Detection of Floating Algae Blooms on Water Bodies Using PlanetScope Images and Shifted Windows Transformer Model
Abstract
:1. Introduction
2. Study Area
3. Data
4. Methods
4.1. Overview
4.2. Data Pre-Processing
4.3. Dataset Generation
4.3.1. Image Labeling
4.3.2. Input Image Preparation for Single-Period Model
4.3.3. Input Image Preparation for Multi-Period Model
4.4. Deep Learning Modeling
4.4.1. Dataset Split
4.4.2. Swin Transformer
4.4.3. Model Training and Validation
4.5. Inference Result Generation
5. Results and Discussion
5.1. Comparisons with In Situ Measurements and Vegetation Indices
5.2. Accuracy Evaluation for Single-Period Experiment
5.3. Accuracy Evaluation for Multi-Period Experiment
5.4. Time-Series Simulation Using Sentinel-2 Images
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Details on Input Image Generation for Multi-Period
Country | Name | Latitude | Longitude | Pair No. | Date |
---|---|---|---|---|---|
South Korea | Geum River | 36.432 | 127.061 | 01 | 6 May 2020, 21 May 2020 |
02 | 6 May 2020, 18 Aug. 2020 | ||||
03 | 6 May 2020, 25 Aug. 2020 | ||||
04 | 6 May 2020, 18 Oct. 2020 | ||||
05 | 6 May 2020, 30 Oct. 2020 | ||||
06 | 3 Jan. 2021, 27 Feb. 2021 | ||||
07 | 3 Jan. 2021, 3 Sep. 2021 | ||||
08 | 3 Jan. 2021, 18 Sep. 2021 | ||||
09 | 3 Jan. 2021, 3 Oct. 2021 | ||||
10 | 3 Jan. 2021, 17 Oct. 2021 |
Country | Name | Latitude | Longitude | Pair No. | Date |
---|---|---|---|---|---|
South Korea | Miho River | 36.516 | 127.322 | 11 | 3 May 2019, 11 May 2019 |
12 | 3 May 2019, 4 Aug. 2019 | ||||
13 | 3 May 2019, 20 Aug. 2019 | ||||
14 | 3 May 2019, 13 Oct. 2019 | ||||
15 | 3 May 2019, 31 Oct. 2019 | ||||
16 | 6 May 2020, 21 May 2020 | ||||
17 | 6 May 2020, 26 Sep. 2020 | ||||
18 | 6 May 2020, 30 Sep. 2020 | ||||
19 | 6 May 2020, 4 Nov. 2020 | ||||
20 | 6 May 2020, 28 Nov. 2020 | ||||
21 | 6 May 2020, 24 Sep. 2021 | ||||
22 | 6 May 2020, 27 Sep. 2021 | ||||
23 | 6 May 2020, 6 Nov. 2021 | ||||
24 | 6 May 2020, 26 Nov. 2021 |
Country | Name | Latitude | Longitude | Pair No. | Date |
---|---|---|---|---|---|
South Korea | Yeongsan River | 34.930 | 126.540 | 25 | 29 Jan. 2019, 12 Feb. 2019 |
26 | 29 Jan. 2019, 16 Mar. 2019 | ||||
27 | 29 Jan. 2019, 11 May 2019 | ||||
28 | 15 Apr. 2022, 14 May 2022 | ||||
29 | 15 Apr. 2022, 22 Jun. 2022 | ||||
30 | 15 Apr. 2022, 10 Jul. 2022 | ||||
31 | 15 Apr. 2022, 26 Aug. 2022 | ||||
32 | 15 Apr. 2022, 27 Sep. 2022 | ||||
33 | 31 Jan. 2023, 3 Mar. 2023 | ||||
34 | 31 Jan. 2023, 2 Apr. 2023 |
Appendix B. Additional Details on In Situ Chlorophyll-a Measurements
ID | River | Point | Latitude | Longitude | Year | Temperature (°C) | Chlorophyll-a (mg/m3) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | ||||||
3012A32 | Geum River | Gongjubo | 36.465 | 127.100 | 2018 | 2.5 | 31.4 | 17.0 | 2.3 | 209.9 | 57.3 |
2019 | 1.4 | 28.7 | 16.4 | 5.1 | 265.1 | 69.4 | |||||
2020 | 2.9 | 26.6 | 14.7 | 2.6 | 125.4 | 24.1 | |||||
2021 | 1.2 | 29.9 | 16.3 | 2.0 | 164.4 | 46.1 | |||||
2022 | 0.8 | 29.3 | 15.8 | 1.8 | 113.0 | 35.6 | |||||
2023 | 1.7 | 30.7 | 16.1 | 1.5 | 197.9 | 42.5 | |||||
3012A07 | Miho River | Sejongbo (Yeongi) | 36.475 | 127.264 | 2018 | 0.5 | 30.2 | 15.4 | 2.5 | 160.0 | 35.9 |
2019 | 2.6 | 26.7 | 15.2 | 3.9 | 155.6 | 38.6 | |||||
2020 | 3.9 | 26.8 | 14.5 | 3.1 | 84.8 | 17.8 | |||||
2021 | 1.1 | 28.5 | 15.6 | 2.3 | 116.9 | 28.1 | |||||
2022 | 3.1 | 29.9 | 15.6 | 2.0 | 85.7 | 27.9 | |||||
2023 | 1.6 | 27.7 | 15.2 | 2.7 | 57.3 | 24.3 | |||||
2011A55 | Nakdong River | Gangjeong Goryeong (Dasa) | 35.843 | 128.457 | 2018 | 2.8 | 28.9 | 16.3 | 4.5 | 47.2 | 18.4 |
2019 | 2.8 | 29.0 | 16.3 | 2.4 | 41.9 | 16.4 | |||||
2020 | 3.9 | 27.9 | 15.6 | 2.0 | 58.8 | 18.6 | |||||
2021 | 2.8 | 30.1 | 17.7 | 2.6 | 49.0 | 19.5 | |||||
2022 | 2.6 | 30.9 | 16.9 | 2.2 | 65.0 | 17.4 | |||||
2023 | 2.8 | 31.4 | 16.7 | 2.3 | 73.0 | 14.2 | |||||
5004A35 | Yeongsan River | Juksanbo (Juksan) | 34.977 | 126.633 | 2018 | 2.5 | 32.1 | 17.2 | 4.5 | 174.2 | 56.2 |
2019 | 3.9 | 31.1 | 16.1 | 6.8 | 205.0 | 60.9 | |||||
2020 | 4.8 | 30.8 | 16.0 | 4.3 | 238.5 | 64.1 | |||||
2021 | 3.6 | 30.9 | 17.8 | 15.6 | 174.3 | 71.3 | |||||
2022 | 4.0 | 30.9 | 18.1 | 7.3 | 108.5 | 41.9 | |||||
2023 | 3.2 | 33.7 | 17.6 | 2.0 | 123.2 | 28.6 |
Appendix C. Additional Results for Single-Period and Multi-Period Models
Classes | (Actual) Algae Bloom | (Actual) Non-Algae Bloom |
---|---|---|
Randomly selected 100 patches (N = 26,214,400) | ||
(Predicted) Algae bloom | 1,714,600 | 290,282 |
(Predicted) Non-algae bloom | 398,187 | 23,811,331 |
Geum River (172 patches, N = 45,088,768) | ||
(Predicted) Algae bloom | 1,296,032 | 188,543 |
(Predicted) Non-algae bloom | 858,183 | 42,746,010 |
Miho River (306 patches, N = 80,216,064) | ||
(Predicted) Algae bloom | 2,104,250 | 1,177,266 |
(Predicted) Non-algae bloom | 1,161,310 | 75,773,238 |
Yeongsan River (296 patches, N = 77,594,624) | ||
(Predicted) Algae bloom | 6,796,896 | 405,974 |
(Predicted) Non-algae bloom | 4,595,979 | 65,795,775 |
Classes | (Actual) Algae Bloom | (Actual) Non-Algae Bloom |
---|---|---|
Randomly selected 57 patches (N = 14,942,208) | ||
(Predicted) Algae bloom | 863,782 | 106,433 |
(Predicted) Non-algae bloom | 51,271 | 13,920,722 |
Geum River (130 patches, N = 34,078,720) | ||
(Predicted) Algae bloom | 1,679,115 | 371,836 |
(Predicted) Non-algae bloom | 181,996 | 31,845,773 |
Miho River (247 patches, N = 64,749,568) | ||
(Predicted) Algae bloom | 2,617,991 | 559,589 |
(Predicted) Non-algae bloom | 263,847 | 61,308,141 |
Yeongsan River (190 patches, N = 49,807,360) | ||
(Predicted) Algae bloom | 7,198,554 | 504,610 |
(Predicted) Non-algae bloom | 201,723 | 41,902,473 |
References
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.; Boyce, D.G.; Gibson, L.; et al. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 2023, 615, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Kudela, R.M.; Palacios, S.L.; Austerberry, D.C.; Accorsi, E.K.; Guild, L.S.; Torres-Perez, J. Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sens. Environ. 2015, 167, 196–205. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria harmful algae blooms: Causes, impacts, and risk management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
- Schwark, M.; Martínez Yerena, J.A.; Röhrborn, K.; Hrouzek, P.; Divoká, P.; Štenclová, L.; Delawská, K.; Enke, H.; Vorreiter, C.; Wiley, F.; et al. More than just an eagle killer: The freshwater cyanobacterium Aetokthonos hydrillicola produces highly toxic dolastatin derivatives. Proc. Natl. Acad. Sci. USA 2023, 120, e2219230120. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, K.; Paerl, H.W.; Rühland, K.M.; Yuan, Y.; Wang, R.; Chen, J.; Ge, M.; Zheng, L.; Zhang, Z.; et al. Ancient DNA reveals potentially toxic cyanobacteria increasing with climate change. Water Res. 2023, 229, 119435. [Google Scholar] [CrossRef]
- Oyama, Y.; Fukushima, T.; Matsushita, B.; Matsuzaki, H.; Kamiya, K.; Kobinata, H. Monitoring levels of cyanobacterial blooms using the visual cyanobacteria index (VCI) and floating algae index (FAI). Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 335–348. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Siddiqui, M.D.; Zaidi, A.Z.; Abdullah, M. Performance evaluation of newly proposed seaweed enhancing index (SEI). Remote Sens. 2019, 11, 1434. [Google Scholar] [CrossRef]
- Son, Y.B.; Min, J.E.; Ryu, J.H. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using geostationary ocean color imager (GOCI) data. Ocean Sci. J. 2012, 47, 359–375. [Google Scholar] [CrossRef]
- Ma, Y.; Wong, K.; Tsou, J.Y.; Zhang, Y. Investigating spatial distribution of green-tide in the Yellow Sea in 2021 using combined optical and SAR images. J. Mar. Sci. Eng. 2022, 10, 127. [Google Scholar] [CrossRef]
- Bielski, A.; Toś, C. Remote sensing of the water quality parameters for a shallow dam reservoir. Appl. Sci. 2022, 12, 6734. [Google Scholar] [CrossRef]
- Wu, L.; Wang, L.; Min, L.; Hou, W.; Guo, Z.; Zhao, J.; Li, N. Discrimination of algal-bloom using spaceborne SAR observations of Great Lakes in China. Remote Sens. 2018, 10, 767. [Google Scholar] [CrossRef]
- Wang, S.; Liu, L.; Qu, L.; Yu, C.; Sun, Y.; Gao, F.; Dong, J. Accurate Ulva prolifera regions extraction of UAV images with superpixel and CNNs for ocean environment monitoring. Neurocomputing 2019, 348, 158–168. [Google Scholar] [CrossRef]
- Cui, T.; Li, F.; Wei, Y.; Yang, X.; Xiao, Y.; Chen, X.; Liu, R.; Ma, Y.; Zhang, J. Super-resolution optical mapping of floating macroalgae from geostationary orbit. Appl. Opt. 2020, 59, C70–C77. [Google Scholar] [CrossRef]
- Liang, X.J.; Qin, P.; Xiao, Y.F.; Kim, K.Y.; Liu, R.J.; Chen, X.Y.; Wang, Q.B. Automatic remote sensing detection of floating macroalgae in the yellow and east china seas using extreme learning machine. J. Coast. Res. 2019, 90, 272–281. [Google Scholar] [CrossRef]
- Qi, L.; Wang, M.; Hu, C.; Holt, B. On the capacity of Sentinel-1 synthetic aperture radar in detecting floating macroalgae and other floating matters. Remote Sens. Environ. 2022, 280, 113188. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, L.; Li, X. A deep learning model for green algae detection on SAR images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4210914. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Ma, X. Deep learning-based algal bloom identification method from remote sensing images—Take China’s Chaohu Lake as an example. Sustainability 2023, 15, 4545. [Google Scholar] [CrossRef]
- Adegun, A.A.; Viriri, S.; Tapamo, J.R. Review of deep learning methods for remote sensing satellite images classification: Experimental survey and comparative analysis. J. Big Data 2023, 10, 93. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Feng, W.; Xu, J. Deep learning classification by ResNet-18 based on the real spectral dataset from multispectral remote sensing images. Remote Sens. 2022, 14, 4883. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Wang, L.; Zhang, J.; Liu, P.; Choo, K.R.; Huang, F. Spectral—spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput. 2017, 21, 213–221. [Google Scholar] [CrossRef]
- Asatryan, V.; Stepanyan, L.; Hovsepyan, A.; Khachikyan, T.; Mamyan, A.; Hambaryan, L. The dynamics of phytoplankton seasonal development and its horizontal distribution in Lake Sevan (Armenia). Environ. Monit. Assess. 2022, 194, 757. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Gu, L.; Jiang, T.; Zheng, X.; Dong, W.; Tao, Z. Retrieval of chlorophyll-a concentrations using Sentinel-2 MSI images in Lake Chagan based on assessments with machine learning models. Remote Sens. 2022, 14, 4924. [Google Scholar] [CrossRef]
- Liu, M.; Ling, H.; Wu, D.; Su, X.; Cao, Z. Sentinel-2 and Landsat-8 observations for harmful algae blooms in a small eutrophic lake. Remote Sens. 2021, 13, 4479. [Google Scholar] [CrossRef]
- Harmful Algal Bloom Monitoring System. Available online: https://coastalscience.noaa.gov/science-areas/habs/hab-monitoring-system (accessed on 2 July 2024).
- Issue 42: Algal Blooms. Available online: https://medium.com/@planetsnapshots/issue-42-algal-blooms-6d7385b53a50 (accessed on 2 July 2024).
- Hong, D.G.; Jeong, K.S.; Kim, D.K.; Joo, G.J. Long-term ecological research in the Nakdong River: Application of ecological informatics to harmful algal blooms. In Ecological Informatics: Data Management and Knowledge Discovery; Springer: Cham, Switzerland, 2018; pp. 435–453. [Google Scholar]
- Google Maps. Available online: https://www.google.com/maps (accessed on 2 July 2024).
- Bing Maps. Available online: https://www.bing.com/maps (accessed on 2 July 2024).
- TN on Quality Assessment for PlanetScope (Dove). Available online: https://earth.esa.int/eogateway/documents/20142/37627/Technical+Note+on+Quality+Assessment+for+PlanetScope+%28DOVE%29.pdf/518ec6d2-d0bd-87ae-5a59-39e9dd7cc25f (accessed on 2 July 2024).
- Planet Imagery Product Specifications. Available online: https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (accessed on 2 July 2024).
- Ghuffar, S. DEM Generation from multi satellite Planetscope images. Remote Sens. 2018, 10, 1462. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Daily metre-scale mapping of water turbidity using CubeSat imagery. Opt. Express 2019, 27, A1372–A1399. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based bathymetry and water quality retrieval using planetscope imagery: Impacts of 2020 COVID-19 lockdown and 2019 extreme flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Wicaksono, P.; Lazuardi, W. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar] [CrossRef]
- Environmental Spatial Information Service. Available online: https://egis.me.go.kr/intro/land.do (accessed on 2 July 2024).
- Water Environment Information System. Available online: https://water.nier.go.kr/web (accessed on 2 July 2024).
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results. Appl. Opt. 2006, 45, 3577–3592. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS—The Azov sea case study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Cui, T.W.; Zhang, J.; Sun, L.E.; Jia, Y.J.; Zhao, W.; Wang, Z.L.; Meng, J.M. Satellite monitoring of massive green macroalgae bloom (GMB): Imaging ability comparison of multi-source data and drifting velocity estimation. Int. J. Remote Sens. 2012, 33, 5513–5527. [Google Scholar] [CrossRef]
- Hu, L.; Hu, C.; Ming-Xia, H.E. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens. Environ. 2017, 192, 217–227. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Zagoruyko, S.; Komodakis, N. Learning to compare image patches via convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Salman, S.; Liu, X. Overfitting mechanism and avoidance in deep neural networks. arXiv 2019, arXiv:1901.06566. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vis. 2019, 127, 302–321. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified perceptual parsing for scene understanding. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Sulistiyo, M.D.; Kawanishi, Y.; Deguchi, D.; Hirayama, T.; Ide, I.; Zheng, J.Y.; Murase, H. Attribute-aware semantic segmentation of road scenes for understanding pedestrian orientations. In Proceedings of the 21st IEEE International Conference on Intelligent Transportation Systems, Maui, HI, USA, 4–7 November 2018. [Google Scholar]
- Google Earth Engine. Available online: https://earthengine.google.com (accessed on 2 July 2024).
Country | Water Body Name | Latitude | Longitude | Max Length | Max Width | Surface Area | Average Depth | No. of Scenes |
---|---|---|---|---|---|---|---|---|
Armenia | Lake Sevan | 40.533 | 44.990 | 74 km | 32 km | 1242 km2 | 26.8 m | 1 |
China | Lake Chagan | 45.250 | 124.350 | 37 km | 17 km | 307 km2 | 4.0 m | 16 |
China | Lake Xingyun | 24.335 | 102.784 | 11 km | 6 km | 35 km2 | 5.3 m | 10 |
Poland | Lake Turawskie | 50.720 | 18.129 | 7.5 km | 4 km | 24 km2 | 5.0 m | 4 |
South Korea | Geum River | 36.432 | 127.061 | 398 km | 1.7 km | 9912 km2 | 5.3 m | 19 |
South Korea | Miho River | 36.516 | 127.322 | 89 km | 0.6 km | 1861 km2 | 0.3–0.7 m | 21 |
South Korea | Nakdong River | 35.808 | 128.437 | 510 km | 2.3 km | 23,384 km2 | 7.4 m | 2 |
South Korea | Yeongsan River | 34.930 | 126.540 | 137 km | 1.3 km | 3468 km2 | 5.8 m | 18 |
USA | Big Sarasota Pass | 27.295 | −82.564 | - | - | - | - | 2 |
USA | Lake Clear | 39.068 | −122.84 | 31 km | 13 km | 180 km2 | 8.2 m | 2 |
USA | Lake Okeechobee | 27.040 | −80.748 | 58 km | 47 km | 1900 km2 | 2.7 m | 3 |
USA | Saginaw Bay | 43.779 | −83.520 | - | - | 2960 km2 | - | 2 |
USA/Canada | Lake St. Clair | 42.412 | −82.684 | 42 km | 39 km | 1114 km2 | 3.4 m | 3 |
Venezuela | Lake Valencia | 10.175 | −67.790 | 30 km | 20 km | 350 km2 | 18.0 m | 2 |
Characteristic | Dove-Classic (PS2) | Dove-R (PS2.SD) | SuperDove (PSB.SD) |
---|---|---|---|
Sensor Description | Four-band frame imager; split-frame visible + NIR filter | Four-band frame imager; butcher-block filter providing blue, green, red, and NIR stripes | Eight-band frame imager; butcher-block filter providing blue, green, red, red-edge, and NIR stripes |
Spectral Bands | Blue: 455–515 nm Green: 500–590 nm Red: 590–670 nm NIR: 780–860 nm | Blue: 464–517 nm Green: 547–585 nm Red: 650–682 nm NIR: 846–888 nm | Coastal Blue: 431–452 nm Blue: 465–515 nm Green I: 513–549 nm Green II: 547–583 nm Yellow: 600–620 nm Red: 650–680 nm Red-Edge: 697–713 nm NIR: 845–885 nm |
Ground Sample Distance (nadir) | 3.0–4.1 m (approximate, altitude-dependent) | 3.7–4.2 m (approximate, altitude-dependent) | |
Frame Size | 24 × 8 km | 24 × 16 km | 32.5 × 19.6 km |
Revisit Time | Daily at nadir | ||
Availability Date | July 2014–April 2022 | March 2019–April 2022 | March 2020–present |
Year | DJF | MAM | JJA | SON |
---|---|---|---|---|
2018 | - | - | - | 2 |
2019 | 3 | 4 | 4 | 4 |
2020 | 2 | 5 | 21 | 14 |
2021 | 4 | 1 | 9 | 10 |
2022 | 1 | 5 | 8 | 3 |
2023 | 3 | 2 | - | - |
Sum | 105 scenes |
Algae Bloom Ratio (%) | 0–10 | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Number of patches | 940 | 260 | 164 | 90 | 95 | 60 | 57 | 59 | 60 | 213 | 1998 |
Ratio (%) | 47.05 | 13.01 | 8.21 | 4.51 | 4.76 | 3.00 | 2.85 | 2.95 | 3.00 | 10.66 | 100 |
Experiment | Training | Validation | Test | Total |
---|---|---|---|---|
1 | 1654 | 172 | 172 (Geum River) | 1998 |
2 | 1386 | 306 | 306 (Miho River) | 1998 |
3 | 1406 | 296 | 296 (Yeongsan River) | 1998 |
Experiment | Training | Validation | Test | Total |
---|---|---|---|---|
1 | 350 | 87 | 130 (Geum River) | 567 |
2 | 256 | 64 | 247 (Miho River) | 567 |
3 | 302 | 75 | 190 (Yeongsan River) | 567 |
Model | Channel Numbers in the Hidden Layers of the First Stage | Layer Numbers |
---|---|---|
Swin-T | 96 | {2, 2, 6, 2} |
Swin-S | 96 | {2, 2, 18, 2} |
Swin-B | 128 | {2, 2, 18, 2} |
Swin-L | 192 | {2, 2, 18, 2} |
Stage | Downsampling Rate (Output Size) | Swin-T |
---|---|---|
Stage 1 | 4× (56 × 56) | Concat 4 × 4, 96-d, LN |
Stage 2 | 8× (28 × 28) | Concat 2 × 2, 192-d, LN |
Stage 3 | 16× (14 × 14) | Concat 2 × 2, 384-d, LN |
Stage 4 | 32× (7 × 7) | Concat 2 × 2, 768-d, LN |
Hyperparameters (Optimized) | Description | Values |
---|---|---|
Input patch size | The dimensions (width and height) of the input patches | (512, 512) |
Input channels | The number of channels in the input data | 6 |
Batch size | The number of patches that are processed together in one forward and backward pass through the model during training | 4 |
Window size | The size of the window used in each Transformer block for self-attention | 7 |
Activation function | A mathematical function applied to the output of each layer in the model | Gaussian Error Linear Unit (GERU) |
Optimizer | An algorithm used to adjust the parameters (weights and biases) of the model during training to minimize the loss function | AdamW |
Dropout ratio | The proportion of neurons in the model that are randomly “dropped out” or ignored during training | 0.1 |
Learning rate | A hyperparameter that determines the size of the steps taken during parameter updates by the optimizer | 0.0001 |
Loss function | A function that measures the difference between the predicted output of the model and the actual target output during training | Cross-Entropy Loss |
Composition of Test Set | Accuracy | Precision | Recall | F1-Score | IoU (Algae Bloom) | IoU (Non-Algae Bloom) | mIoU |
---|---|---|---|---|---|---|---|
Randomly selected 100 patches | 97.37 | 85.52 | 81.15 | 83.28 | 71.35 | 97.19 | 84.27 |
Geum River (172 patches) | 97.68 | 87.30 | 60.16 | 71.23 | 55.32 | 97.61 | 76.47 |
Miho River (306 patches) | 97.08 | 64.12 | 64.44 | 64.28 | 47.36 | 97.01 | 72.18 |
Yeongsan River (296 patches) | 92.87 | 91.38 | 85.92 | 88.56 | 57.61 | 92.93 | 75.27 |
Composition of Test Set | Accuracy | Precision | Recall | F1-Score | IoU (Algae Bloom) | IoU (Non-Algae Bloom) | mIoU |
---|---|---|---|---|---|---|---|
Randomly selected 57 patches | 98.94 | 89.03 | 94.40 | 91.63 | 84.56 | 98.88 | 91.72 |
Geum River (130 patches) | 98.37 | 81.87 | 90.22 | 85.84 | 75.20 | 98.29 | 86.74 |
Miho River (247 patches) | 98.73 | 82.39 | 90.84 | 86.41 | 76.07 | 98.67 | 87.37 |
Yeongsan River (190 patches) | 98.58 | 93.45 | 97.27 | 95.32 | 91.06 | 98.34 | 94.70 |
Composition of Test Set | Accuracy | Precision | Recall | F1-Score | IoU (Algae Bloom) | IoU (Non-Algae Bloom) | mIoU |
---|---|---|---|---|---|---|---|
Single-period | 97.37 | 85.52 | 81.15 | 83.28 | 71.35 | 97.19 | 84.27 |
Multi-period | 98.94 | 89.03 | 94.40 | 91.63 | 84.56 | 98.88 | 91.72 |
ID | River | Point | Address | Latitude | Longitude |
---|---|---|---|---|---|
3012A42 | Geum River | Baekjebo (Buyeo) | Jawang-ri, Buyeo-eup, Buyeo-gun, Chungcheongnam-do, South Korea (500 m upstream of Baekjebo) | 36.322 | 126.944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Kim, K.; Kim, Y.; Kim, H.; Lee, Y. Detection of Floating Algae Blooms on Water Bodies Using PlanetScope Images and Shifted Windows Transformer Model. Remote Sens. 2024, 16, 3791. https://doi.org/10.3390/rs16203791
Ahn J, Kim K, Kim Y, Kim H, Lee Y. Detection of Floating Algae Blooms on Water Bodies Using PlanetScope Images and Shifted Windows Transformer Model. Remote Sensing. 2024; 16(20):3791. https://doi.org/10.3390/rs16203791
Chicago/Turabian StyleAhn, Jihye, Kwangjin Kim, Yeji Kim, Hyunok Kim, and Yangwon Lee. 2024. "Detection of Floating Algae Blooms on Water Bodies Using PlanetScope Images and Shifted Windows Transformer Model" Remote Sensing 16, no. 20: 3791. https://doi.org/10.3390/rs16203791
APA StyleAhn, J., Kim, K., Kim, Y., Kim, H., & Lee, Y. (2024). Detection of Floating Algae Blooms on Water Bodies Using PlanetScope Images and Shifted Windows Transformer Model. Remote Sensing, 16(20), 3791. https://doi.org/10.3390/rs16203791