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Abstract: The fusion of infrared and visible images together can fully leverage the respective ad-
vantages of each, providing a more comprehensive and richer set of information. This is applicable
in various fields such as military surveillance, night navigation, environmental monitoring, etc. In
this paper, a novel infrared and visible image fusion method based on sparse representation and
guided filtering in Laplacian pyramid (LP) domain is introduced. The source images are decomposed
into low- and high-frequency bands by the LP, respectively. Sparse representation has achieved
significant effectiveness in image fusion, and it is used to process the low-frequency band; the guided
filtering has excellent edge-preserving effects and can effectively maintain the spatial continuity of
the high-frequency band. Therefore, guided filtering combined with the weighted sum of eight-
neighborhood-based modified Laplacian (WSEML) is used to process high-frequency bands. Finally,
the inverse LP transform is used to reconstruct the fused image. We conducted simulation experi-
ments on the publicly available TNO dataset to validate the superiority of our proposed algorithm in
fusing infrared and visible images. Our algorithm preserves both the thermal radiation characteristics
of the infrared image and the detailed features of the visible image.

Keywords: infrared and visible image; image fusion; Laplacian pyramid; sparse representation;
guided filtering

1. Introduction

Infrared and visible image fusion is a process that integrates the complementary
information from infrared (IR) and visible light images to produce a single image that is
more informative and suitable for human perception or automated analysis tasks [1]. This
technique leverages the distinct advantages of both imaging modalities to enhance the
visibility of features that are not apparent in either image alone [2,3].

Unlike visible light images, infrared images capture the thermal radiation emitted by
objects. This allows for the detection of living beings, machinery, and other heat sources,
even in total darkness or through obstructions like smoke and fog. IR imaging is invaluable
for applications requiring visibility in low-light conditions, such as night-time surveillance,
search and rescue operations, and wildlife observation [4].

Visible light images provide high-resolution details and color information, which are
crucial for human interpretation and understanding of a scene. From photography to
video surveillance, visible light imaging is the most common form of imaging, offering a
straightforward depiction of the environment as perceived by the human eye. The fusion
process integrates the thermal information from infrared images with the detail and color
information from visible images [5–8]. This results in images that highlight both the thermal
signatures and the detailed scene information. By combining these two types of images,
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the fused image enhances the ability to detect and recognize subjects and objects in various
conditions, including complete darkness, smoke, fog, and camouflage situations.

Various algorithms and techniques, including multi-resolution analysis, image de-
composition, and feature-based methods, have been developed to fuse the images. A
major challenge in image fusion is to maintain and highlight the essential details from both
source images in the combined image, while avoiding artifacts and ensuring that no crucial
information is lost [9–17]. For some applications, such as surveillance and automotive
safety, the ability to process and fuse images in real time is crucial. This creates difficulties
in terms of processing efficiency and the fine-tuning of algorithms.

During the fusion process, some information may be lost or confused, especially in
areas with strong contrast or rich details, where the fusion algorithm might not fully retain
the information from each image. Additionally, noise or artifacts may be introduced during
the fusion process, affecting the quality of the final image. To enhance the performance
of the fused image in terms of both thermal radiation characteristics and detail clarity, a
fusion method utilizing sparse representation and guided filtering in the Laplacian pyramid
domain is constructed. Sparse representation has demonstrated excellent results in image
fusion; it is used to process the low-frequency sub-bands, and guided filtering combined
with the weighted sum of eight-neighborhood-based modified Laplacian (WSEML) is
utilized to process the high-frequency sub-bands. Through experiments and validation on
the publicly available TNO dataset, our algorithm has achieved significant fusion effects,
incorporating both infrared characteristics and scene details. This is advantageous for
subsequent target detection and recognition tasks.

The paper is structured as follows: Section 2 reviews related research. Section 3 intro-
duces the Laplacian pyramid transform. Section 4 details the proposed fusion approach.
Section 5 shows the experimental results and discussion. Finally, Section 6 concludes the
paper. This structure ensures a clear progression through the background research, founda-
tional concepts, algorithmic details, empirical findings, and concluding remarks, thereby
comprehensively addressing the topic of image fusion in the Laplacian pyramid domain.

2. Related Works
2.1. Deep Learning on Image Fusion

Deep learning has achieved significant results in the field of image processing, with
popular algorithms including CNNs [18], GANs [19], swin transformer [20,21], vision
transformer [22], and mamba [23]. Deep learning has significantly advanced the field of
image fusion by introducing models that can learn complex representations and fusion rules
from data, leading to superior fusion performance compared with traditional techniques.
Deep-learning models can automatically extract and merge the most pertinent features
from both infrared and visible images. This process produces fused images that effectively
combine the thermal information from infrared images with the detailed texture and color
from visible images [24–26].

CNNs are widely employed as deep-learning models for image fusion. They excel
at capturing spatial hierarchies in images through their deep architecture, making them
ideal for tasks that involve spatial data, like images. In the context of image fusion, CNNs
can be trained to identify and merge the salient features from both infrared and visible
images, ensuring that the fused image retains critical information from both sources [27].
Liu et al. [28] introduced the fusion of infrared and visible images using CNNs. Their
experimental findings showcase that this approach attains cutting-edge outcomes in both
visual quality and objective metrics. Similarly, Yang et al. [29] devised a method for
image fusion leveraging multi-scale convolutional neural networks alongside saliency
weight maps.

GANs have also been applied to image fusion with promising results [30,31]. A
GAN consists of two networks: a generator that creates images and a discriminator that
evaluates them. For image fusion, the generator can be trained to produce fused images
from input images, while the discriminator ensures that the fused images are indistin-
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guishable from real images in terms of quality and information content. This approach
can result in high-quality fused images that effectively blend the characteristics of both
modalities. Change et al. [32] presented a GAN model incorporating dual fusion paths and
a U-type discriminator. Experimental findings illustrate that this approach outperforms
other methods.

Deep learning offers a powerful framework for image fusion, with the potential to
significantly enhance the quality and usefulness of fused images across a wide range of
applications. Ongoing research in this field focuses on developing more efficient, adaptable,
and interpretable models that can provide even better fusion results.

2.2. Traditional Methods of Image Fusion

Traditional methods for image fusion focus on combining the complementary infor-
mation from source images to enhance the visibility of features and improve the overall
quality of the resulting image. These techniques are generally categorized via the domain
in which the fusion takes place: transform- and spatial-domain methods [33–37].

In transform-domain methods, Chen et al. [38] introduced a spatial-frequency col-
laborative fusion framework for image fusion; this algorithm utilizes the properties of
nonsubsampled shearlet transform for decomposition and reconstruction. Chen et al. [39]
introduced a fusion approach tailored for image fusion, emphasizing edge consistency and
correlation-driven integration. Through nonsubsampled shearlet transform decomposi-
tion, detail layers are acquired housing image details and textures alongside a base layer
containing primary features. Li et al. [40] introduced the method for fusing infrared and
visible images, leveraging low-pass filtering and sparse representation. Chen et al. [41]
introduced the multi-focus image fusion with complex sparse representation (CSR); this
model leverages the properties of hypercomplex signals to obtain directional information
from real-valued signals by extending them to complex form. It then decomposes these di-
rectional components into sparse coefficients using specific directional dictionaries. Unlike
traditional SR models, this approach excels at capturing geometric structures in images.
This is because CSR coefficients offer accurate measurements of detailed information along
particular directions.

In spatial domain methods, Li et al. [42] introduced a neural-network-based approach
to assess focus properties using measures like spatial frequency, visibility, and edge features
within the source image blocks.

3. Laplacian Pyramid Transform

The Laplacian pyramid of an image can be obtained by computing the difference
between every two consecutive layers of the Gaussian pyramid [43–45]. Suppose G0
represents a matrix of an image, and Gk represents the kth layer of the Gaussian pyramid
decomposition of the image. Similarly, the k− 1th layer of the Gaussian pyramid is Gk−1,
where the 0th layer is the image itself. The definition of Gk is as follows [44]:

Gk(i, j) =
2
∑

m=−2

2
∑

n=−2
w(m, n)Gk−1(2i + m, 2j + n)

(1 ≤ k ≤ N, 0 ≤ i ≤ Rk, 0 ≤ j ≤ Ck)
(1)

where N is the maximum number of layers in the Gaussian pyramid decomposition; Rk
and Ck represent the number of rows and columns of the kth layer image of the Gaussian
pyramid, respectively. w(m, n) is a low-pass window function of size 5× 5 [44,45]:

w =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (2)
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To compute the difference between the kth layer image Gk and the (k − 1)th layer
image Gk−1 in the Gaussian pyramid, it is necessary to upsample the low-resolution image
Gk to match the size of the high-resolution image Gk−1. Opposite to the process of image
downsampling (Reduce), the operation defined for image upsampling is called Expand:

G∗k = Expand(Gk) (3)

where G∗k and Gk−1 have the same dimensions. The specific operation is achieved by
interpolating and enlarging the kth layer image, Gk, as defined in Equation (3):

G∗k (i, j) = 4
2
∑

m=−2

2
∑

n=−2
w(m, n)G′k

(
i−m

2
,

j− n
2

)
(1 ≤ k ≤ N, 0 ≤ i ≤ Rk−1, 0 ≤ j ≤ Ck−1)

(4)

where

G′k

(
i−m

2
,

j− n
2

)
=

{
Gk

(
i−m

2 , j−n
2

)
, when i−m

2 , j−n
2 are integers

0, else
(5)

From Equation (4), it can be inferred that the newly interpolated pixels between the
original pixels are determined by the weighted average of the original pixel intensities.

At this point, the difference between the expanded kth image G∗k and the (k− 1)th
layer image Gk−1 in the pyramid can be obtained from the following equation:

LPk−1 = Gk−1 − G∗k = Gk−1 − Expand(Gk) (6)

The above expression generates the (k− 1)th level of the Laplacian pyramid. Since Gk
is obtained from Gk−1 through low-pass filtering and downsampling, the details in Gk
are significantly fewer than those in Gk−1, so the detail information contained in the
interpolated G∗k of Gk will still be less than Gk−1. LPk−1, as the difference between G∗k
and Gk−1, also reflects the information difference between the two layers of images in the
Gaussian pyramid Gk and Gk−1. It contains the high-frequency detail information lost
when Gk is obtained through the blurring and downsampling of Gk−1.

The complete definition of the Laplacian pyramid is as follows:{
LPk = Gk − Expand(Gk+1), 0 ≤ k ≤ N
LPN = GN , k = N

(7)

Thus, LP0, LP1, · · · , LPN can form the Laplacian pyramid of the image, where each
layer is the difference between the corresponding layers of the Gaussian pyramid and its
upsampled version. This process is akin to bandpass filtering; therefore, the Laplacian
pyramid can also be referred to as bandpass tower decomposition.

The decomposition process of the Laplacian pyramid can be summarized into four
steps: low-pass filtering, downsampling, interpolation, and bandpass filtering. Figure 1
shows the decomposition and reconstruction process of the Laplacian pyramid transform. A
series of pyramid images obtained through Laplacian decomposition can be reconstructed
into the original image through an inverse transformation process. Below, we derive the
reconstruction method based on Equation (7):

G0 = LP0 + Expand(G1)
G1 = LP1 + Expand(G2)

GN−1 = LPN−1 + Expand(GN)
GN = LPN

(8)

In summary, the reconstruction formula for the Laplacian pyramid can be expressed as{
GN = LPN , k = N
Gk = LPk + Expand(Gk+1), 0 ≤ k < N

(9)
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Figure 1. Laplacian pyramid. (a) Three-level Laplacian pyramid decomposition diagram; (b) Three-
level Laplacian reconstruction diagram. 

Figure 1. Laplacian pyramid. (a) Three-level Laplacian pyramid decomposition diagram; (b) Three-
level Laplacian reconstruction diagram.

4. Proposed Fusion Method

In this section, we present a technique for fusing infrared and visible images using
sparse representation and guided filtering within the Laplacian pyramid framework. The
method involves four main stages: image decomposition, low-frequency fusion, high-
frequency fusion, and image reconstruction. The structure of the proposed method is
shown in Figure 2.
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4.1. Image Decomposition

The original image undergoes decomposition into a Laplacian pyramid (LP), yielding
a low-frequency band LPN and a series of high-frequency bands. This LP transform is
applied separately to the source images A and B, resulting in LAk and LBk, which represent
the kth layer of the source images. When k = N, LAN and LBN are the decomposed
top-level images (i.e., low-frequency information).

4.2. Low-Frequency Fusion

The low-frequency band effectively encapsulates the general structure and energy of
the image. Sparse representation [1] has demonstrated efficacy in image fusion tasks; hence,
it is employed to process the low-frequency band.

The sliding window technique is used to partition LAN and LBN into image patches
with the size

√
n×
√

n, from upper left to lower right, with the step length of s pixels. Let
us denote that there are T patches represented as

{
pi

A
}T

i=1 and
{

pi
B
}T

i=1 in LAN and LBN ,
respectively.

For each position i, rearrange
{

pi
A, pi

B
}

into column vectors
{

vi
A, vi

B
}

, and then normal-
ize each vector’s mean value to zero to generate

{
V̂i

A, V̂i
B
}

using the following equations [1]:

V̂i
A = Vi

A − vi
A · 1 (10)

V̂i
B = Vi

B − vi
B · 1 (11)

where 1 depicts an all-one valued n× 1 vector, and v̂i
A and v̂i

B are the mean values of all
the elements in Vi

A and Vi
B, respectively.

To compute the sparse coefficient vectors
{

αi
A, αi

B
}

of
{

V̂i
A, V̂i

B
}

, we employ the or-
thogonal matching pursuit (OMP) technique, applying the following formulas:

αi
A = argmin

α
‖α‖0 s.t.

∥∥∥V̂i
A − Dα

∥∥∥
2
< ε (12)

αi
B = argmin

α
‖α‖0 s.t.

∥∥∥V̂i
B − Dα

∥∥∥
2
< ε (13)

Here, D represents the learned dictionary obtained through the K-singular value
decomposition (K-SVD) approach.

Next, αi
A and αi

B are combined using the “max-L1” rule to produce the fused
sparse vector:

αi
F =

{
αi

A i f
∥∥αi

A

∥∥
1 >

∥∥αi
B
∥∥

1
αi

B else
(14)

The fused results of Vi
A and Vi

B can be calculated using the following method:

Vi
F = Dαi

F + v̂i
F · 1 (15)

where the merged mean value vi
F can be computed as follows:

vi
F =

{
vi

A i f αi
F = αi

A
vi

B else
(16)

The above process is iterated for all the source image patches in
{

pi
A
}T

i=1 and
{

pi
B
}T

i=1

to generate all fused vectors
{

Vi
F
}T

i=1. Let LFN denotes the low-pass fused result. For each
Vi

F, reshape it into a patch pi
F, and then plug pi

F into its original position in LFN . As the
patches are overlapped, each pixel’s value in LFN is averaged over its accumulation times.
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4.3. High-Frequency Fusion

The high-frequency bands contain detailed information. The activity level measure,
named WSEML, is defined as follows [46]:

WSEMLS(i, j) =
r
∑

m=−r

r
∑

n=−r
W(m + r + 1, n + r + 1)

×EMLS(i + m, j + n)
(17)

where S ∈ {LAk, LBk}, the 3× 3 normalized model of W, is defined as follows:

W =
1

16

 1 2 1
2 4 2
1 2 1

 (18)

and the EMLS is computed by

EMLS(i, j)
= |2S(i, j)− S(i− 1, j)− S(i + 1, j)|
+|2S(i, j)− S(i, j− 1)− S(i, j + 1)|
+ 1√

2
|2S(i, j)− S(i− 1, j− 1)− S(i + 1, j + 1)|

+ 1√
2
|2S(i, j)− S(i− 1, j + 1)− S(i + 1, j− 1)|

(19)

The two zero-value matrixes mapA and mapB are initialized, and the matrixes are
computed by

mapA(i, j) =
{

1, if WSEMLLAk (i, j) ≥WSEMLLBk (i, j)
0, else

0 ≤ k < N (20)

mapB(i, j) = 1−mapA(i, j) (21)

Guided filtering, denoted as Gr,ε(p, I), is a linear filtering technique [47,48]. Here, the
parameters that control the size of the filter kernel and the extent of blur are represented
by r and ε, respectively. p and I depict the input image and guidance image, respectively.
To enhance the spatial continuity of the high-pass bands in the context of using guided
filtering on mapA and mapB, we utilize the corresponding high-pass bands LAk and LBk as
the guidance images.

mapA = Gr,ε(mapA, LAl) (22)

mapB = Gr,ε(mapB, LBl) (23)

where mapA and mapB should be normalized, and the fused high-pass bands LFk(i, j) are
calculated by

LFk(i, j) = mapA× LAk + mapB× LBk, 0 ≤ k < N (24)

4.4. Image Reconstruction

Perform the corresponding inverse LP to reconstruct the final fused image.

5. Experimental Results and Discussion
5.1. Experimental Setup

In this section, we conducted simulation experiments using the TNO public dataset [49]
and compared them through qualitative and quantitative evaluations. Figure 3 shows
the examples from the TNO dataset. We compared our algorithm with eight other image
fusion algorithms, namely, ICA [50], ADKLT [51], MFSD [52], MDLatLRR [53], PMGI [54],
RFNNest [55], EgeFusion [56], and LEDIF [57]. For quantitative evaluation, we adopted
10 commonly used evaluation metrics to assess the effectiveness of the algorithm, namely,
the edge-based similarity measurement QAB/F [58–63], the human-perception-inspired
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metric QCB [64,65], the structural-similarity-based metric QE [64], the feature mutual in-
formation metric QFMI [66], the gradient-based metric QG [64], the mutual information
metric QMI [58,67], the nonlinear correlation information entropy QNCIE [64], the normal-
ized mutual information QNMI [64], the phase-congruency-based metric QP [64], and the
structural-similarity-based metric introduced by Yang et al. QY [64,68,69]. QAB/F computes
and measures the amount of edge information transferred from the source images to the
fused images using a Sobel edge detector. QCB is a perceptual-fusion metric based on
human visual system (HVS) models. QE takes the original images and the edge images
into consideration at the same time. QFMI calculates the regional mutual information
between corresponding windows in the fused image and the two source images. QG is
obtained from the weighted average of the edge information preservation values. QMI
computes how much information from the source images is transferred to the fused image.
QNCIE is an information-theory-based metric.QNMI is a quantitative measure of the mutual
dependence of two variables. QP provides an absolute measure of image features. QY is a
fusion metric based on SSIM. A higher index value indicates the algorithm’s superiority.
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The parameters for the compared algorithms correspond to the default parameters in
the respective articles. For our method, the parameters are as follows: r = 3, ε = 10−6; the
dictionary size is 256, with K-SVD iterated 180 times. Patch size is 6 × 6, step length is 1,
and error tolerance is 0.1 [1].

5.2. Analysis of LP Decomposition Levels

Figure 4 shows the fusion results of LP with different decomposition levels. From the
figure, it can be observed that the fusion effects in Figure 4a–c are poor, with severe artifacts.
The fusion results in Figure 4d–f are relatively similar. Table 1 provides evaluation metrics
for 42 image pairs under different LP decomposition levels. Since the fusion results are
poor for decomposition levels 1–3, we first exclude these settings. Comparing the average
metric values for decomposition levels 4–6, we see that at level 4, five metrics are optimal.
Therefore, we set the LP decomposition level to 4.
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Table 1. The average objective evaluation of different LP decomposition levels on 42 pairs of data
from the TNO dataset.

Levels QAB/F QCB QE QFMI QG QMI QNCIE QNMI QP QY

1 0.5686 0.5392 0.6205 0.9068 0.5592 3.8195 0.8155 0.5440 0.3016 0.8307

2 0.5669 0.5467 0.6655 0.9124 0.5565 3.1350 0.8099 0.4438 0.3402 0.8317

3 0.5727 0.5394 0.6764 0.9138 0.5619 2.6628 0.8075 0.3760 0.3644 0.8301

4 0.5768 0.5306 0.6699 0.9140 0.5654 2.4378 0.8065 0.3460 0.3716 0.8233

5 0.5765 0.5131 0.6521 0.9138 0.5655 2.3160 0.8060 0.3321 0.3832 0.8079

6 0.5775 0.5113 0.6292 0.9133 0.5662 2.4575 0.8064 0.3540 0.3871 0.7980

5.3. Qualitative and Quantitative Analysis

Figure 5 illustrates the fusion outcomes of various methods applied to Data 1 alongside
the corresponding metric data in Table 2. The ICA, ADKLT, PMGI, and RFNNest methods
are observed to produce fused images that appear blurred, failing to maintain the thermal
radiation characteristics and details present in the source images. Both MFSD and LEDIF
methods yield similar fusion results, preserving human thermal radiation characteristics
but suffering from noticeable loss of brightness information in specific areas. Conversely,
the MDLatLRR and EgeFusion algorithms demonstrate over-sharpening effects, leading to
artifacts and significant distortion in the fused images. Our algorithm enables comprehen-
sive complementarity between the infrared and visible images while fully preserving the
thermal infrared characteristics.

From Table 2, it can be observed that our algorithm achieves optimal objective metrics
on Data 1, with a QAB/F value of 0.5860, QCB value of 0.6029, QE value of 0.7047, QFMI
value of 0.9248, QG value of 0.5838, QMI value of 2.7156, QNCIE value of 0.8067, QNMI
value of 0.3908, QP value of 0.3280, and QY value of 0.8802.
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Table 2. The objective evaluation of different methods on Data 1.

QAB/F QCB QE QFMI QG QMI QNCIE QNMI QP QY

ICA 0.4017 0.4461 0.5300 0.9139 0.3956 1.8567 0.8038 0.2775 0.2654 0.7064

ADKLT 0.4026 0.5404 0.4651 0.8778 0.3976 1.5936 0.8034 0.2382 0.1851 0.7098

MFSD 0.4247 0.5756 0.5898 0.9017 0.4203 1.3551 0.8031 0.1983 0.2056 0.7252

MDLatLRR 0.3248 0.4957 0.4136 0.8874 0.3184 1.0944 0.8028 0.1556 0.2958 0.6882

PMGI 0.3880 0.5035 0.4399 0.9024 0.3803 1.8901 0.8041 0.2747 0.2028 0.7361

RFNNest 0.3372 0.4939 0.3991 0.9031 0.3300 1.7239 0.8036 0.2546 0.2155 0.6856

EgeFusion 0.1968 0.4298 0.3371 0.8688 0.1901 1.1886 0.8029 0.1665 0.2154 0.4970

LEDIF 0.5058 0.5702 0.6512 0.9087 0.5001 1.2948 0.8030 0.1929 0.2572 0.8143

Proposed 0.5860 0.6029 0.7047 0.9248 0.5838 2.7156 0.8067 0.3908 0.3280 0.8802

Figure 6 displays the fusion results of various methods applied to Data 2, along
with the corresponding metric data shown in Table 3. Observing the fusion results, it
is evident that the ICA, ADKLT, and PMGI algorithms produced fused images that are
blurred and exhibit low brightness. The MFSD, RFNNest, and LEDIF methods suffered
from some loss of thermal radiation information. In contrast, the MDLatLRR and EgeFusion
algorithms resulted in sharpened images, enhancing the human subjects but potentially
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causing distortion in other areas due to the sharpening effect. Our algorithm achieved the
best fusion result.
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Table 3. The objective evaluation of different methods on Data 2.

QAB/F QCB QE QFMI QG QMI QNCIE QNMI QP QY

ICA 0.4002 0.4417 0.4899 0.9569 0.3987 2.3254 0.8051 0.3427 0.2676 0.7434

ADKLT 0.4043 0.5699 0.4124 0.9249 0.3993 1.8767 0.8041 0.2756 0.1595 0.7093

MFSD 0.4175 0.6009 0.6229 0.9539 0.4128 1.7852 0.8039 0.2594 0.1677 0.6909

MDLatLRR 0.3382 0.4503 0.5120 0.9142 0.3370 1.2513 0.8030 0.1769 0.2772 0.7223

PMGI 0.4605 0.5269 0.5454 0.9516 0.4610 2.1395 0.8043 0.3089 0.1939 0.7885

RFNNest 0.4098 0.5803 0.4507 0.9460 0.4066 2.1851 0.8048 0.3098 0.1841 0.7168

EgeFusion 0.2011 0.3987 0.3715 0.8835 0.1971 1.1956 0.8029 0.1666 0.2133 0.5511

LEDIF 0.5870 0.5920 0.6801 0.9538 0.5845 1.5422 0.8034 0.2297 0.2578 0.8901

Proposed 0.6880 0.6771 0.7431 0.9623 0.6860 3.6399 0.8112 0.5043 0.2976 0.9458

From Table 3, it is apparent that our algorithm achieved superior objective metrics on
Data 2, with a QAB/F value of 0.6880, QCB value of 0.6771, QE value of 0.7431, QFMI value
of 0.9623, QG value of 0.6860, QMI value of 3.6399, QNCIE value of 0.8112, QNMI value of
0.5043, QP value of 0.2976, and QY value of 0.9458.
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Figure 7 depicts the fusion results of various methods applied to Data 3, accompanied
by the corresponding metric data shown in Table 4. Analyzing the fusion outcomes,
it is evident that the ICA and ADKLT algorithms produced blurry fused images with
significant loss of information. The MFSD method introduced artifacts in certain regions.
While the MDLatLRR and EgeFusion algorithms increased the overall brightness, they also
introduced artifacts. The PMGI and RFNNest algorithms resulted in distorted fused images.
The LEDIF algorithm achieved commendable fusion results, albeit with some artifacts
present. Our algorithm yielded the best fusion result, achieving moderate brightness and
preserving the thermal radiation characteristics.
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From Table 4, it is apparent that our algorithm attained optimal objective metrics on
Data 3, with a QAB/F value of 0.7252, QCB value of 0.6830, QE value of 0.8105, QFMI value
of 0.8887, QG value of 0.7182, QMI value of 4.4156, QNCIE value of 0.8131, QNMI value of
0.6674, QP value of 0.8141, and QY value of 0.9395.
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Table 4. The objective evaluation of different methods on Data 3.

QAB/F QCB QE QFMI QG QMI QNCIE QNMI QP QY

ICA 0.6748 0.6689 0.7446 0.8854 0.6642 4.1877 0.8113 0.6531 0.7358 0.8365

ADKLT 0.5891 0.6599 0.6499 0.8739 0.5764 3.7880 0.8098 0.5907 0.6140 0.7521

MFSD 0.6183 0.6423 0.7634 0.8751 0.6071 3.5683 0.8091 0.5492 0.6331 0.7636

MDLatLRR 0.3124 0.4782 0.4074 0.8460 0.3083 2.4512 0.8060 0.4063 0.5687 0.5580

PMGI 0.5529 0.2891 0.5425 0.8676 0.5400 3.2741 0.8082 0.5181 0.5801 0.5961

RFNNest 0.5053 0.6186 0.5145 0.8723 0.4964 3.6997 0.8095 0.5728 0.6163 0.7138

EgeFusion 0.2452 0.4732 0.3511 0.8070 0.2414 2.1513 0.8053 0.3561 0.4598 0.5115

LEDIF 0.6390 0.6455 0.7146 0.8829 0.6314 3.4861 0.8088 0.5387 0.7371 0.8444

Proposed 0.7252 0.6830 0.8105 0.8887 0.7182 4.4156 0.8131 0.6674 0.8141 0.9395

Figure 8 displays the fusion results of various methods applied to Data 4, alongside
the corresponding metric data shown in Table 5. Upon reviewing the fusion outcomes, it is
evident that the fusion images produced by the ICA, ADKLT, MFSD, PMGI, and LEDIF
algorithms exhibit some loss of brightness information. The MDLatLRR and EgeFusion
algorithms sharpened the fused image, while the RFNNest method resulted in a darker
fused image with some information loss. In contrast, our algorithm produced a fused
image with complementary information.
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Table 5. The objective evaluation of different methods on Data 4.

QAB/F QCB QE QFMI QG QMI QNCIE QNMI QP QY

ICA 0.4523 0.3979 0.5932 0.9004 0.4478 2.1008 0.8045 0.3153 0.4024 0.7236

ADKLT 0.3585 0.4032 0.3922 0.8670 0.3529 1.7737 0.8038 0.2697 0.2615 0.6098

MFSD 0.4416 0.4786 0.6176 0.8861 0.4388 1.4931 0.8033 0.2229 0.3066 0.6666

MDLatLRR 0.3157 0.4746 0.3772 0.8874 0.3131 1.2763 0.8029 0.1830 0.4091 0.6339

PMGI 0.3799 0.3587 0.4497 0.8783 0.3764 1.7162 0.8035 0.2594 0.3257 0.7108

RFNNest 0.2971 0.4159 0.3138 0.8920 0.2961 2.0997 0.8046 0.3137 0.3343 0.6153

EgeFusion 0.2123 0.4800 0.3351 0.8582 0.2101 1.2046 0.8029 0.1720 0.2723 0.4726

LEDIF 0.5120 0.4597 0.6724 0.8911 0.5081 1.5419 0.8033 0.2354 0.3847 0.7865

Proposed 0.5947 0.5076 0.6975 0.9059 0.5915 2.5337 0.8062 0.3571 0.5059 0.8553

From Table 5, it is notable that our algorithm achieved optimal objective metrics on
Data 4, with a QAB/F value of 0.5947, QCB value of 0.5076, QE value of 0.6975, QFMI value
of 0.9059, QG value of 0.5915, QMI value of 2.5337, QNCIE value of 0.8062, QNMI value of
0.3571, QP value of 0.5059, and QY value of 0.8553.

Figure 9 provides detailed insights into the objective performance of the various fusion
methods across 42 pairs of data from the TNO dataset. The horizontal axis represents the
number of data pairs used in our experiments, while the vertical axis represents the metric
values. Each method’s scores across different source images are plotted as curves, with
the average score indicated in the legend. Figure 9 illustrates that most methods show
consistent trends across the metrics examined, and nearly all fusion methods demonstrate
stable performance across all test images, with few exceptions. Therefore, comparisons
based on average values in Table 6 hold significant value.
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5.4. Experimental Expansion

We expanded our proposed algorithm to include the fusion of multi-focus images
from the Lytro [70] and MFI-WHU datasets [71], selecting 20 and 30 groups of data for
testing, respectively. The simulation results for one of the data groups are shown in Fig-
ure 10. This extension involved a comparative evaluation against eight methods: ICA [50],
FusionDN [72], PMGI [54], U2Fusion [73], LEGFF [74], ZMFF [75], EgeFusion [56], and
LEDIF [57]. The assessment utilized both subjective visual inspection and objective metrics.
Figures 11 and 12 provide detailed insights into the objective performance of various fusion
methods on the Lytro and MFI-WHU datasets, with the corresponding average metric
values shown in Tables 7 and 8. From the results in Figure 10, it is evident that the ICA and
PMGI algorithms tended to produce fused images with noticeable blurriness, impacting
the clarity of detailed information within the fused images. The fused images produced by
the FusionDN and U2Fusion algorithms exhibited dark regions in specific areas, such as
hair regions in portraits, which detracted from overall visual quality. The fusion results
of the LEGFF, ZMFF, and LEDIF algorithms are quite similar, all achieving fully focused
fusion effects. The fused image generated by the EgeFusion algorithm showed distortions
that made it challenging to discern detailed parts of the image. Our algorithm demon-
strated promising results both visually and quantitatively when compared with the other
algorithms. Subjective visual assessment indicated that our method effectively enhanced
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the presentation of complementary information in the fused images, preserving clarity and
detail across different focus levels.
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6. Conclusions

To enhance the clarity and thermal radiation fidelity of infrared and visible image fu-
sion, a fusion method based on sparse representation and guided filtering in the Laplacian
pyramid domain is introduced. The Laplacian pyramid serves as an efficient multi-scale
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transform that decomposes the original image into distinct low- and high-frequency com-
ponents. Low-frequency bands, crucial for capturing overall scene structure and thermal
characteristics, are processed using the sparse representation technique. Sparse representa-
tion ensures that key features are preserved while reducing noise and maintaining thermal
radiation attributes. High-frequency bands, which encompass fine details and textures
vital for visual clarity, are enhanced using guided filtering integrated with WSEML. This
approach successfully combines the contextual details from the source images, ensuring
that the fused output maintains sharpness and fidelity across different scales. We carried
out thorough simulation tests using the well-known TNO dataset to assess the performance
of our algorithm. The results demonstrate that our method successfully preserves thermal
radiation characteristics while enhancing scene details in the fused images. By continuing
to innovate within the framework of sparse representation and guided filtering in the
Laplacian pyramid domain, we aim to contribute significantly to the advancement of image
fusion techniques, particularly in scenarios where preserving thermal characteristics and
enhancing visual clarity are paramount. Moreover, we extended our approach to conduct-
ing fusion experiments on multi-focus images, achieving satisfactory results in capturing
diverse focal points within a single fused output.

In our future research, we plan to further refine and expand our algorithm’s capa-
bilities. Specifically, we aim to explore enhancements tailored for the fusion of synthetic
aperture radar (SAR) and optical images [76]. By integrating SAR data, which provide
unique insights into surface properties and structures, with optical imagery, which of-
fers high-resolution contextual information, we anticipate developing a robust fusion
framework capable of addressing diverse application scenarios effectively. Additionally,
research on change detection based on fusion models is also one of our future research
directions [77–80].
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