1. Hypsometric Integral (HI)
3.2. Stream Length Gradient (SL)
3.3. Channel Steepness Index (ksn)
4. Results
4.1. Geomorphic Analysis of Drainage Basins by Flow Direction
4.2. Detailed Fault Segmentation in the Northern and Eastern LJSFZ
4.3. Correlation between Uplift Rates and Geomorphic Indices in the LJSFZ
5. Discussion
5.1. Segmented Results and Uncertainty
5.2. Segmentation and the Role of the Yellow River Valley in the Eastern Jishi Shan Faults
5.3. The Dynamic Mechanism of LJSFZ Segmentation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Slemmons, D.B.; Mao, F. Geometric pattern, rupture termination and fault segmentation of the Dixie Valley—Pleasant Valley active normal fault system, Nevada, USA. J. Struct. Geol. 1991, 13, 165–176. [Google Scholar] [CrossRef]
- Zhang, P.; Mao, F.; Slemmons, D.B. Rupture terminations and size of segment boundaries from historical earthquake ruptures in the Basin and Range Province. Tectonophysics 1999, 308, 37–52. [Google Scholar] [CrossRef]
- Milliner, C.W.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.; Sammis, C.G. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 L anders earthquake. Geochem. Geophys. Geosyst. 2015, 16, 1577–1598. [Google Scholar] [CrossRef]
- Klinger, Y.; Michel, R.; King, G.C. Evidence for an earthquake barrier model from Mw~ 7.8 Kokoxili (Tibet) earthquake slip-distribution. Earth Planet. Sci. Lett. 2006, 242, 354–364. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Predicting the endpoints of earthquake ruptures. Nature 2006, 444, 358–360. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Manighetti, I.; Zigone, D.; Campillo, M.; Cotton, F. Self-similarity of the largest-scale segmentation of the faults: Implications for earthquake behavior. Earth Planet. Sci. Lett. 2009, 288, 370–381. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Seismological and structural evolution of strike-slip faults. Nature 1988, 335, 340–343. [Google Scholar] [CrossRef]
- Craddock, W.H.; Kirby, E.; Harkins, N.W.; Zhang, H.; Shi, X.; Liu, J. Rapid fluvial incision along the Yellow River during headward basin integration. Nat. Geosci. 2010, 3, 209–213. [Google Scholar] [CrossRef]
- Wang, E.; Shi, X.; Wang, G.; Fan, C. Structural control on the topography of the Laji-Jishi and Riyue Shan belts in the NE margin of the Tibetan plateau: Facilitation of the headward propagation of the Yellow River system. J. Asian Earth Sci. 2011, 40, 1002–1014. [Google Scholar] [CrossRef]
- Lease, R.O.; Burbank, D.W.; Zhang, H.; Liu, J.; Yuan, D. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary? Tectonics 2012, 31, TC3011. [Google Scholar] [CrossRef]
- Yuan, D.-Y.; Ge, W.-P.; Chen, Z.-W.; Li, C.-Y.; Wang, Z.-C.; Zhang, H.-P.; Zhang, P.-Z.; Zheng, D.-W.; Zheng, W.-J.; Craddock, W.H.; et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics 2013, 32, 1358–1370. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Shan, X.; Zhong, M.; Wang, X.; Gao, Z. Fault Kinematics of the 2023 Mw 6.0 Jishishan Earthquake, China, Characterized by Interferometric Synthetic Aperture Radar Observations. Remote Sens. 2024, 16, 1746. [Google Scholar] [CrossRef]
- Yuan, D.Y.; Zhang, P.Z.; Lei, Z.S.; Liu, B.C.; Liu, X.L. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province. Earthq. Res. China 2005, 21, 93–102. [Google Scholar]
- Zhimin, L.; Qinjian, T.; Hongwei, T. Remote Sensing Characteristics of Laji Shan Fault. Plateau Earthq. Res. 2009, 21, 26–31. [Google Scholar]
- Kirby, E.; Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Cheng, Y.; He, C.; Rao, G.; Yan, B.; Lin, A.; Hu, J.; Yu, Y.; Yao, Q. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation. Tectonophysics 2018, 722, 11–24. [Google Scholar] [CrossRef]
- Huang, W.; Lv, Y.; Pierce, I.K.D.; Su, S.; Peng, J. Cosmogenic age constraints on rock avalanches in the Qinling Range associated with paleoearthquake activity, central China. Geomorphology 2022, 413, 108347. [Google Scholar] [CrossRef]
- Gao, M.; Hao, M.; Zeilinger, G.; Xu, X. Recent Uplift Characteristics of the Southeast Tibetan Plateau, an Analysis Based on Fluvial Indices. Remote Sens. 2023, 15, 433. [Google Scholar] [CrossRef]
- Guo, L.; He, Z.; Li, L. Responses of Stream Geomorphic Indices to Piedmont Fault Activity in the Northern Segment of the Red River Fault Zone. Remote Sens. 2023, 15, 988. [Google Scholar] [CrossRef]
- Shen, K.; Dong, S.; Wang, Y. Active Tectonics Assessment Using Geomorphic and Drainage Indices in the Sertengshan, Hetao Basin, China. Remote Sens. 2023, 15, 3230. [Google Scholar] [CrossRef]
- Xu, D.; He, Z.; Guo, L.; Wu, L.; Li, L. Response of the Stream Geomorphic Index to Fault Activity in the Lianfeng–Ningnan Segment (LNS) of the Lianfeng Fault on the Eastern Margin of the Tibetan Plateau. Remote Sens. 2023, 15, 2309. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Khan, S.D. Active Tectonics of the Frontal Himalayas: An Example from the Manzai Ranges in the Recess Setting, Western Pakistan. Remote Sens. 2020, 12, 3362. [Google Scholar] [CrossRef]
- Giona Bucci, M.; Schoenbohm, L.M. Tectono-Geomorphic Analysis in Low Relief, Low Tectonic Activity Areas: Case Study of the Temiskaming Region in the Western Quebec Seismic Zone (WQSZ), Eastern Canada. Remote Sens. 2022, 14, 3587. [Google Scholar] [CrossRef]
- Ji, T.; Zheng, W.; Yang, J.; Zhang, D.; Liang, S.; Li, Y.; Liu, T.; Zhou, H.; Feng, C. Tectonic Significances of the Geomorphic Evolution in the Southern Alashan Block to the Outward Expansion of the Northeastern Tibetan Plateau. Remote Sens. 2022, 14, 6269. [Google Scholar] [CrossRef]
- Zhang, P.-Z. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics 2013, 584, 7–22. [Google Scholar] [CrossRef]
- Fang, P.; Hou, G. Channel flow and fault segmentation with implications for the generation of earthquakes in the Longmenshan fault zone, eastern Tibetan Plateau. J. Asian Earth Sci. 2019, 177, 107–116. [Google Scholar] [CrossRef]
- Cao, S.; Neubauer, F. Deep crustal expressions of exhumed strike-slip fault systems: Shear zone initiation on rheological boundaries. Earth-Sci. Rev. 2016, 162, 155–176. [Google Scholar] [CrossRef]
- Huang, W.; Yang, X.; Thompson Jobe, J.A.; Li, S.; Yang, H.; Zhang, L. Alluvial plains formation in response to 100-ka glacial–interglacial cycles since the Middle Pleistocene in the southern Tian Shan, NW China. Geomorphology 2019, 341, 86–101. [Google Scholar] [CrossRef]
- GB18306-2015; Seismic Ground Motion Parameters Zonation Map of China. National Seismic Standardization Technical Committee: Beijing, China, 2015.
- Bo, Z. The Study of New Activities on Western Segment of Northern Margin of Western Qinling Fault and Laji Shan Fault; Lanzhou Institute of Seismology, CEA: Lanzhou, China, 2012; pp. 86–98. [Google Scholar]
- Cheng, J.; Rong, Y.; Magistrale, H.; Chen, G.; Xu, X. An Mw-Based Historical Earthquake Catalog for Mainland China. Bull. Seismol. Soc. Am. 2017, 107, 2490–2500. [Google Scholar] [CrossRef]
- Molnar, P.; Tapponnier, P. Cenozoic tectonics of Asia: Effects of a continental collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Zuza, A.V. Tectonic Evolution of the Northeastern Tibetan Plateau; University of California: Los Angeles, CA, USA, 2016. [Google Scholar]
- Cheng, F.; Zuza, A.V.; Haproff, P.J.; Wu, C.; Neudorf, C.; Chang, H.; Li, X.; Li, B. Accommodation of India–Asia convergence via strike-slip faulting and block rotation in the Qilian Shan fold–thrust belt, northern margin of the Tibetan Plateau. J. Geol. Soc. 2021, 178, jgs2020-207. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Yu, J.; Yuan, D.; Zhang, P.; Ge, W.; Pang, J.; Liu, B. Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in the western Qinling mountains, NW China. Tectonophysics 2016, 687, 1–13. [Google Scholar] [CrossRef]
- Zhao, L.; Zhan, Y.; Wang, Q.; Sun, X.; Hao, M.; Zhu, Y.; Han, J. 3D electrical structure and crustal deformation of the Lajishan Tectonic Belt, Northeastern margin of the Tibetan Plateau. J. Asian Earth Sci. 2022, 224, 104953. [Google Scholar] [CrossRef]
- Lease, R.O.; Burbank, D.W.; Clark, M.K.; Farley, K.A.; Zheng, D.; Zhang, H. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology 2011, 39, 359–362. [Google Scholar] [CrossRef]
- Lease, R.O.; Burbank, D.W.; Hough, B.; Wang, Z.; Yuan, D. Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance. Bulletin 2012, 124, 657–677. [Google Scholar] [CrossRef]
- Hough, B.G.; Garzione, C.N.; Wang, Z.; Lease, R.O.; Burbank, D.W.; Yuan, D. Stable isotope evidence for topographic growth and basin segmentation: Implications for the evolution of the NE Tibetan Plateau. Bulletin 2011, 123, 168–185. [Google Scholar] [CrossRef]
- Perrineau, A.; Woerd, J.V.D.; Gaudemer, Y.; Liu-Zeng, J.; Pik, R.; Tapponnier, P.; Thuizat, R.; Rongzhang, Z. Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: Implications for catchment evolution and plateau building. Geol. Soc. Lond. Spec. Publ. 2011, 353, 189–219. [Google Scholar] [CrossRef]
- Wu, D.-L.; Ge, W.-P.; Liu, S.-Z.; Yuan, D.-Y.; Zhang, B.; Wei, C.-M. Present-Day 3D Crustal Deformation of the Northeastern Tibetan Plateau From Space Geodesy. Geophys. Res. Lett. 2024, 51, e2023GL106143. [Google Scholar] [CrossRef]
- Wang, J.; He, Z. Responses of Stream Geomorphic Indices to Piedmont Fault Activity in the Daqingshan Area of China. J. Earth Sci. 2020, 31, 978–987. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Z.; Dong, Y.; Qu, H.; Zhou, B.; Cheng, B. Geomorphic indices and longitudinal profile of the Daba Shan, northeastern Sichuan Basin: Evidence for the late Cenozoic eastward growth of the Tibetan Plateau. Geomorphology 2020, 353, 107031. [Google Scholar] [CrossRef]
- Fu, C.; Yan, Z.; Wang, Z.; Buckman, S.; Aitchison, J.C.; Niu, M.; Cao, B.; Guo, X.; Li, X.; Li, Y.; et al. Lajishankou Ophiolite Complex: Implications for Paleozoic Multiple Accretionary and Collisional Events in the South Qilian Belt. Tectonics 2018, 37, 1321–1346. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. GSA Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Keller, E.A.; Pinter, N. Active Tectonics Earthquakes, Uplift, and Landscape, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Chen, S.; Li, S.; Lu, Y. Geomorphic evolution and neotectonics of the Qianhe River Basin on the southwest margin of the Ordos Block, North China. J. Asian Earth Sci. 2019, 176, 184–195. [Google Scholar] [CrossRef]
- Putra, A.F.; Chenrai, P. Relative tectonic activity assessment of the Northern Sumatran Fault using geomorphic indices. Front. Southeast Asian Geosci. 2022, 10, 969170. [Google Scholar] [CrossRef]
- Hack, J.T. Stream-Profile analysis and stream-gradient index. Bull. Am. Astron. Soc. 1973, 1, 421–429. [Google Scholar]
- Pourali, M.; Hoseynzadeh, R.; Akbari, M. Quantitative analysis of relative active tectonics using geomorphic indices in Band-Golestan basin, northeastern Iran. Spat. Inf. Res. 2020, 28, 419–429. [Google Scholar] [CrossRef]
- Othman, A.T.; Omar, A.A. Evaluation of relative active tectonics by using geomorphic indices of the Bamo anticline, Zagros Fold-Thrust Belt, Kurdistan Region of Iraq. Heliyon 2023, 9, e17970. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Liu, F.; Yao, X.; Li, L. Applicability of Geomorphic Index for the Potential Slope Instability in the Three River Region, Eastern Tibetan Plateau. Sensors 2021, 21, 6505. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, Z.; Pan, B.; Li, M.; Dong, Z.; Li, X.; Li, X.; Bridgland, D. Spatial distribution pattern of channel steepness index as evidence for differential rock uplift along the eastern Altun Shan on the northern Tibetan Plateau. Glob. Planet. Chang. 2019, 181, 102979. [Google Scholar] [CrossRef]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Snyder, N.P.; Whipple, K.X.; Tucker, G.E.; Merritts, D.J. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. GSA Bull. 2000, 112, 1250–1263. [Google Scholar] [CrossRef]
- Wobus, C.; Whipple, K.X.; Kirby, E.; Snyder, N.; Johnson, J.; Spyropolou, K.; Crosby, B.; Sheehan, D. Tectonics from topography: Procedures, promise, and pitfalls. In Tectonics, Climate, and Landscape Evolution; Willett, S.D., Hovius, N., Brandon, M.T., Fisher, D.M., Eds.; Geological Society of America: Boulder, CO, USA, 2006; Volume 398, pp. 55–74. [Google Scholar]
- Groves, K.; Saville, C.; Hurst, M.D.; Jones, S.J.; Song, S.G.; Allen, M.B. Geomorphic expressions of collisional tectonics in the Qilian Shan, north eastern Tibetan Plateau. Tectonophysics 2020, 788, 228503. [Google Scholar] [CrossRef]
- Lifton, N.A.; Chase, C.G. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: Implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology 1992, 5, 77–114. [Google Scholar] [CrossRef]
- Tarboton, D.G.; Bras, R.L.; Rodríguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Liu, J.; Cao, X.; Hou, J.; Zhu, L.; Xu, X.; Liu, X.; Wang, M.; Wu, D. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quat. Sci. Rev. 2020, 243, 106444. [Google Scholar] [CrossRef]
- Zhuang, W.; Cui, D.; Hao, M.; Song, S.; Li, Z. Geodetic constraints on contemporary three-dimensional crustal deformation characteristics in the Laji Shan–Jishi Shan tectonic belt. Geod. Geodyn. 2023, 14, 589–596. [Google Scholar] [CrossRef]
- Wang, S.; Xu, G.; Li, S.; Yang, T.; Shi, L.; Zhang, L.; Tang, F.; Fang, L. Analysis of earthquake sequence and seismogenic structure of the 2023 MS6.2 Jishishan earthquake, Gansu Province, China. Acta Seismol. Sin. 2024, 46, 1–16. [Google Scholar]
- Yang, P.X.; Xiong, R.W.; Hu, Z.Z. Preliminary Analysis of the Seismogenic Tectonics for the 2023 Jishishan MS6.2 Earthquake in Gansu Province. Earthquake 2024, 44, 153–159. [Google Scholar]
- Bai, D.; Unsworth, M.J.; Meju, M.A.; Ma, X.; Teng, J.; Kong, X.; Sun, Y.; Sun, J.; Wang, L.; Jiang, C.; et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci. 2010, 3, 358–362. [Google Scholar] [CrossRef]
- Zhao, G.; Unsworth, M.J.; Zhan, Y.; Wang, L.; Chen, X.; Jones, A.G.; Tang, J.; Xiao, Q.; Wang, J.; Cai, J.; et al. Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data. Geology 2012, 40, 1139–1142. [Google Scholar] [CrossRef]
- Sun, X.; Zhan, Y.; Unsworth, M.; Egbert, G.; Zhang, H.; Chen, X.; Zhao, G.; Sun, J.; Zhao, L.; Cui, T. 3-D Magnetotelluric imaging of the easternmost Kunlun fault: Insights into strain partitioning and the seismotectonics of the Jiuzhaigou Ms7.0 earthquake. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019731. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, G.; Shi, Y.; Wang, Z.; Wang, Y.; Li, S.; Jia, X.; Hu, S. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau. Geothermics 2018, 72, 182–192. [Google Scholar] [CrossRef]
- Liu, Q.Y.; van der Hilst, R.D.; Li, Y.; Yao, H.J.; Chen, J.H.; Guo, B.; Qi, S.H.; Wang, J.; Huang, H.; Li, S.C. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci. 2014, 7, 361–365. [Google Scholar] [CrossRef]
- Huang, X.; Xu, X.; Gao, R.; Guo, X.; Li, W. Shortening of lower crust beneath the NE Tibetan Plateau. J. Asian Earth Sci. 2020, 198, 104313. [Google Scholar] [CrossRef]
ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.45 | 213 | 87 | 18 | 0.47 | 237 | 107 | 35 | 0.41 | 222 | 93 | 52 | 0.44 | 473 | 158 |
2 | 0.50 | 315 | 127 | 19 | 0.44 | 204 | 92 | 36 | 0.42 | 210 | 87 | 53 | 0.50 | 471 | 143 |
3 | 0.52 | 279 | 118 | 20 | 0.47 | 218 | 92 | 37 | 0.37 | 201 | 65 | 54 | 0.52 | 306 | 143 |
4 | 0.49 | 376 | 135 | 21 | 0.49 | 274 | 116 | 38 | 0.50 | 157 | 86 | 55 | 0.50 | 266 | 119 |
5 | 0.55 | 510 | 150 | 22 | 0.48 | 408 | 133 | 39 | 0.43 | 128 | 60 | 56 | 0.44 | 321 | 116 |
6 | 0.50 | 412 | 114 | 23 | 0.43 | 319 | 100 | 40 | 0.38 | 174 | 64 | 57 | 0.40 | 432 | 123 |
7 | 0.53 | 368 | 124 | 24 | 0.51 | 188 | 74 | 41 | 0.48 | 214 | 84 | 58 | 0.50 | 516 | 154 |
8 | 0.48 | 309 | 113 | 25 | 0.45 | 208 | 78 | 42 | 0.51 | 261 | 88 | 59 | 0.52 | 655 | 177 |
9 | 0.41 | 321 | 89 | 26 | 0.51 | 194 | 77 | 43 | 0.55 | 197 | 74 | 60 | 0.57 | 705 | 168 |
10 | 0.41 | 243 | 94 | 27 | 0.37 | 278 | 95 | 44 | 0.47 | 185 | 70 | 61 | 0.62 | 714 | 162 |
11 | 0.40 | 196 | 87 | 28 | 0.36 | 281 | 84 | 45 | 0.43 | 162 | 65 | 62 | 0.58 | 402 | 131 |
12 | 0.42 | 181 | 85 | 29 | 0.46 | 290 | 122 | 46 | 0.53 | 182 | 73 | 63 | 0.59 | 798 | 191 |
13 | 0.45 | 238 | 77 | 30 | 0.46 | 338 | 145 | 47 | 0.46 | 312 | 106 | 64 | 0.56 | 703 | 161 |
14 | 0.53 | 346 | 81 | 31 | 0.49 | 326 | 121 | 48 | 0.49 | 244 | 92 | 65 | 0.54 | 666 | 174 |
15 | 0.49 | 151 | 76 | 32 | 0.48 | 244 | 117 | 49 | 0.46 | 189 | 52 | 66 | 0.49 | 557 | 161 |
16 | 0.51 | 237 | 97 | 33 | 0.58 | 293 | 122 | 50 | 0.53 | 176 | 76 | 67 | 0.50 | 371 | 121 |
17 | 0.41 | 205 | 63 | 34 | 0.51 | 293 | 120 | 51 | 0.50 | 353 | 111 |
ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
68 | 0.48 | 364 | 138 | 76 | 0.52 | 405 | 133 | 84 | 0.53 | 683 | 110 | 92 | 0.53 | 870 | 180 |
69 | 0.46 | 449 | 131 | 77 | 0.48 | 482 | 127 | 85 | 0.50 | 524 | 107 | 93 | 0.63 | 447 | 154 |
70 | 0.46 | 500 | 102 | 78 | 0.43 | 479 | 115 | 86 | 0.50 | 783 | 194 | 94 | 0.48 | 380 | 156 |
71 | 0.46 | 593 | 102 | 79 | 0.61 | 398 | 161 | 87 | 0.64 | 819 | 190 | 95 | 0.35 | 711 | 167 |
72 | 0.49 | 427 | 128 | 80 | 0.48 | 195 | 89 | 88 | 0.46 | 1253 | 142 | 96 | 0.51 | 550 | 170 |
73 | 0.51 | 804 | 159 | 81 | 0.50 | 274 | 113 | 89 | 0.48 | 979 | 169 | 97 | 0.47 | 475 | 147 |
74 | 0.49 | 531 | 104 | 82 | 0.66 | 530 | 147 | 90 | 0.54 | 643 | 173 | ||||
75 | 0.51 | 512 | 122 | 83 | 0.48 | 821 | 118 | 91 | 0.51 | 794 | 132 |
ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
98 | 0.43 | 218 | 64 | 109 | 0.42 | 200 | 54 | 120 | 0.56 | 425 | 88 | 131 | 0.49 | 143 | 82 |
99 | 0.49 | 170 | 71 | 110 | 0.45 | 170 | 73 | 121 | 0.52 | 229 | 81 | 132 | 0.66 | 270 | 129 |
100 | 0.49 | 226 | 69 | 111 | 0.43 | 798 | 144 | 122 | 0.49 | 162 | 83 | 133 | 0.42 | 324 | 99 |
101 | 0.49 | 185 | 89 | 112 | 0.54 | 392 | 165 | 123 | 0.54 | 290 | 92 | 134 | 0.42 | 294 | 103 |
102 | 0.48 | 346 | 114 | 113 | 0.50 | 526 | 137 | 124 | 0.51 | 172 | 73 | 135 | 0.43 | 375 | 87 |
103 | 0.52 | 424 | 134 | 114 | 0.55 | 329 | 105 | 125 | 0.54 | 395 | 132 | 136 | 0.46 | 294 | 103 |
104 | 0.55 | 413 | 127 | 115 | 0.43 | 192 | 79 | 126 | 0.54 | 382 | 115 | 137 | 0.44 | 280 | 99 |
105 | 0.58 | 606 | 259 | 116 | 0.47 | 136 | 66 | 127 | 0.53 | 264 | 93 | 138 | 0.53 | 498 | 135 |
106 | 0.50 | 386 | 111 | 117 | 0.53 | 290 | 100 | 128 | 0.43 | 180 | 72 | ||||
107 | 0.48 | 209 | 98 | 118 | 0.52 | 320 | 102 | 129 | 0.56 | 236 | 137 | ||||
108 | 0.46 | 218 | 94 | 119 | 0.46 | 307 | 91 | 130 | 0.47 | 158 | 82 |
ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn | ID | HI | SL | ksn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
139 | 0.58 | 381 | 123 | 145 | 0.51 | 243 | 61 | 151 | 0.56 | 687 | 132 | 157 | 0.53 | 336 | 127 |
140 | 0.54 | 337 | 108 | 146 | 0.45 | 255 | 94 | 152 | 0.57 | 815 | 116 | 158 | 0.47 | 705 | 188 |
141 | 0.50 | 253 | 88 | 147 | 0.45 | 138 | 58 | 153 | 0.51 | 657 | 143 | 159 | 0.43 | 473 | 144 |
142 | 0.49 | 268 | 94 | 148 | 0.39 | 423 | 69 | 154 | 0.45 | 688 | 132 | 160 | 0.51 | 405 | 121 |
143 | 0.50 | 283 | 101 | 149 | 0.48 | 460 | 76 | 155 | 0.60 | 546 | 78 | ||||
144 | 0.48 | 346 | 72 | 150 | 0.53 | 494 | 126 | 156 | 0.46 | 694 | 168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Huang, W.; Zhang, J.; Wang, Y.; Yu, D.; Pan, B. Tectonic Activity Analysis of the Laji-Jishi Shan Fault Zone: Insights from Geomorphic Indices and Crustal Deformation Data. Remote Sens. 2024, 16, 3770. https://doi.org/10.3390/rs16203770
Ma Y, Huang W, Zhang J, Wang Y, Yu D, Pan B. Tectonic Activity Analysis of the Laji-Jishi Shan Fault Zone: Insights from Geomorphic Indices and Crustal Deformation Data. Remote Sensing. 2024; 16(20):3770. https://doi.org/10.3390/rs16203770
Chicago/Turabian StyleMa, Yujie, Weiliang Huang, Jiale Zhang, Yan Wang, Dong Yu, and Baotian Pan. 2024. "Tectonic Activity Analysis of the Laji-Jishi Shan Fault Zone: Insights from Geomorphic Indices and Crustal Deformation Data" Remote Sensing 16, no. 20: 3770. https://doi.org/10.3390/rs16203770
APA StyleMa, Y., Huang, W., Zhang, J., Wang, Y., Yu, D., & Pan, B. (2024). Tectonic Activity Analysis of the Laji-Jishi Shan Fault Zone: Insights from Geomorphic Indices and Crustal Deformation Data. Remote Sensing, 16(20), 3770. https://doi.org/10.3390/rs16203770