Estimation of Surface Water Level in Coal Mining Subsidence Area with GNSS RTK and GNSS-IR
Abstract
:1. Introduction
2. Fundamentals of Ground Subsidence Due to Underground Coal-Mining
3. Materials
4. Methods
4.1. Geometry of GNSS+IR Based Surface Water Level Estimation
4.2. Estimation of RH Using Multiple Mode and Band GNSS Signals
4.3. Data Processing Flow of GNSS+IR Based Surface Water Level Estimation
- (a)
- Select the GNSS carrier phase observations with an elevation angle greater than 40°;
- (b)
- Calculate the geodetic height (Ha) of the GNSS antenna at a given time with the GNSS RTK technique;
- (c)
- Convert the geodetic height of the GNSS antenna to the normal height (Han) using Equation (2);
- (d)
- Select the GNSS SNR observations with an elevation angle less than 40°;
- (e)
- Calculate reflector the height (Hr) of the GNSS antenna at a given time with the GNSS-IR technique;
- (f)
- Based on Equation (8), calculate the weighted average (Hr_WA) of the GNSS antenna reflector height estimations derived from different GNSS systems and bands;
- (g)
- Calculate the surface water level estimation by substituting the normal height and reflector height of the GNSS antenna at a given time into Equation (3).
4.4. GNSS and the Reference Data Processing Methods
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gasparotto, J.; Martinello, K.D.B. Coal as an energy source and its impacts on human health. Energy Geosci. 2021, 2, 113–120. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, J.; Hao, J.; Bi, J.; Qi, M.; Wang, X. Statistical Analysis of Coal Mine Accidents of China in 2018. In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Qingdao), Qingdao, China, 25–27 October 2019; pp. 1–6. [Google Scholar]
- Liu, H.; Li, Y. Dynamic Prediction Method of 3D Spatial Information of Coal Mining Subsidence Water Area Integrated with Landsat Remote Sensing and Knothe Time Function. Geofluids 2022, 2022, 1568050. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Sun, Q.; Xiao, W.; Cao, G.; Li, H.; Yan, L.; Zhang, B. Simulating the hydrologic cycle in coal mining subsidence areas with a distributed hydrologic model. Sci. Rep. 2017, 7, 39983. [Google Scholar] [CrossRef]
- Tiwary, R.K. Environmental impact of coal mining on water regime and its management. Water Air Soil Poll. 2001, 132, 185–199. [Google Scholar] [CrossRef]
- Cai, Y.; Jin, Y.; Wang, Z.; Chen, T.; Wang, Y.; Kong, W.; Xiao, W.; Li, X.; Lian, X.; Hu, H. A review of monitoring, calculation, and simulation methods for ground subsidence induced by coal mining. Int. J. Coal Sci. Technol. 2023, 10, 32. [Google Scholar] [CrossRef]
- Huang, G.; Du, S.; Wang, D. GNSS techniques for real-time monitoring of landslides: A review. Satell Navig. 2023, 4, 5. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, Z.; Huang, G.; Du, Y.; Wang, D. Review of GNSS landslide monitoring and early warning. Acta Geod. Cartogr. Sin. 2022, 51, 1985–2000. [Google Scholar]
- Jacek, P.; Rafal, S.; Radoslaw, B. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Meas. Sci. Technol. 2018, 29, 035002. [Google Scholar]
- Lian, X.; Li, Z.; Yuan, H.; Hu, H.; Cai, Y.; Liu, X. Determination of the stability of high-steep slopes by global navigation satellite system (GNSS) real-time monitoring in long wall mining. Appl. Sci. 2020, 10, 1592. [Google Scholar] [CrossRef]
- Tao, T.; Liu, J.; Qu, X.; Gao, F. Real-time monitoring rapid ground subsidence using GNSS and Vondrak filter. Acta Geophys. 2018, 67, 133–140. [Google Scholar] [CrossRef]
- Li, Y.; Xu, T.; Yu, K.; Wang, M.; Liu, F.; Sun, C. GNSS+IR Imaging for Underground Coal Mining Inducde Ground Subsidence Deformation. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 6352–6355. [Google Scholar]
- Yu, K.; Rizos, C.; Burrage, D.; Dempster, A.G.; Zhang, K.; Markgraf, M. An overview of GNSS remote sensing. EURASIP J. Adv. Signal Process. 2014, 134, 134. [Google Scholar] [CrossRef]
- Yu, K.; Li, Y.; Chang, X. Snow Depth Estimation Based on Combination of Pseudorange and Carrier Phase of GNSS Dual-Frequency Signals. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1817–1828. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Garrison, J.L. Generalized Linear Observables for Ocean Wind Retrieval from Calibrated GNSS-R Delay–Doppler Maps. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1142–1155. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Effects of PRN-Dependent ACF Deviations on GNSS-R Wind Speed Retrieval. IEEE Geosci. Remote Sens. Lett. 2019, 16, 327–331. [Google Scholar] [CrossRef]
- Jin, S.; Yang, S.; Yan, Q.; Jia, Y. Significant Wave Height Estimation from CYGNSS Delay-doppler Map Average Observations. In Proceedings of the 2022 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 25–29 April 2022; pp. 654–659. [Google Scholar]
- Li, Z.; Guo, F.; Chen, F.; Zhang, Z.; Zhang, X. Wind speed retrieval using GNSS-R technique with geographic partitioning. Satell. Navig. 2023, 4, 4. [Google Scholar] [CrossRef]
- Li, Y.; Chang, X.; Yu, K.; Wang, S.; Li, J. Estimation of snow depth using pseudorange and carrier phase observations of GNSS single-frequency signal. GPS Solut. 2019, 23, 118. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, F.; Zhang, X.; Li, Z.; Liu, H. Physical Modeling and Compensation for Systematic Negative Errors in GNSS-R Snow Depth Retrieval. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5800612. [Google Scholar] [CrossRef]
- Geremia-Nievinski, F.; Hobiger, T.; Haas, R.; Liu, W.; Strandberg, J.; Tabibi, S.; Vey, S.; Wickert, J.; Williams, S. SNR-based GNSS reflectometry for coastal sea-level altimetry: Results from the first IAG inter-comparison campaign. J. Geod. 2020, 94, 70. [Google Scholar] [CrossRef]
- Strandberg, J.; Haas, R. Can We Measure Sea Level with a Tablet Computer? IEEE Geosci. Remote Sens. Lett. 2020, 17, 1876–1878. [Google Scholar] [CrossRef]
- Larson, K.M.; Löfgren, J.S.; Haas, R. Coastal sea level measurements using a single geodetic GPS receiver. Adv. Space Res. 2013, 51, 1301–1310. [Google Scholar] [CrossRef]
- Larson, K.M.; Ray, R.D.; Nievinski, F.G.; Freymueller, J.T. The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1200–1204. [Google Scholar] [CrossRef]
- Larson, K.M.; Ray, R.D.; Williams, S.D.P. A ten-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. J. Atmos. Ocean. Technol. 2017, 34, 295–307. [Google Scholar] [CrossRef]
- Jin, S.; Qian, X.; Wu, X. Sea level change from BeiDou navigation satellite system-reflectometry (BDS-R): First results and evaluation. Glob. Planet. Chang. 2017, 149, 20–25. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Zhang, Q. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval. Remote Sens. Environ. 2019, 231, 111229. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Zhang, S. Sea level estimation from SNR data of geodetic receivers using wavelet analysis. GPS Solut. 2019, 23, 6. [Google Scholar] [CrossRef]
- Cao, J.; Huang, Q.; Guo, L. Subsidence prediction of overburden strata and ground surface in shallow coal seam mining. Sci. Rep. 2021, 11, 18972. [Google Scholar] [CrossRef]
- Badrul Alam, A.K.M.; Fujii, Y.; Eidee, S.; Boeut, S.; Rahim, A.B. Prediction of mining-induced subsidence at Barapukuria longwall coal mine, Bangladesh. Sci. Rep. 2022, 12, 14800. [Google Scholar]
- Knothe, S. Effect of time on formation of basin subsidence. Arch. Min. Steel Ind. 1953, 1, 1–7. [Google Scholar]
- Tan, X.; Song, B.; Bo, H.; Li, Y.; Wang, M.; Lu, G. Extraction of Irregularly Shaped Coal Mining Area Induced Ground Subsidence Prediction Based on Probability Integral Method. Appl. Sci. 2020, 10, 6623. [Google Scholar] [CrossRef]
- Bo, H.; Li, Y.; Tan, X.; Dong, Z.; Zheng, G.; Wang, Q.; Yu, K. Estimation of Ground Subsidence Deformation Induced by Underground Coal Mining with GNSS-IR. Remote Sens. 2023, 15, 96. [Google Scholar] [CrossRef]
- Bo, H.; Lu, G.; Li, H.; Guo, G.; Li, Y. Development of a Dynamic Prediction Model for Underground Coal-Mining-Induced Ground Subsidence Based on the Hook Function. Remote Sens. 2024, 16, 377. [Google Scholar] [CrossRef]
- Tao, Y.; Mao, G.; Zhou, X. Solution for GNSS height anomaly fitting of mining area based on robust TLS. Acta Geod. Geophys. 2018, 53, 295–307. [Google Scholar] [CrossRef]
- Holden, L.D.; Larson, K.M. Ten years of Lake Taupō surface height estimates using the GNSS interferometric reflectometry. J. Geod. 2021, 95, 74. [Google Scholar] [CrossRef]
- Larson, K.M.; Braun, J.J.; Small, E.E.; Zavorotny, V.U.; Gutmann, E.D.; Bilich, A.L. GPS Multipath and Its Relation to Near-Surface Soil Moisture Content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 91–99. [Google Scholar] [CrossRef]
- Hocke, H. Phase estimation with the Lomb-Scargle periodogram method. Ann. Geophys. 1998, 16, 356–358. [Google Scholar]
- Peng, C.Y.J.; So, T.S.H. Logistic regression analysis and reporting: A primer. Underst. Stat. 2002, 1, 31–70. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, C.; Lyu, H.; Han, X.; Zheng, Y.; Liu, Y.; Liu, Y.; Jin, K. Sensing Real-Time Water Vapor Over Oceans with Low-Cost GNSS Receivers. IEEE Trans. Geo-Sci. Remote Sens. 2022, 60, 5804208. [Google Scholar] [CrossRef]
- Li, Y.; Yu, K.; Jin, T.; Chang, X.; Wang, Q.; Li, J. Development of a GNSS-IR instrument based on low-cost positioning chips and its performance evaluation for estimating the reflector height. GPS Solut. 2021, 25, 127. [Google Scholar] [CrossRef]
- Simsky, A.; Mertens, D.; Sleewaegen, J.M.; Hollreiser, M.; Crisci, M. Experimental Results for the Multipath Performance of Galileo Signals Transmitted by GIOVE-A Satellite. Int. J. Navig. Obs. 2008, 2008, 416380. [Google Scholar] [CrossRef]
- Prochniewicz, D.; Grzymala, M. Analysis of the Impact of Multipath on Galileo System Measurements. Remote Sens. 2021, 13, 2295. [Google Scholar] [CrossRef]
- Santamaría-Gómez, A.; Watson, C. Remote leveling of tide gauges using GNSS reflectometry: Case study at Spring Bay, Australia. GPS Solut. 2017, 21, 451–459. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Song, M.; Chen, S.; Niu, Z. Analysis of inter-frequency bias in multi-mode multi-frequency GNSS-IR water level retrieval and correction method. Acta Geod. Cartogr. Sin. 2022, 51, 2328–2338. [Google Scholar]
- Zheng, N.; Chai, H.; Chen, L.; Feng, X.; Xiang, M. Improvement of Snow Depth Inversion Derived from Terrain Tilt Correction and Multi-GNSS Measurements Using the Helmert Variance Component Estimation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5800713. [Google Scholar] [CrossRef]
Observation Types | Function | Utilized Technique | Utilized GNSS Information | ||
---|---|---|---|---|---|
System | Observation Code | Elevation Angle Range | |||
Carrier phase | Measure Ha | GNSS RTK | GPS | LlC, L2L | 40° to 90° |
Galileo | L1C, L7Q | ||||
GLONASS | L1C, L2C | ||||
BDS | L2I, L7I | ||||
SNR | Measure Hr | GNSS-IR | GPS | SlC, S2L | 20° to 40° |
Galileo | S1C, S7Q | ||||
GLONASS | S1C, S2C |
System | Band | Mean (m) | STD (m) | RMSE (m) |
---|---|---|---|---|
GPS | L1 | −0.006 | 0.013 | 0.014 |
L2 | 0.012 | 0.016 | 0.020 | |
Galileo | E1 | −0.015 | 0.023 | 0.027 |
E5b | 0.018 | 0.055 | 0.058 | |
GLONASS | G1 | 0.009 | 0.011 | 0.014 |
G2 | 0.005 | 0.019 | 0.019 |
Reference | Method | Mean (m) | STD (m) | RMSE (m) |
---|---|---|---|---|
RTK+WLG | NA | 0.004 | 0.013 | 0.013 |
WA | 0.004 | 0.007 | 0.008 | |
LSM | NA | 0.004 | 0.011 | 0.011 |
WA | 0.002 | 0.007 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xu, T.; Guo, H.; Sun, C.; Liu, Y.; Gao, G.; Miao, J. Estimation of Surface Water Level in Coal Mining Subsidence Area with GNSS RTK and GNSS-IR. Remote Sens. 2024, 16, 3803. https://doi.org/10.3390/rs16203803
Li Y, Xu T, Guo H, Sun C, Liu Y, Gao G, Miao J. Estimation of Surface Water Level in Coal Mining Subsidence Area with GNSS RTK and GNSS-IR. Remote Sensing. 2024; 16(20):3803. https://doi.org/10.3390/rs16203803
Chicago/Turabian StyleLi, Yunwei, Tianhe Xu, Hai Guo, Chao Sun, Ying Liu, Guang Gao, and Junwei Miao. 2024. "Estimation of Surface Water Level in Coal Mining Subsidence Area with GNSS RTK and GNSS-IR" Remote Sensing 16, no. 20: 3803. https://doi.org/10.3390/rs16203803
APA StyleLi, Y., Xu, T., Guo, H., Sun, C., Liu, Y., Gao, G., & Miao, J. (2024). Estimation of Surface Water Level in Coal Mining Subsidence Area with GNSS RTK and GNSS-IR. Remote Sensing, 16(20), 3803. https://doi.org/10.3390/rs16203803