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Abstract: Ground subsidence caused by underground coalmining result in the formation of ponding
water on the ground surface. Monitoring the surface water level is crucial for studying the hydrologic
cycle in mining areas. In this paper, we propose a combined technique using Global Navigation
Satellite System Real-Time Kinematic (GNSS RTK) and GNSS Interferometric Reflectometry (GNSS-
IR) to estimate the surface water level in areas of ground subsidence caused by underground coal
mining. GNSS RTK is used to measure the geodetic height of the GNSS antenna, which is then
converted into the normal height using the local height anomaly model. GNSS-IR is employed to
estimate the height from the water surface to the GNSS antenna (or, the reflector height). To enhance
the accuracy of the reflector height estimation, a weighted average model has been developed.
This model is based on the coefficient of determination of the signal fitted by the Lomb-Scargle
spectrogram and can be utilized to combine the reflector height estimations derived from multiple
GNSS system and band reflection signals. By subtracting the GNSS-IR reflector height from the
GNSS RTK-based normal height, the proposed method-based surface water level estimation can be
obtained. In an experimental campaign, a low-cost GNSS receiver was utilized for the collection of
dual-frequency observations over a period of 60 days. The collected GNSS observations were used to
test the method presented in this paper. The experimental campaign demonstrates a good agreement
between the surface water level estimations derived from the method presented in this paper and the
reference observations.

Keywords: coal mining subsidence area; surface water level; GNSS RTK; GNSS-IR; carrier phase;
signal-to-noise ratio (SNR)

1. Introduction

Coal has played a significant role in global energy production and industrial develop-
ment, currently accounting for 40% of global primary energy consumption [1]. Due to the
limitation of geological conditions, surface mining is impractical or uneconomical in most
circumstances. Hence, the majority of coal production comes from underground mining
especially in China [2]. The underground coal-mining can induce ground subsidence over
a large area. When the subsided ground falls below the water table level, groundwater can
rise to the ground surface, submerging farmland and buildings. Continuous monitoring of
surface water levels in areas of ground subsidence caused by underground coal-mining
is important for scientific research on the hydrologic cycle in the mining area and for the
effective reclamation of submerged land [3–5].

Basically, monitoring surface water levels with high temporal resolution based on
the conventional leveling surveying method is unfeasible, because the method is labor-
intensive and costly. The ground subsidence due to the underground coal-mining can
induce considerable spatial position variation for the water level radar fixed on the ground,
resulting in a significant error in the water level radar-based measurement. Consequently,
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the water level radar is basically incapable of measuring the surface water level (and surface
water level variation) in coal mining subsidence area. The invalidation of the water level
measurement using the water level radar in the coal mining subsidence area is also clearly
illustrated in Figure 1. As shown in the figure, at a given time t1, the vertical distance
from the water level radar to the reference datum is H0, and the radar-measured vertical
distance to the water surface is H1; then the radar-based water level can be easily obtained,
which is HL1 = H0 − H1. At the time t2, the radar-based water level is HL2 = H0 − H2
for the areas of subsidence-free, if the radar-measured distance to the water surface is H2.
However, due to the ground subsidence induced by the underground coal-mining (Hs1 in
Figure 1), the in-situ water level at the time of t2 is H0 − Hs1 − H2, instead of H0 − H2, in
the underground coal-mining induced ground subsidence areas. Hence, accurately and
continuously measuring the surface water level in the area of ground subsidence due to
underground coal-mining in a cost-effective manner remains a challenging problem.
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Figure 1. Diagram of the invalidation of the water level measurement using radar in the coal mining
subsidence area.

GNSS RTK (Global Navigation Satellite System Real-Time-Kinematic, GNSS RTK) is
a typical positioning technique, which makes use of a combination of the GNSS signal
collected by the rover station and the signal collected by the base station to provide
accurately position information of the rover station. The technology began to be applied
for monitoring ground subsidence due to underground coal mining around 2000 [6]. By
fixing the rover to a ground point, GNSS RTK can be used to monitor ground subsidence
due to underground coal mining at that point with high temporal resolution. However,
because of the high cost of the GNSS receiver and the establishment of the GNSS station,
monitoring ground surface subsidence in this manner is still rare to this day. In addition to
GNSS RTK, the GNSS Precise Point Positioning (PPP) technique can also be used to monitor
the ground subsidence deformation. Basically, the GNSS PPP technique is inferior to GNSS
RTK in terms of timeliness, stability, and accuracy; although the technique can reduce the
economic cost to some extent [7–9]. In recent years, some GNSS devices integrated with
solar power modules and wireless network communication modules have been developed.
By making use of the integrated GNSS devices and GNSS RTK (or GNSS PPP), automatic
and real-time monitoring of ground subsidence deformation in underground coal mining
areas has been achieved [10–12].

In addition to positioning, GNSS can also be used for remotely sensing a variety
of Earth’s surface parameters. The GNSS remote sensing technique is also referred to
as GNSS reflectometry [13]. GNSS reflectometry can be divided into two types; that is
the reflecting pattern and the interference pattern [14]. The reflecting pattern technique
uses a specialized receiver connected with two GNSS antennas. One of GNSS antennas is
right-hand circularly polarized and is typically deployed with a zenith-looking orientation
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to collect the direct GNSS signal. While the other is left-hand circularly polarized and
deployed with a nadir-looking orientation to collect the signal reflected from the ground
or water surface. Because of the high cost and high energy consumption of the receiving
instrument, it is common to install the receiver on a satellite for measuring ocean surface
parameters (e.g., ocean surface roughness and wind speed) and ground surface parameters
(e.g., vegetation height and soil moisture) [15–18]. The interference pattern technique uses
a geodetic or navigational GNSS receiver equipped with a single antenna to collect the
interfered signal. The interfered signal consists of the direct signal and the signal reflected
from a medium surface, such as the ground or water surface. By utilizing the frequency
variation (or the oscillating period variation) of the interfered signal, the technique can
be used to retrieve the height variation of reflection surface relative to the GNSS antenna.
The technique is also termed GNSS Interferometric Reflectometry (GNSS-IR) and can be
utilized to measure the snow depth, lake and coastal water level variation [19–22].

Previous studies related to GNSS-based water level estimation mainly focus on cir-
cumstances where only the water level varies, such as river or ocean water level variation
estimation. In these cases, using the reflected GNSS signal alone (or the GNSS-IR technique)
can accurately measure water level variations. For example, in the last few years, Larson
et al. proposed using the GNSS-IR method to estimate ocean water levels and developed a
model to correct the estimation errors caused by dynamic changes in water levels [23–25].
Jin et al. also demonstrated the good performance of BDS signals in ocean water level
estimation [26]. Wang et al. utilized multiple GNSS systems and a signal fusion method to
achieve millimeter-grade accuracy in estimating river water levels [27,28]. Hitherto, the
GNSS-based water level estimation technique has not been utilized to measure water levels
in areas affected by underground coal mining-induced ground subsidence. In the context of
ground subsidence due to underground coal mining, both the water level and ground sur-
face height vary simultaneously. The alternative method for estimating surface water levels
in coal mining subsidence areas is the leveling survey method, which is labor-intensive,
time-consuming, and expensive. Therefore, based on GNSS techniques, the development
and validation of a new water level estimation method for ground subsidence areas is
necessary to improve measuring efficiency and reduce economic costs.

In this paper, a new method for estimating the surface water level in area of ground
subsidence due to underground coal-mining is presented. The method combines the GNSS
positioning technique (GNSS RTK, specifically) with GNSS-IR, which may also be termed
“GNSS+IR”, enabling continuous and accurate estimation of the surface water level in
the area of ground subsidence. Additionally, due to the use of a low-cost GNSS chip and
antenna, the method presented in this paper is promising for cost-effective monitoring of
surface water level variations with high temporal and spatial resolution over a large area.

2. Fundamentals of Ground Subsidence Due to Underground Coal-Mining

When the underground coal seam is not mined out, it carries the pressures from the
rocks and soil above it. The pressures will cause the rocks to separate from the bedding
planes above the coal seam once it has been fully mined. As the mined-out area (or goaf)
increases, the mass of the separated rocks also rises, resulting in increased gravitational
force. When this force exceeds the cohesion of the separated rock seam, the rocks will fall
into the goaf [29]. As the separated rocks fall into the goaf, the rocks and soil above will
experience vertical displacement. After the effects of the displacement reach the surface,
ground subsidence due to underground coal mining begins. Basically, the shape of the
subsided ground surface due to the underground coal-mining is very similar to a bowl
as shown in Figure 2, and is also termed as a subsidence basin. The ground subsidence
area due to underground mining in a typical coalfield in China can exceed about 200 km2,
resulting in serious damage to buildings and land, as well as waterlogging over a larger
area, as illustrated in Figure 2.
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Figure 2. Subsidence basin due to underground coal-mining and the damages of the subsidence on
the ground surface and buildings.

In general, the subsidence basin area is significantly greater than that of the goaf;
subsidence magnitudes are also different for different ground points in the basin. Both
the subsidence area and magnitude depend on the mining and geological conditions
(e.g., mining speed, coal seam depth and mining thickness); and the ground subsidence
is also spatially and temporally related [30,31]. In the spatial dimension, for the ground
point within the subsidence basin, the magnitude of subsidence at that point is inversely
proportional to the horizontal distance from the goaf center [32]. In other words, as the
horizontal distance increases, the subsidence magnitude at the ground point decreases.

In the temporal dimension, ground subsidence due to underground coal-mining de-
velops progressively. At a ground point, a slight downward movement becomes detectable
when the mining operation is located approximately 100 to 200 m behind that point [33]. As
the mining position passes through the point, the ground subsidence increases significantly.
Approximately 80% of the total ground subsidence occurs during this stage (or, termed
as “active stage”). Duration of the active stage is typically about 3–10 months, as shown
in Figure 3, which shows a typical ground subsidence time series induced by mining of a
thick coal seam. It can be observed from Figure 3 that underground coal mining will induce
rather larger ground subsidence over a short period (i.e., greater than 5 m within about 6
months). As a result, both the horizontal and vertical positions of the GNSS antenna fixed
on the subsided ground will vary considerably.

After the active stage, the subsidence velocity of the ground point gradually closes
to 0 mm/day, and the ground subsidence magnitude at the point gradually approaches
its maximum. This stage is also referred to as the ‘stable stage’. The duration of the stable
stage can last for several years [34].
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Figure 3. The observed ground subsidence time series in the case of mining of a typical thick coal seam.

3. Materials

The experimental campaign was conducted in the Jining coal mining area, which is
one of the largest coal-producing areas in China, from 20 August 2023 to 20 October 2023,
over about 60 days. The extent of the geographical region of Jining coal mining area is
shown in Figure 4. A GNSS station was established at the ground surface above a coal
mining working face on 15 August 2023. The relative position between the GNSS station
and the coal mining working face is shown in the left part of Figure 5; the right part of
Figure 5 shows local environment of the GNSS station. The working face was mined on
17 June 2022. The mining width and length of the working face are about 140 m and 800 m
respectively; and the averaged coal seam thickness, mining depth, and mining speed of the
working face are about 6.5 m, 550 m, and 2.8 m/d, respectively.
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Due to the significant ground subsidence induced by the underground coal mining,
the raw ground surface and roads around the GNSS station were submerged by the ground-
water after the underground coal-mining, as illustrated in Figure 6. In the experiment,
the GNSS station is established on the side of an elevated and repaired road inside the
underground coal-mining-induced water pooling area; that is, the GNSS station is deployed
inside the water pooling area, as shown in Figure 6.
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Figure 6. Submerged ground surface around the GNSS station due to the underground coal-mining,
and the distribution zone of the GNSS satellite reflection tracks.

In addition, a high-frequency water level radar (or, water level gauge, WLG) was also
used to measure height from the water surface to WLG (i.e., hw). The deployment of the
WLG is shown in the right part of Figure 6. As shown in the figure, the WLG was fixed on
a horizontal crossbeam. The crossbeam is horizontally connected to the GNSS station pole.
Besides, a metal tube attached to a metal ruler was vertically fixed in the water pooling
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area for measuring the surface water level with the leveling surveying method, as shown
in Figure 7.
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Figure 7. Measurement of the surface water level in underground coal-mining induced ground
subsidence area using leveling surveying method (LSM).

4. Methods
4.1. Geometry of GNSS+IR Based Surface Water Level Estimation

As presented in Section 2, underground coal-mining can induce a considerably sub-
sidence on the ground surface. Once the height of the subsided ground is lower than the
water table level, groundwater will be exposed to the air and converted into surface water
as illustrated in Figure 8. The geometry of the proposed method for estimating surface
water levels in the subsidence area due to underground coal-mining is illustrated in the
right figure of Figure 8. A GNSS antenna and receiver is installed on the ground in an
area affected by subsidence due to underground coal mining. For a given time, plane
coordinates (xa, ya) and geodetic height (Ha) of the antenna can be measured by using
GNSS RTK. Since the normal height, rather than the geodetic height, is more applicable for
realistic engineering applications (such as land reclamation and road repair in coal mining
subsidence areas), it is necessary to convert the GNSS RTK-based geodetic height into the
normal height for the surface water level estimation in mining subsidence areas.
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As studied in [35], the difference between geodetic height and normal height (or,
height anomaly) at a local region can be described by a second-order surface function:

ξ(x, y) = b0 + b1x + b2y + b3xy + b4x2 + b5y2 (1)

where {bi} is the function coefficients, which can be obtained by applying the least-squares
method to the field dataset of geodetic and normal height observations at the public points.
Substituting the GNSS RTK observed plane coordinate into (1), the height anomaly ξa
at the station can be obtained; then, the normal height of the GNSS antenna Han can be
calculated by:

Han = Ha − ξa = Ha −
(

b0 + b1xa + b2ya + b3xaya + b4x2
a + b5y2

a

)
(2)

Further, if the reflector height (RH) of the GNSS antenna (i.e., the vertical distance from the
water surface to the antenna) Hr can be estimated using GNSS-IR, based on the geometry
relationship shown in Figure 8, the surface water level in coal mining subsidence area at a
given time can be obtained by:

Hg = Han − Hr (3)

Note that, in the existing research scenarios (e.g., river, lake, or ocean water level
estimation), the normal height of the GNSS antenna can basically be treated as a constant,
due to the negligible position variation of the GNSS antenna [21,36]. Thus, the GNSS
positioning technique is usually unnecessary for the water level (or, water level variation)
estimation in the existing research scenarios. However, in the coal mining subsidence
area, the vertical displacement of the GNSS antenna can reach several or even hundreds of
centimeters over a short period (e.g., several months). That is, the GNSS antenna normal
height and GNSS-IR RH are changing simultaneously and significantly in the underground
coal mining subsidence areas. In this scenario, the GNSS RTK must be used to obtain the
antenna normal height in near-real-time; and only by combining the antenna’s normal
height (Han) with GNSS-IR-based RH (Hr) can the surface water level (and the surface
water level variation) be measured correctly at a given time. Hence, both the GNSS RTK
and GNSS-IR are essential for estimating water levels in the underground coal-mining
induced ground subsidence scenario.

4.2. Estimation of RH Using Multiple Mode and Band GNSS Signals

When the GNSS signals reach the water surface, part of the signal will be reflected
by the surface. If the reflected signal can be captured by a GNSS antenna, the raw SNR
observations outputted by the antenna-connected receiver is an interfered signal. This
interfered signal includes both the direct GNSS signal and the GNSS signal reflected by the
water surface. In general, a direct component of the interfered GNSS signal is a signal with
low frequency. The low-frequency direct component can be well-fitted using a second-order
polynomial function. Subtracting the direct signal from the raw SNR series, the reflected
SNR signal (or, the multipath SNR signal) can be obtained and can be expressed as [37]:

SNRm(θ) = Am cos
(

2π · 2Hr

λ
· sin θ + ϕm

)
(4)

where Am and ϕm are the amplitude and phase of the reflected SNR signal; θ is the GNSS
satellite elevation angle; λ is the GNSS signal wavelength (e.g., 0.1903 m for GPS L1 band
signal). Basically, the observed reflection SNR signal is a quasi-sinusoidal signal periodically
oscillating with respect to the sine of elevation angle when the elevation angle is lower (e.g.,
less than 40◦ for the navigational GNSS receiver), as shown in Figure 9. The figure shows
typical examples of the observed multipath GNSS SNR series for three GNSS systems (i.e.,
GPS, Galileo, and GLONASS).
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Figure 9. The observed multipath SNR series and corresponding Lomb-Scargle periodogram for GPS
G04 satellite L1 and L2, Galileo E05 satellite E1 and E5b, GLONASS R09 satellite G1 and G2 band
signals respectively, when the satellite elevation angle is in the range of 20◦ to 40◦. All the series are
collected on 30 August 2023 by using the low-cost GNSS chip of u-blox F9P and ANN-MB antenna.

The multipath series of SNR observations with respect to the sine of satellite elevation
angle is an unevenly sampled signal. The Lomb-Scargle periodogram (LSP) method can be
exploited to retrieve the amplitude spectrum and phase spectrum of the unevenly sampled
signal [38]. Figure 10 shows an example of the observed GPS L1 band multi-path SNR
signal, and the corresponding amplitude spectrum and phase spectrum obtained using
the LSP method. After determining the peak frequency of the multipath signal from the
amplitude spectrum, the RH captured by the multipath signal can be estimated by:

Hr = fLSP · λ/2 (5)

where fLSP is peak frequency of the multipath SNR signal which can be obtained by exploit-
ing the LSP method to the observed multipath SNR signal. Once the phase, amplitude, and
frequency of the observed multipath SNR signal are obtained using the LSP method, the
LSP method fitted multipath GNSS SNR signal can also be obtained, which is given by:

SNRLSP(θ) = ALSP cos(2π · fLSP · sin θ + ϕLSP) (6)

where ALSP and ϕLSP are the peak frequency corresponded amplitude and phase
In the field of statistics, the goodness of the fitting result is usually evaluated using the

coefficient of determination (CoD) [39]. Similarly, the CoD can also be utilized to indicate
the accordance degree between the fitted and the observed multipath SNR signals; and the
CoD can be calculated by:

R2 = 1 − ∑n
k=1[SNRm(θk)− SNRLSP(θk)]

2

∑n
k=1

[
SNRm(θk)− SNRm

]2 (7)
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where R2 is the CoD; SNRm(θk) and SNRLSP(θk) are the observed and fitted multipath SNR
at k-th elevation angle; SNRm is the average of the observed multipath SNR series. The
CoD ranges from zero to one; and the goodness of the LSP fitting result is proportional to
the CoD. That is, a larger CoD value indicates a better agreement between the LSP-fitted
and the observed multipath signals. Accordingly, the LSP-determined peak frequency
with larger CoD, and hence the RH calculated by the peak frequency, should be closer
to the ground truth. Therefore, for a RH estimation derived from an observed multipath
SNR signal, the accuracy of the RH can be weighted with the CoD of the LSP fitting result.
During a given period (e.g., a day), if there are m RH estimations derived from different
GNSS systems and band multipath signals, the weighted average of GNSS-IR RH can be
calculated by:

Hr_WA =
1

∑m
i=1 R2

i
∑m

i=1

(
R2

i · Hi
r

)
(8)

where Hi
r and R2

i are the LSP peak frequency estimated RH and the RH corresponded CoD
for the i-th multipath SNR signal, respectively. By substituting the weighted average of
RH given by (8) into (3), the multiple mode and band signals-based GNSS+IR water level
estimation in the mining subsidence area can be obtained.
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multipath SNR series.

4.3. Data Processing Flow of GNSS+IR Based Surface Water Level Estimation

The data processing flow of the GNSS+IR based surface water level estimation in the
area of ground subsidence due to underground coal-mining is shown in Figure 11. The
inputs of the estimation include GNSS carrier-phase observation and SNR observation.
The former is used to calculate the geodetic height of the GNSS antenna with the GNSS
positioning technique (i.e., GNSS RTK). To mitigate affection of the multipath GNSS signal
on the positioning accuracy, the GNSS carrier phase observations with a high elevation
angle (greater than 40◦) are selected for calculation of the GNSS antenna geodetic height.
Alternatively, the GNSS SNR observations with an elevation angle of less than 40◦ are used
to calculate RH of the antenna based on GNSS-IR, because the SNR observations with a
low elevation angle are easily affected by the reflected GNSS signal and are more suitable
for GNSS reflected signal-based RH estimation technique (i.e., GNSS-IR).
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Figure 11. Data processing flow of the GNSS+IR based surface water level estimation in area of
ground subsidence due to underground coal-mining.

As illustrated in Figure 11, the data processing flow of the GNSS+IR-based surface
water level estimation in an area of ground subsidence due to underground coal-mining
can be described as:

(a) Select the GNSS carrier phase observations with an elevation angle greater than 40◦;
(b) Calculate the geodetic height (Ha) of the GNSS antenna at a given time with the GNSS

RTK technique;
(c) Convert the geodetic height of the GNSS antenna to the normal height (Han) using

Equation (2);
(d) Select the GNSS SNR observations with an elevation angle less than 40◦;
(e) Calculate reflector the height (Hr) of the GNSS antenna at a given time with the

GNSS-IR technique;
(f) Based on Equation (8), calculate the weighted average (Hr_WA) of the GNSS antenna

reflector height estimations derived from different GNSS systems and bands;
(g) Calculate the surface water level estimation by substituting the normal height and

reflector height of the GNSS antenna at a given time into Equation (3).

4.4. GNSS and the Reference Data Processing Methods

Based on the consumer-grade GNSS chip (u-blox F9P) and GNSS antenna (u-blox
ANN-MB), a low-cost GNSS receiver was developed. The receiver was utilized to monitor
the surface water level with GNSS+IR. The receiver can process dual-frequency band
signals transmitted by four GNSS constellations including GPS L1 and L2, Galileo E1 and
E5b, GLONASS G1 and G2, and BDS B1 and B2 signals. Details related to the chip and
the structure of the receiver can be referred to [40,41]. Because the strength of the reflected
GNSS signal is inversely proportional to the elevation angle, it is beneficial to mitigate
the impact of multipath error on GNSS positioning accuracy by using observations with
high elevation angles. However, the received GNSS signal is more sensitive to geophysical
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variations of the reflecting surface, such as changes in the water surface, when the elevation
angle is lower. In this respect, GNSS SNR observations with low elevation angles would
be more suitable for GNSS-IR-based reflector height estimation. Thereby, the carrier-
phase observations with elevation angle greater than 40◦ were used to determine the
plane coordinate and geodetic height of the GNSS antenna based on GNSS RTK. The SNR
observations within an elevation angle range of 20◦ to 40◦ were used to calculate GNSS-IR
RH. The GNSS observation types and corresponding functions in the water level estimation
can also be seen clearly in Table 1.

Table 1. The GNSS observation types and corresponding functions in the experimental campaign.

Observation
Types Function

Utilized
Technique

Utilized GNSS Information

System Observation
Code

Elevation
Angle Range

Carrier phase Measure Ha GNSS RTK

GPS LlC, L2L

40◦ to 90◦
Galileo L1C, L7Q

GLONASS L1C, L2C

BDS L2I, L7I

SNR Measure Hr GNSS-IR

GPS SlC, S2L

20◦ to 40◦Galileo S1C, S7Q

GLONASS S1C, S2C

The observing interval of the GNSS instrument is 1s. By averaging all the GNSS RTK
measured geodetic height observations in a day (~25,000 observations with fixed solution),
the daily averaged geodetic height of the antenna can be calculated. Then, the height
is converted into normal height by using (2), obtaining the daily normal height of the
GNSS antenna.

The number of satellites utilized to calculate GNSS-IR RH is 9, 22, and 22 for GPS,
Galileo, and GLONASS respectively; these satellite sky trajectories during the experiment
are shown in Figure 12. Assuming that the GNSS-IR RH estimations derived from different
GNSS system and band signals in a day have the same weight (e.g., 1), and by substituting
these weights and estimations into (8), the daily normal average of GNSS-IR RH for com-
bining multiple systems and (or) band signals can be obtained. By calculating the weight
of the RH estimation with CoD and substituting the calculated weights and estimations
into (8), the daily weighted average of GNSS-IR RH for combining multiple system and (or)
band signals is obtained. Substituting the daily normal height of the GNSS antenna and the
daily normal average of GNSS-IR RH into (3), the normal average (NA) of the surface water
level in the coal mining subsidence area can be obtained. Similarly, the weighted average
(WA) of the water level can also be obtained by substituting the daily normal height of the
antenna and the daily weighted average of GNSS-IR RH into (3). Formulas related to the
calculation of WA and NA of the water level are given by:

HWA
g = Han −

1
∑m

i=1 R2
i

∑m
i=1

(
R2

i · Hi
r
)

HNA
g = Han −

1
m ∑m

i=1 Hi
r

(9)

Notice that, based on the location of the GNSS station in relation to the water surface
shown in Figure 6, the GNSS reflection tracks with an azimuth angle range of 270◦ to 360◦

were utilized to estimate the GNSS-IR RH. In the azimuth angle range, the number of BDS
reflection tracks is rather limited (less than two tracks in a day), which will result in an
unreliable performance assessment of the BDS signals in the water level estimation. The
maximum number of channels that can be utilized to receive BDS signals is four for the



Remote Sens. 2024, 16, 3803 13 of 18

u-blox F9P chip, which should be the main reason for the limited availability of BDS tracks.
Therefore, the BDS multipath signals were not utilized in the experiment.
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Figure 12. GNSS satellite sky plot utilized to calculate the GNSS-IR RH during the experimental
campaign.

The height from the GNSS antenna to the WLG (i.e., ∆h) was manually measured by
using a ruler, which is 0.742 m. Then, the GNSS RTK and WLG (RTK+WLG) measured
surface water level can be calculated by:

Hg_RTK+WLG = Han − ∆h − hw (10)

The measuring interval and accuracy of the WLG are 10 s and ±5 mm, respectively.
A DSZ1 level was used to measure the normal height of the top of the metal tube Hlst.

The base point of the leveling survey is located in an area unaffected by ground subsidence.
The vertical distance from the metal tube top to the water surface (Hrws) was manually
measured using the metal ruler attached to the tube. By subtracting this vertical distance
from the normal height of the tube top, the leveling surveying method (LSM) based surface
water level (Hg_ls) can be obtained, as illustrated in (11).

Hg_ls = Hlst − Hrws (11)

There are seven LSM-based surface water level observations during the experimental
campaign. Both the RTK+WLG-based and the LSM-based surface water level observations
were compared with the GNSS+IR-derived ones in the experimental campaign.

5. Results

The time series of daily normal averages (NA) of the GNSS+IR water level for GPS,
Galileo, and GLONASS dual-frequency signals, and the water level measured by the
RTK+WLG method, are shown in Figure 13. Additionally, seven LSM-based water level
observations are also displayed in the figure. Using the RTK+WLG based water level as the
reference data, the Mean, STD, and RMS errors of the GNSS+IR water level estimations
can be obtained, as shown in Table 2. The ground subsidence of the GNSS station due to
underground coal-mining was 38 mm during the experiment, and the GNSS RTK-based
ground subsidence time series is also presented in Figure 13. The RTK+WLG measured
surface water level ranges from 41.725 m to 42.092 m during the experiment.
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Figure 13. Daily averages of the surface water level observations by RTK+WLG and daily normal
average (NA) of the GNSS+IR surface water level estimations for GPS, Galileo, and GLONASS
du-al-frequency band signals.

Table 2. Mean error, error STD and RMSE of GNSS+IR-based surface water level estimations with
reference data of RTK+WLG.

System Band Mean (m) STD (m) RMSE (m)

GPS L1 −0.006 0.013 0.014
L2 0.012 0.016 0.020

Galileo E1 −0.015 0.023 0.027
E5b 0.018 0.055 0.058

GLONASS G1 0.009 0.011 0.014
G2 0.005 0.019 0.019

The scatterplots of the normal average (NA) and weighted average (WA) of the
multiple-system-and-band-signals combined water level versus the RTK+WLG-based
water level are shown in Figure 14. The scatterplots of the normal average (NA) and
weighted average (WA) of the multiple-system-and-band-signals combined water level
versus the LSM-based water level are shown in Figure 15. Taking the RTK+WLG and LSM
water level as the reference data respectively, the Mean, STD, and RMS of errors of the NA
and WA water level estimations can be obtained, which is given by Table 3.

Table 3. The mean error, error STD, and RMSE of GNSS+IR based surface water level estimation in
coal mining subsidence area.

Reference Method Mean (m) STD (m) RMSE (m)

RTK+WLG NA 0.004 0.013 0.013
WA 0.004 0.007 0.008

LSM NA 0.004 0.011 0.011
WA 0.002 0.007 0.007
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Figure 15. The scatterplot of the normal average (NA) and weighed average (WA) results for the
comparison between the GNSS+IR and the LSM water level observations.

6. Discussion

It can be observed from Figure 13 and Table 2 that, the accuracy of GPS based water
level estimations is equivalent to that of the GLONASS based ones basically. The perfor-
mance of the second band signal (e.g., GPS L2) derived estimation is slightly inferior to
that of the first band signal (e.g., GPS L1) derived one for these two systems. The inferior
performance of the second band signal should be mainly attributed to the quality of the
LSP-fitted multipath signal. Because the CoD of the second band multipath signal fitted by
the LSP is lower than that of the first band signal (e.g., about 0.50 and 0.55 for typical GPS
L2 and L1 band signals respectively), the RH, and thus the water level, estimating error of
the former is greater than that of the latter. This also infers the possibility of weighing the
GNSS-IR RH with CoD to improve the water level estimating accuracy.

Due to the same reason, the Galileo E5b band signal derived water level estimating
error is greater than E1 band signal derived one. Furthermore, Galileo based water level
estimating error is obviously larger than other two systems; e.g., RMS of the water level
estimating error is 0.027 m and 0.014 m for Galileo E1 and GPS L1 band signals, respectively.
The signal transmitted by Galileo satellite makes use of the improved modulation technique
(i.e., CBOC and AltBOC for E1 and E5b band signal), which performs better in suppression
of multipath signal especially when the satellite elevation angle is larger [42,43]. The
improved modulation technique could decrease quality, and thus CoD, of the multipath
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signal significantly, resulting in a larger RH and water level estimating error. Besides,
the less available number of reflection tracks (about four, eight, and six tracks for Galileo,
GPS, and GLONASS respectively) in a day should be another reason causing the poor
performance of Galileo system in the experiment.

In addition, the mean errors provided in Table 2 show different signs and inter-
differences in water level estimations obtained using different GNSS frequencies. The
different signs and inter-differences might be induced by the inter-frequency bias of GNSS-
IR RH. The inter-frequency bias might be related to the combined interaction of the Fresnel
reflection coefficients or the antenna gain pattern [44,45]. However, since the main reason
causing the bias has not been well identified and proved, it has been difficult to develop a
reliable correction model to accurately compensate for the bias until now.

It can be observed from Figures 14 and 15 that the NA based water level estimation
deviates to some extent from the RTK+WLG (and LSM) based one; whereas the deviation
can be compensated by making use of the proposed weighted averaged method. This
can also be seen clearly in Table 3. It can be seen from the table that, the RMS errors of
the normal average results are 0.013 m and 0.011 m for the RTK+WLG and LSM-based
reference datasets, respectively. By utilizing the weighted average method, the RMSE is
reduced by 38.5% and 36.3% for these two datasets, respectively. Overall, the weighted
average method demonstrates good effectiveness in enhancing the accuracy of the surface
water level estimations.

7. Conclusions

In this paper, the combined technique of GNSS RTK and GNSS-IR is proposed for
estimating surface water level of ground subsidence due to under-ground-coal-mining
with the low-cost GNSS receiver. The method can make use of a single GNSS station to
monitor ground deformation and surface ponding water level caused by underground coal
mining simultaneously. The weighted average model has also been developed to combine
multiple GNSS system and band signals-based RH estimations; the model can improve the
water level estimating accuracy significantly.

Due to the limited availability of BDS multipath signals, they were not utilized in
the research. As studied in [46], there is a noticeable difference in the RH estimating
performance between the BDS2 and BDS3 signals. The next work will focus on evaluating
the performance of surface water level estimation in the area of ground subsidence due to
underground coal-mining using different BDS signals. Besides, comprehensive research on
the generation mechanism of the inter-frequency bias and the development of a reliable
correction model will also be studied in the future.
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