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Abstract: The present work proposes a new model based on a convolutional neural network (CNN)
to retrieve solar shortwave (SW) irradiance via the estimation of the cloud modification factor (CMF)
from daytime sky images captured by all-sky cameras; this model is named CNN-CMF. To this end, a
total of 237,669 sky images paired with SW irradiance measurements obtained by using pyranometers
were selected at the following three sites: Valladolid and Izaña, Spain, and Lindenberg, Germany.
This dataset was randomly split into training and testing sets, with the latter excluded from the
training model in order to validate it using the same locations. Subsequently, the test dataset was
compared with the corresponding SW irradiance measurements obtained by the pyranometers in
scatter density plots. The linear fit shows a high determination coefficient (R2) of 0.99. Statistical
analyses based on the mean bias error (MBE) values and the standard deviation (SD) of the SW
irradiance differences yield results close to −2% and 9%, respectively. The MBE indicates a slight
underestimation of the CNN-CMF model compared to the measurement values. After its validation,
model performance was evaluated at the Antarctic station of Marambio (Argentina), a location not
used in the training process. A similar comparison between the model-predicted SW irradiance
and pyranometer measurements yielded R2 = 0.95, with an MBE of around 2% and an SD of
approximately 26%. Although the precision provided by the SD at the Marambio station is lower, the
MBE shows that the model’s accuracy is similar to previous results but with a slight overestimation
of the SW irradiance. Finally, the determination coefficient improved to 0.99, and the MBE and
SD are about 3% and 11%, respectively, when the CNN-CMF model is used to estimate daily SW
irradiation values.

Keywords: all-sky cameras; sky images; convolutional neural network; shortwave global horizontal
irradiance; cloud modification factor; Antarctic

1. Introduction

Total solar shortwave (SW) irradiance is the radiative power emitted by the Sun
per unit surface integrated over the solar wavelength spectrum [280–3500 nm]. The SW
irradiance that reaches the Earth’s surface is usually defined over a horizontal plane at
ground level and is called global horizontal irradiance (GHI). Then, the incoming GHI
is modulated by the relative position of the Sun and the observer, with the main factor
being the solar zenith angle (SZA). SW irradiance is attenuated by different interactions

Remote Sens. 2024, 16, 3821. https://doi.org/10.3390/rs16203821 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16203821
https://doi.org/10.3390/rs16203821
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3302-8080
https://orcid.org/0000-0003-4889-1781
https://orcid.org/0000-0001-5540-4721
https://orcid.org/0009-0001-9508-3886
https://orcid.org/0000-0002-4627-9444
https://orcid.org/0000-0002-9451-1631
https://orcid.org/0000-0003-3162-8602
https://orcid.org/0000-0003-4246-1836
https://orcid.org/0000-0002-6786-671X
https://orcid.org/0000-0001-5806-585X
https://orcid.org/0000-0003-0017-5591
https://orcid.org/0000-0002-1229-155X
https://orcid.org/0000-0003-4161-7798
https://orcid.org/0000-0002-6890-6648
https://orcid.org/0000-0001-5748-5078
https://doi.org/10.3390/rs16203821
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16203821?type=check_update&version=1


Remote Sens. 2024, 16, 3821 2 of 19

with atmospheric components, such as absorption or scattering processes involving gas
molecules, aerosols, and cloud water droplets [1,2]. The Earth also emits irradiance but
in the thermal infrared range [4–40 µm] (longwave radiation; LW). Hence, the Earth’s
radiative budget, corresponding to the difference between SW and LW net irradiances,
determines the temperature of the planet and its atmosphere since the equilibrium of this
budget represents the fundamental driver of the climate system. Therefore, incoming
radiation must be balanced with outgoing radiation to achieve this equilibrium [2,3].

The monitoring of GHI in polar regions is crucial since it is well known that these areas
play a critical role in the global energy balance through the maintenance of the north–south
temperature gradients that drive Earth’s oceanic and atmospheric circulations [4]. These
areas are highly sensitive to changes in climate forcing, and warming of more than twice the
global average has been reported in the northern regions; in contrast, the southern latitudes
have experienced slower warming or even cooling in some areas (see [5] and references
therein). The scientific understanding in these regions is particularly challenging due to the
complexity of the underlying processes of changes in their climates [5], highlighting the
need for further research on this topic. Given recent developments, solar energy technology
has emerged as one of the leading renewable energy sources currently available. Knowledge
of solar energy enabled by GHI reaching the Earth’s surface is essential for research on this
topic as input for short-term irradiance forecasting and for other applications in the field of
photovoltaics [6].

GHI measurements are typically obtained using pyranometers; however, in locations
where there is a lack of available data, GHI data series are usually reconstructed from
models. Radiative transfer models (RTMs) are frequently used to estimate GHI under cloud-
free conditions, an estimate that can also be obtained by using other kinds of empirical
models. For these cloud-free conditions, the results retrieved by RTMs are generally very
accurate. However, difficulties appear when cloud effects are considered. One way to
take cloud effects into account is by using the cloud modification factor (CMF), which
quantifies cloud transmittance as the ratio between the GHI that reaches the surface under
cloudy and cloud-free conditions [7]. GHI can be accurately estimated as the product
of the CMF and the simulated cloud-free GHI if the CMF is known. Some works have
used auxiliary measurements, such as sunshine duration measured by pyrheliometers, as
a proxy for clouds to calculate the CMF and reconstruct long-term GHI series. Thanks to
these long-term series of measured and reconstructed GHI, global phenomena, such as
global dimming and brightening [8–13], have been proven to occur in the 20th century.

Sky images from all-sky cameras can be used as a proxy for cloud effects, as these
images capture the position and brightness of clouds across the entire sky. Furthermore,
other works have shown that these sky images contain information about other atmospheric
components, such as aerosols [14,15]. Recently, different image treatment techniques have
emerged, such as convolutional neural networks (CNNs), which are able to extract different
characteristics from images, such as, for instance, cloud cover (CC) from all-sky camera
images [16], among others. This framework motivates the present work, the main objective
of which is to develop a model that applies these new CNN techniques to all-sky camera
images to estimate the CMF and reconstruct the GHI values. In addition, the accuracy and
precision of the proposed model are studied by comparing the computed GHI and CMF
predictions with real measurements obtained at a remote location.

The present work is structured in the following way: Section 2 shows the instrumenta-
tion used and the sites where they are installed. The dataset classification and the model to
retrieve the GHI, with the training process and validation of the test set, are described in
Section 3. Section 4 contains the analysis of the results at the Antarctic station of Marambio.
At the end, the main conclusions are summarized in Section 5.
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2. Instrumentation and Sites
2.1. Instruments

Two kinds of instruments were used in this work to collect the used data: all-sky
cameras and pyranometers. The all-sky camera model used in this work is the OMEA-
3C (Alcor System, Lyon, France). This camera model is composed of a SONY IMX178
CMOS sensor, which works with a Bayer RGGB mosaic with an infrared filter, coupled to
a fisheye lens with a 180◦ × 180◦ field of view covering all the sky. It also incorporates
external sensors to measure humidity and temperature, an internal heating system to
avoid condensation, and a BK7 glass dome on top [17,18]. The sensor takes pictures of
6.44 megapixels at a 14-bit resolution with a size of 3096 × 2080 pixels.

This camera model was available in the four stations described in Section 2.2. These
cameras were controlled and configured by the GOA-OMEA Capture-1.0 software, which
was developed by the Group of Atmospheric Optics of the University of Valladolid (GOA-
UVa). These all-sky cameras were configured to take (every 5 min during the daytime) a
sequence of consecutive raw pictures with different exposure times. The images of each
sequence are combined to obtain a high dynamic range (HDR) image [19]. These HDR
pictures are tone mapped and converted into images of size 2000 × 2000 pixels at an 8-bit
resolution [20].

Regarding GHI, this was recorded every 1 min at the mentioned stations using four
different types of pyranometers: CMP-11, CM-21, and CM-22 from Kipp & Zonen (Delf,
The Netherlands) and MS-802F from EKO Instruments (Tokyo, Japan). The CMP-11 model
has a response time of less than 5 s in a spectral range of 285–2800 nm; the achievable
uncertainty (confidence level of 95%) for the daily totals of this instrument is expected to
be lower than 2% [21]. CM-21 has an uncertainty (with a 95% confidence level) of 2% for
daily totals, with a time response of 5 s in a spectral range of 305–2800 nm [22]. CM-22,
with a spectral range of 200–3600 nm, has a time response of 5 s at a 95% confidence
level and an achievable uncertainty of 2% for daily totals [23]. Finally, MS-802F is a high-
precision instrument with a spectral range of 285–3000 nm, with less than 5 s of time
response (confidence level of 95%) and an expected uncertainty of lower than ±1% for
daily totals [24,25].

2.2. Sites

The all-sky cameras and pyranometers that were used, as described in the previous
section, were installed at four different locations: Valladolid (Spain), Izaña (Spain), Linden-
berg (Germany), and Marambio (Argentinian Antarctic Station). All these all-sky cameras
are managed by the GOA-UVa, and the pyranometers are directly managed at each station.

The Valladolid station is located on the rooftop of the Science Faculty of the University
of Valladolid (41.66◦N, 4.71◦W, 705 m asl), which is a medium-sized city located in north-
central Spain. It is an urban city with approximately 400,000 inhabitants in all of the
metropolitan area, surrounded by rural areas. Its climate is classified as clean continental,
with hot summers, cold winters, and occasional Saharan dust episodes [26–28]. The GOA-
UVa manages the instrumentation platform installed at this station, which is composed of
different instruments, such as sunphotometers, a ceilometer, all-sky cameras, and various
radiometers [14,16,29,30]. The OMEA-3C camera used in this work has been operating
in Valladolid since 5 October 2021, and the pyranometer is a CM-21 model installed on a
SOLYS-2 solar tracker (Kipp & Zonen).

On 4 February 2022, an OMEA-3C camera from GOA-UVa was installed at The Izaña
Atmospheric Research Center (28.30◦N, 16.49◦W, 2400 m asl), which is managed by the
Meteorological State Agency of Spain (AEMet). This meteorological observatory is a high-
mountain station above a quasi-permanent strong temperature inversion layer that prevents
the arrival of local anthropogenic influence with stable and pristine conditions, located near
the Teide peak in Tenerife (Canary Islands, Spain) [24,31–34]. This observatory has been
enrolled in the Baseline Surface Radiation Network (BSRN) since 2009, implemented by the
World Climate Research Program (WCRP) under the support of the World Meteorological
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Organization (WMO). The GHI is one of the basic BSRN measurements of the BSRN
program at Izaña. The BSRN GHI measurements at Izaña used in this work (available at
https://doi.pangaea.de/10.1594/PANGAEA.968676; URL access on 25 August 2024) were
recorded by an MS-802F pyranometer, which has been working since 11 November 2016 at
this station [24].

MOL-RAO (Meteorologisches Observatorium Lindenberg—Richard-Aßmann-Obser-
vatorium; 52.21◦N, 14.12◦E, and 122 m asl) is located in the village of Lindenberg (Tauche)
in the north-east German region of Brandenburg (green flat land and partly woody).
Lindenberg is located about 50 km southeast of the outskirts of the city of Berlin, far
from the coast, with predominantly continental influence. The observatory belongs to the
Department of Research and Development of the DWD (Deutscher Wetterdienst—German
Weather Service). It is a historical station (since 1905) for meteorological and atmospheric
measurements; today, it is a supersite for meteorological measurements and measurements
of atmospheric parameters and the physical processes of the atmosphere, from the boundary
layer to the stratosphere. MOL-RAO hosts the GRUAN leading center, which is a WMO
testbed for atmospheric measurements and has been a BSRN station since 1994. GHI
measurements have been obtained from a CM-22 pyranometer at this station. Two OMEA-
3C all-sky cameras from GOA-UVa were installed at this station. One camera has been
operating since 29 July 2020 until 12 February 2021, when it was substituted by another
OMEA-3C, which is still working.

Marambio is an Argentinian Antarctic station located in the ice-free Marambio island
(64.24◦S, 56.62◦W, and 200 m asl) at the north-east tip of the Antarctic Peninsula [35]. In
January 2018, the GOA-UVa installed an OMEA-3C all-sky camera at this site, the images
of which have been used since August 2020, when the GOA-OMEA Capture-1.0 software
started to be used to record sky images. This all-sky camera is installed on the rooftop of
the Scientific Laboratory, which is located in the middle of the station between the airfield
and station buildings. This laboratory belongs to the National Meteorological Service of
Argentina (SMN) and is shared with the Argentinian National Direction of the Antarctic
(DNA) [35]. The station is also equipped with instrumentation focused on atmospheric
studies using different techniques, such as a CMP-11 pyranometer, the GHI records of
which were used for this work.

3. Method

A neural network model to retrieve GHI via CMF estimation from sky images is
described in this section. The datasets used for training, validation, and testing are detailed
as well. Data from Valladolid, Izaña, and Lindenberg were used for model training and
validation, whereas the Marambio data were only used to test model performance in a
different location than those used for training.

3.1. Dataset

We obtained the dataset retrieved from the pyranometers described in Section 2,
containing measurements of GHI every minute. Additionally, we have daytime images
captured by the aforementioned all-sky cameras every 5 min. The picture datasets contain
all-sky HDR images taken using the different cameras operating at the different stations.
These images were captured every 5 min, combining a sequence of various raw images
captured consecutively at different exposure times, usually doubling the time exposure;
this helped obtain the final HDR image. All the available raw images of a sequence were
normalized to the same lowest exposure time and averaged (discarding saturated pixels).
The averaged image was tone mapped by using a root square function, and they were
white balance-corrected using the same fixed values for all images. After that, the signal
of each pixel was normalized by dividing each pixel signal by the 99.5 percentile of all
the pixel signals. This image was multiplied by 255 and rounded to be converted to 8-bit
when it was finally demosaiced. This process is explained in detail in [20]. The final HDR
images are 2000 × 2000 pixels at an 8-bit resolution. In Figure 1, some examples of these
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sky HDR images are shown for different sky conditions and for all cameras and stations.
These datasets have been filtered and classified, as explained in the next sections.

Figure 1. Examples of different all-sky images. The images show different sky conditions for each
station and camera available for some selected days. C011 corresponds to Valladolid, C005 is the
camera operating at Izaña, C006 and C009 are the cameras that have been working at Lindenberg,
and C003 is the one from Marambio. For C003, the four selected images show the sky conditions of
the selected days analyzed below, in the next Section.

3.1.1. Initial Dataset and Data Filtering

In order to classify the data for model training and validation, the first step consisted of
matching the GHI measurements with the all-sky camera images. To conduct this matching,
we used two different datasets: the data file with the pyranometer measurements and a list
of the available sky images, both for each station. These two datasets contained a column
with the timestamps when the measurements were taken, so we selected the GHI and SZA
values where the timestamp coincides for both datasets. For this purpose, the selected
periods of the coincident measurements of the GHI and sky images are the following: from
1 January 2022 to 23 August 2023, from 4 February 2022 to 31 January 2023, and from
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30 July 2020 to 12 September 2023 for Valladolid, Izaña, and Lindenberg, respectively. The
number of images in the initial dataset corresponding to these periods at each station is
shown in the second column of Table 1.

Table 1. Number of sky images classified to train and test the model for different sites.

Site Initial
Dataset

Filtered
Dataset

Train
Dataset

Validation
Dataset

Test
Dataset

Valladolid 82,865 70,962 25,654 7096 38,212

Izaña 46,509 41,327 6104 4133 31,090

Lindenberg 146,575 125,380 54,679 12,539 58,072

Total 275,949 237,669 86,527 23,768 127,374

All the data were filtered to avoid very low GHI values because these measurements
represent noisy results close to 0; this introduces high uncertainty in the CMF value
since it will be the ratio between two values, with both being close to zero, especially
for high SZA values. For that, the solar zenith angle (SZA) was limited to be below
85◦ due to the very low GHI measurements between 85◦ and 90◦, even under cloud-
free conditions, and the GHI was above 5 Wm−2. The sky images were captured quasi-
instantaneously, while the pyranometer values were recorded over a longer integration
time (1 min). As a result, inconsistencies may arise between the GHI reaching the camera
and the pyranometer, especially when the sky conditions are highly variable. For example,
the Sun may be obstructed by a cloud in an instantaneous image but remain unobstructed
for most of the integration time during the pyranometer recordings. Therefore, the matched
camera–pyranometer data pairs were discarded if the difference between the recorded GHI
and the corresponding GHI measurements 1 min before and after were higher than 30%. In
summary, it is remarkable that this filtering process avoids possible issues regarding GHI
measurements (as outliers or noise values) and sky images, as overexposure could occur.
After this data filtering, the CMF calculations and the image classifications follow in the
next section.

3.1.2. CMF Calculation and Data Classification

Generally, a tone map [36,37] is applied to all-sky camera images to display all elements
present in the sky with sufficient brightness and clarity. Unfortunately, it removes the
proportionality between the pixel signals of two images and the incoming SW radiation to
both images. On the other hand, sky images do provide information about the quantity and
type of clouds present, their position in the sky, and their brightness, as well as whether
they obstruct the Sun or not; in other words, the effect of clouds can be inferred from
the images. These facts suggest that it may not be very accurate to directly adjust the
sky images to GHI. Instead, they were adjusted to an intrinsic value of the clouds, their
transmittance, which is commonly parameterized by the cloud modification factor. In the
case of GHI, the CMFGHI was calculated using Equation (1):

CMFGHI =
GHImeas

GHIcf
(1)

The sub-indices “meas” and “cf” refer to the measured GHI under cloudy conditions
(GHImeas) and the same under cloud-free conditions (GHIc f ), respectively. GHI, under
cloud-free conditions, can be estimated with a radiative transfer model; hence, if CMFGHI
is known, the real GHI can be calculated by multiplying that value by those simulated
under cloud-free conditions. Therefore, this work looks to derive CMFGHI directly from
the sky images since GHI can be obtained from these values.

Then, once the datasets were matched and filtered, the measured GHI values were
converted into CMFGHI by dividing them by the cloud-free GHI simulations [27]. These
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cloud-free GHI values were obtained using the libRadtran-2.0.5 package. LibRadtran is
a library of radiative transfer routines and programs, the main program of which is the
radiative transfer tool uvspec, which allows for calculating irradiance after specifying
the sky conditions in the input files [38,39]. These GHI values were simulated using
the radiative transfer equation solver twostr (two-stream) [40]. The input values were
the following: the extraterrestrial spectrum from Kurucz [41]; the date and coordinates
for each station; the monthly average ozone value for each location, calculated using
the daily average of ozone total column of GIOVANNI provided by OMI-DOAS (Ozone
Monitoring System Differential Optical Absorption Spectroscopy; https://giovanni.gsfc.
nasa.gov/giovanni; URL access on 25 August 2024); the spectral surface albedo, obtained
from the climatology of MODIS bi-directional reflectance distribution function (BRDF) and
albedo [42]; the total column water vapor, obtained from AERONET’s daily climatology [43];
and the aerosol optical depth by using the Angstrom exponent and turbidity obtained
from AERONET’s daily climatology [43]; the single scattering albedo and the asymmetry
parameter were set to a constant value given by AERONET’s monthly climatology. In
addition, the spectral resolution was set by using 2 nm steps from 280 to 800 nm, by 5 nm
steps until 1600 nm, and by 10 nm steps from there to 2800 nm. The SBDART model [44] was
used for gas absorption parametrization. Finally, the irradiance values were interpolated
every 1 nm from 280 nm to 2800 nm, and the obtained spectrum was integrated to obtain
GHI in a similar way to [45]. According to the results obtained in [45], the comparison of
GHI measurements and simulations under clear conditions shows an MBE value of 0.2%
and an SD of 6.3%. This agreement between measurements and simulations allows us to
use libRadtran’s GHI simulations for cloud-free conditions with high confidence.

After calculating the corresponding CMFGHI values, the dataset was filtered again
to remove data pairs with CMFGHI values above 1.3 because they are unrealistic and
could indicate some problems with the CMFGHI measurements, such as snow covering the
pyranometers, among others. The CMFGHI values above 1 are due to the enhancement
effect, where the radiation measured is greater than the cloud-free value [46,47]. The
enhancement cases, which present CMFGHI values above 1.3 are very unusual, being
between 1.3% [47] and 3% [46] of the total of the enhancement effect cases. For this
reason, it has been decided that a threshold of 1.3 for CMFGHI should be used so as to not
misunderstand the results with outliers, as the values above this threshold are very unusual
according to the literature. Then, the sky images of the final datasets were classified in
different folders, grouping them according to 0.01 intervals of their corresponding CMFGHI
for each site, having a total of 130 different classes of CMFGHI . As a result of the filtering
step and grouping according to CMFGHI , a total of 237,669 images were classified: 70,962
corresponding to Valladolid, 41,327 to Izaña, and 125,380 to Lindenberg, as shown in the
third column of Table 1. These images were divided into three sets: training, validation,
and test. The model, training, and validation procedures are described in Section 3.2, and
the test of its performance is in Section 3.3.

The Marambio measurements were reserved for the application of the model as a
case study and were excluded from the training process. This case is detailed in Section 4,
where the results are presented. In Marambio, the selected period of data ranges from 16
November 2021 to 31 October 2023. The data before this initial date were discarded due
to technical issues detected in the images and the pyranometer. After all, a total of 59,444
all-sky images were collected for application in the model at this place. These images were
matched and filtered following the same procedure as at the other stations, obtaining a
total of 57,852 camera–pyranometer data pairs from this station.

3.2. Model

In order to retrieve the GHI (through CMF estimation) from the mentioned daytime sky
images, it was proposed that a model should be based on a convolutional neural network.
The proposed model, named CNN-CMF, is an adaptation of an existing CNN model
developed to retrieve cloud cover (CNN-CC; [16]). The CNN-CMF model architecture is

https://giovanni.gsfc.nasa.gov/giovanni
https://giovanni.gsfc.nasa.gov/giovanni


Remote Sens. 2024, 16, 3821 8 of 19

exactly the same as that of CNN-CC (more details can be found in [16]), but it uses 130
CMFGHI classes in the training instead of 9 cloud cover classes. This CNN-CMF model
is designed to provide the CMFGHI as a float number between 0.01 and 1.30 using a sky
image as input.

The sky images from Valladolid, Izaña, and Lindenberg were divided into three
datasets, as described in the previous section. The training and validation sets are part
of the model training process, where the validation set corresponds to the sample of data
used to provide an unbiased evaluation of the model fit on the training dataset after each
epoch while tuning the model parameters. The test set is the sample of data used to
provide an unbiased evaluation of the final model, which is detailed in the next section.
The classification of images into these sets was carried out for each station as follows.
First, the number of available images in each CMFGHI class was calculated, and after
that, the 25 percentile (P25) of these 130 numbers was calculated and considered as the
maximum number of images in the training dataset for each CMFGHI class. Then, for each
CMFGHI class, (1) 10% of the images were randomly added to the test set; (2) another 10%
of the images were randomly selected for the validation set; (3) a total of P25 images were
randomly added into the training set; (4) the rest of available images were added to the test
set. This warrants at least 10% of the images of each class for testing and validation. After
that, the datasets of the three locations were joined.

As a result, a total of 86,527 pictures belonging to 130 classes formed the training
set. From this set, 25,654 images correspond to Valladolid, 6104 to Izaña, and 54,769 to
Lindenberg. The validation set is formed from 23,768 sky images distributed into the same
130 classes, of which 7096 are from Valladolid, 4,133 are from Izaña, and 12,539 are from
Lindenberg. This gives us a total of 127,374 pictures for the test set, constituting 38,212
from Valladolid, 31,090 from Izaña, and 58,072 from Lindenberg. This data classification is
summarized in the last three columns of Table 1.

Once the datasets were formed, the model was trained using the mean square error
(mse) as the loss function, considering that the model must penalize more those cases where
the predicted CMFGHI values are farther from the labeled reference than the cases where
they are closer even when they are not the same. The training also had to be carried out
using batches, with a batch size of 32, as each one is formed by 32 images. The optimizer
is the Adam algorithm, a similar method to the one used for the training of the CNN-CC
model explained in [16]. The initial learning rate was the same as in the reference model,
which is dynamically reduced by dividing it by 10 when the loss metric of the validation
set did not improve over 5 consecutive epochs. The training stopped when the loss value of
the validation set did not improve after 10 consecutive epochs, trying to avoid overfitting.
The CNN-CMF model was trained, reaching a total of 34 epochs before stopping, where
epoch 24 corresponds to the chosen version of the model.

3.3. Test Set

Once the CNN-CMF model had been trained, its performance was evaluated at the
three corresponding stations. For this purpose, the model was run using the images of the
reserved test dataset, providing an estimation of the CMFGHI values, which were trans-
formed into GHI values by multiplying their corresponding cloud-free GHI simulations.
These predicted GHI values were compared against the measured GHI values with the
pyranometers, as shown in the density scatter plots of Figure 2 for the three locations and
all of them together. These graphs also present the linear fit line and some statistics of the
comparison, such as the standard deviation (SD) and the mean bias error (MBE) of the GHI
differences between CNN-CMF and the pyranometer values.
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Figure 2. Density scatter plots between the shortwave global horizontal irradiance (GHI) predicted
by the trained CNN-CMF model and the measured one with a pyranometer. Panels (a–d) correspond
to the test dataset of Valladolid, Izaña, Lindenberg, and all stations together, respectively. The color
bar marks the density of the points ranging from 0.0 to 1.0. The black straight line represents the
linear fit. The linear fit coefficients, the number of data used (N), the standard deviation (SD), and
the mean bias error (MBE) values of the GHI differences between the CNN-CMF model and the
measured values are also added (in relative and absolute values) for each panel.

In general, the density scatter plots of Figure 2 show a high correlation between
predicted and measured GHI values, with a determination coefficient (R2) value of 0.99
for the four cases. The results reveal that high values of GHI are more frequent in Izaña,
while low values are more common in Lindenberg. This discrepancy is primarily due to the
high frequency of cloud-free days in Izaña and quite cloudy days in Lindenberg, as well as
lower Sun elevation in Lindenberg. Valladolid exhibits an intermediate behavior between
the other two stations. Additionally, in the panel that includes data from all three stations,
a higher frequency of low values of GHI is observed due to the greater number of available
data from Lindenberg (58,072 out of a total of 127,374). Regarding the linear fit, Valladolid
shows the slope value closest to 1 (1.00), followed by Izaña (0.96) and Lindenberg (0.95),
which also shows the y-intercept closest to zero (−3.80 Wm−2). The CNN-CMF model in
Valladolid also exhibits the lowest MBE (−1%) and SD (7%) values. However, it slightly
underestimates the measured GHI in the three stations with MBE values between −1%
(Valladolid) and −3% (Izaña). This better fitting in Valladolid may be attributed, at least in
part, to the mentioned availability of a similar number of data for all GHI intervals. This
is also noticed when comparing the absolute results, as the absolute value of the MBE is
notably larger at Izaña (where the available data present bigger GHI values) than the others,
but the relative results are more similar (although it is also larger). Finally, for the total case
of the three stations together, the MBE is about −2% and the SD close to 9%, indicating a
slight underestimation of the CNN-CMF model compared to the measurements.

4. Results

In order to study the performance of the developed CNN-CMF model in a location not
used in training, this model was applied to the sky images recorded in the mentioned station
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of Marambio to estimate the GHI. A total of 59,444 images recorded since 16 November
2021 at this site were used for this task.

4.1. SW Irradiance

Firstly, for a qualitative comparison, the intra-daily evolution of the predicted GHI values
was plotted together with the measured ones for four different days in Figure 3. It must be
noted that the predicted values are shown every 5 min (camera capture frequency), whereas the
measured ones are every 1 min. This means that data filtering has not yet been performed for this
comparison. In general, the CNN-CMF predicted and measured values are in concordance with
all the days shown. The first day (21 December 2021) corresponds to a day with almost cloud-
free conditions. In fact, both data series match with the cloud-free simulations, except between
13:00 and 14:00 UTC, when some clouds appeared. This cloudy period presented enhancement
effects (SW higher than under cloud-free conditions; [46,48–50]) but also subperiods with
a significant attenuation of GHI by clouds; both the predicted and measured values are
capable of reproducing these behaviors. Something similar happens for panel (b), where
both the predicted and measured values detect similar enhancement effect conditions
between 13:00 and 14:00 UTC but for a cloudy day in this case. Moreover, during this day,
the predicted values fit with the measured ones, especially in the afternoon, when the GHI
variation with time is not so abrupt. A similar behavior can be appreciated in panel (c). This
is explained by the fact that, as mentioned above, rapid and abrupt changes in incoming
GHI can provide differences between the values predicted from images (instantaneous)
and the values measured by the pyranometer (higher integration time). Finally, panel (d)
presents a day with the presence of cloud-free and cloudy periods with different levels
of GHI attenuation. In this case (4 February 2022), the predicted values overestimate the
measurements between 17:00 and 19:00 under low CMFGHI conditions.

Figure 3. Daily evolution of the shortwave global horizontal irradiance (GHI) measured (1 min)
and predicted by the CNN-CMF model (5 min) at the Marambio station for four different dates: 21
December 2021 (a), 27 January 2023 (b), 29 January 2023 (c), and 4 February 2022 (d). The green points
correspond to the predicted GHI values, the orange points to the GHI measurements, and the blue
line to the cloud-free GHI simulations.
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Once the daily evolution of the CNN-CMF predicted GHI values was observed, even
for abrupt temporal changes in GHI values, the dataset was filtered, as described in
Section 3.1, for a quantitative comparison against the pyranometer measurements. As a
result, Figure 4 shows the density scatter plot between the CNN-CMF predicted GHI values
and the measured ones. The density of points indicates a high occurrence of low GHI
values related to cloudy conditions, similar to those observed at Lindenberg in Figure 2,
but also with the prevalence of high SZA values in this area. The predicted values correlate
with the measurements, with an R2 value of about 0.95. Some data pairs in Figure 4 present
high dispersion, which provides a higher value of SD of about 26%, indicating the lower
precision of the CNN-CMF model than that obtained in the previous comparison with
Valladolid, Izaña, and Lindenberg. In contrast, the obtained MBE is about 2%, similar
to the absolute value obtained in Figure 2d when the results for Valladolid, Izaña, and
Lindenberg are combined. This points out that the CNN-CMF model is accurate, but it
slightly overestimates the GHI measured at Marambio.

Figure 4. Density scatter plot between the shortwave global horizontal irradiance (GHI) predicted by
the CNN-CMF model and the measured one in Marambio. The color bar marks the density of points
ranging from 0.0 to 1.0. The black straight line represents the linear fit. The linear fit coefficients, the
number of data used (N), and the standard deviation (SD) and mean bias error (MBE) values of the
GHI differences between the CNN-CMF model and the measured values are also added (in relative
and absolute values).

GHI is modulated by clouds and also by the SZA due to the importance of the
inclination of the incoming solar radiation. In addition, the sky images usually present
a radial distortion caused by fisheye lens projection, which can mean that the Sun looks
different in the image depending on the SZA. Therefore, in order to observe the effect of
SZA in the performance of the CNN-CMF model, the MBE and SD of the GHI differences
(∆GHI) between the model predictions and the measurements have been calculated for
SZA ±2.5◦ bins. The absolute and relative values of these MBE and SD data have been
plotted as points and error bars, respectively, in Figure 5 as a function of SZA. The 25th
and 75th percentiles are shown as boxes in the figure, and the median values are depicted
as straight lines. These results have also been calculated by taking into account cloud
cover, splitting the data into the following categories: cloud-free (0–1 oktas in red), partly
cloudy (2–6 oktas in green), and totally covered (7–8 oktas in orange). The total results for
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all data are depicted in blue. The absolute MBE for all data generally ranges between 0
and 25 Wm−2, pointing out an overestimation of 20 Wm−2, except for SZA > 70◦, which
ranges between −10 and 0 Wm−2, showing a bit of an underestimation of the predicted
values. In this plot, the SD decreases as the SZA increases, ranging around ±100 Wm−2 for
lower-angle values, around ±50 Wm−2 for medium SZA values, and around ±25 Wm−2

for higher angles. The variation in the relative MBE with SZA does not show any clear
pattern, with the MBE ranging between 0 and 5% for SZA below 72.5◦ and between −10%
and 0% for the rest. In contrast, the SD increases with SZA, ranging between 20% (for the
shortest) to 30% for the largest SZA values. These results reveal a slight overestimation
of the CNN-CMF model to the measurements for SZA values below 72.5◦ and with a
precision of about 20%; however, for higher SZA values, this model underestimates the
measurements with a precision close to 30%.

Figure 5. Mean bias error (MBE) of the shortwave global horizontal irradiance (GHI) differences
between the predicted CNN-CMF model and the measured values for different solar zenith angle
(SZA) bins. The MBE was calculated by splitting the data as a function of the cloud cover into
three groups, 0–1 oktas (red), 2–6 oktas (green), 7–8 oktas (orange), showing the results for cloud-free,
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partly cloudy, and totally covered conditions, respectively. The total results have also been plotted
(blue). The error bars represent the ±SD of the differences for each interval. The median values are
also represented by straight lines of the same color for each case. The boxes correspond to the 25th
and 75th percentiles, depicted in the same colors for each class, respectively. Panel (a) shows the MBE
and SD in absolute values and (b) in relative values.

As can be noticed from Figure 5, the presence of clouds affects the results for both
absolute and relative values. For cloud-free sky conditions, the MBE differences are closer
to 0 for SZA’s between 45◦ and 60◦. In the range from 65◦ to 70◦, the results are quite
similar for all-sky conditions, which are also around 0. For larger angles of between 75◦

and 80◦, the cloud-free conditions present higher results, especially for the relative values.
The absolute MBE is around −10 Wm−2 and between −10% and −15% for relative values.
For 40◦ of SZA, the absolute MBE of the cloud-free condition is larger than for the rest
of the sky conditions (near −10 Wm−2); however, for the relative values, the results are
also closer to the rest of the sky conditions (around −2%). In general, the cloud-free cases
present more negative values than the rest of the cases. It is also noticeable that totally
covered sky conditions generally show positive relative MBE values, except at 80◦ where all
results are negative. The fully covered and partly cloudy conditions are quite similar to the
overall results for MBE, both in relative and absolute terms, except at 45◦, where the partly
cloudy results are closer to the cloud-free values, and the fully covered values are slightly
larger than the others; additionally, at 75◦, where the fully covered results are higher than
the others, and the partly cloudy values fall between the total and cloud-free values. The
SD error bars are shorter, indicating higher precision, under cloud-free conditions. The
absolute SD shows similar results for fully covered conditions compared to the overall
results, while partly cloudy cases present the largest values. Conversely, for relative values,
the SD results show the opposite pattern, with the partly cloudy error bars generally more
similar to the overall error bars and the bars for fully covered cases being larger. The
median values generally exhibit similar behavior to the MBE values, showing comparable
differences between the overall results and the different sky conditions and similar values
to the corresponding MBE results. In absolute terms, the median shows more significant
differences compared to the mean values for partly cloudy conditions with lower SZA
values, as well as for cloud-free conditions, and the overall results at 45◦. For the relative
results, the largest differences from the mean values for each angle bin occur under fully
covered conditions; for the other sky conditions, these differences increase at higher SZA
values. Despite these differences, both the absolute and relative results for the median fall
within very similar ranges to the MBE results. The boxes representing the 25th and 75th
percentiles exhibit similar behavior to the error bars but with lower values. The relative
MBE and SD were calculated and are shown in more detail in Table 2, where these results
are presented for the individual cloud cover values. In good agreement with Figure 5,
the results generally present more negative values for less cloudy conditions, except for
larger SZAs (from 75◦ to 80◦). The MBE ranges from −10% to 10%, showing accurate
results, except 80◦ (ranging from −5% to −20%). The SD results indicate that the precision
is higher for lower cloud cover and SZA values. The SD is generally larger for SZAs above
65◦, ranging from 20% to 30% (and in a few cases, for 80◦, above 30%), except for 0 oktas
between 70◦ and 75◦ that present values of 13% to 15%, respectively. For the rest of the
solar zenith angles, the SDs present larger values (around 30%) for eight oktas, ranging
from 20% to 30% and between four and seven oktas. For 2–3 oktas, the results range from
15% to 20% and between 10% to 15% percent for 1 oktas. The lowest values correspond to
0 oktas, which varies from 5% to 10%.
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Table 2. Mean bias error (MBE) and standard deviation (SD) of the shortwave global horizontal
irradiance (GHI) differences between the predicted CNN-CMF model and measured data (in relative
values) for different solar zenith angle (SZA) bins.

SZA [◦] 40 45 50 55 60 65 70 75 80

oktas MBE ±
SD [%]

MBE ±
SD [%]

MBE ±
SD [%]

MBE ±
SD [%]

MBE ±
SD [%]

MBE ±
SD [%]

MBE ±
SD [%]

MBE ±
SD [%]

MBE ±
SD [%]

0 −1.1 ± 4.1 0.4 ± 6.4 1.3 ± 6.7 −0.5 ± 6.4 −0.7 ± 7.7 −1.9 ±
10.1

−1.8 ±
13.0

−6.5 ±
15.1

−12.8 ±
22.8

1 −2.8 ± 7.5 0.4 ± 11.1 −1.3 ± 9.8 −0.1 ±
12.1

−0.2 ±
14.3

−1.9 ±
15.7

−3.6 ±
20.4

−11.8 ±
23.8

−18.2 ±
26.8

2 −0.9 ±
11.3

−2.1 ±
17.2

−0.8 ±
13.9

−1.0 ±
17.3

−2.0 ±
19.4

−1.9 ±
22.2

−2.5 ±
22.8

−6.1 ±
27.9

−8.6 ±
29.4

3 −0.0 ±
16.8

−0.4 ±
18.2 6.3 ± 18.2 2.9 ± 15.7 −0.0 ±

20.1 2.7 ± 20.1 3.5 ± 21.8 −4.5 ±
29.6

−10.5 ±
31.7

4 −3.2 ±
26.3

−2.4 ±
19.3 0.0 ± 21.7 1.8 ± 23.8 3.9 ± 21.0 4.1 ± 22.9 −4.6 ±

29.8
−3.7 ±
25.6

−9.7 ±
28.6

5 −1.0 ±
23.6 2.8 ± 23.4 3.8 ± 18.8 2.7 ± 24.1 3.9 ± 26.2 5.4 ± 25.1 −0.5 ±

26.8
−1.3 ±
27.0

−9.4 ±
32.7

6 3.0 ± 22.6 1.3 ± 25.9 6.3 ± 21.1 2.6 ± 23.4 3.7 ± 25.2 −1.3 ±
24.2

−1.5 ±
28.6

−5.9 ±
27.0

−10.6 ±
32.9

7 5.4 ± 24.1 8.9 ± 22.3 6.7 ± 22.7 2.0 ± 24.9 2.0 ± 27.0 −3.9 ±
28.7

−0.9 ±
28.5

−3.7 ±
27.8

−11.7 ±
31.4

8 −0.8 ±
29.1 4.7 ± 29.1 4.1 ± 28.4 4.1 ± 28.5 5.1 ± 26.4 3.8 ± 27.4 3.0 ± 31.8 3.8 ± 29.5 −5.2 ±

37.4

All −0.0 ±
27.1 3.5 ± 21.8 3.3 ± 19.8 2.7 ± 21.8 3.3 ± 22.1 1.7 ± 23.4 0.9 ± 26.1 −0.7 ±

27.3
−8.5 ±
33.0

4.2. Daily SW Irradiation

In Section 4.1, it was shown that the predicted GHI values with the CNN-CMF model
accurately match the 1 min measurements, although with a precision of around 26%.
However, in many cases, it is not necessary to know the minutely measurement of irradiance
in detail, but rather, it suffices to know the daily value of SW global horizontal irradiation
(GHId), as is the case in many studies on the temporal trends of SW radiation. By capturing
sky images throughout the day, the CNN-CMF model is able to estimate the corresponding
GHI, and by temporally integrating these predictions, the estimated value of GHId is
obtained. This integration process could help to reduce the uncertainty of the inferred
GHId value. In order to estimate the accuracy and precision of the GHId values predicted
by CNN-CMF, the GHId values were calculated at Marambio as the daily mean of the
GHI values multiplied by daytime length. This was carried out for the GHI predicted by
CNN-CMF and also for the measurements taken by the pyranometer. In this case, day
length was obtained by limiting the SZA to 85◦ in order to obtain the daily values with the
available GHI data. The data have not been filtered by the variation between consecutive
data, but the GHId values were removed if the amount of GHI data that day was less than
the expected 70% of the GHI data.

The predicted GHId values have been represented as a function of the measured
reference values in Figure 6, which shows a density scatter plot for the 482 available days.
As a result, the GHId from the CNN-CMF model correlates with the measurements with a
high determination coefficient R2 of 0.99. In addition, the linear fitting is close to the line
1:1, with the slope and the y-intercept equal to 1.00 and 0.35 MJm−2, respectively. The MBE
value shows an accuracy of about 3% (0.38 MJm−2), with a precision given by a SD value
of about 11% (1.32 MJm−2). These results indicate that, on average, the CNN-CMF model
slightly overestimates GHId (by 3%) more than GHI (by 2%). This can be explained by the
fact that CNN-CMF tends to overestimate GHI more for low SZA values (see Figure 5).
Since the GHI values for the lower SZA values are typically higher than for larger ones,
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they contribute more to the final GHId, resulting in an overestimation. The precision of the
CNN-CMF model is better for these values, as the SD reduces from 26% for GHI to 11% for
GHId.

Figure 6. Density scatter plot of the shortwave daily global horizontal irradiance (GHId) values
obtained from the CNN-CMF predicted data against the measured ones at Marambio. The color bar
marks the density of points ranging from 0.0 to 1.0. The black straight line represents the linear fit.
The linear fit coefficients, the number of data used (N), and the standard deviation (SD) and mean
bias error (MBE) values of the GHId differences between the CNN-CMF model and the measured
values are also included (in relative and absolute values).

5. Conclusions

In this work, a new method was developed to retrieve GHI via CMF estimation
from all-sky camera images. The images were captured and paired with GHI measured
using pyranometers to train the proposed model at three different stations: Valladolid,
Izaña (Spain), and Lindenberg (Germany). The model, named CNN-CMF, is based on a
convolutional neural network, which was validated using a test dataset excluded from the
training, that uses the same stations. The obtained results were compared against the GHI
measurements from the pyranometers, showing a high correlation with a determination
coefficient of 0.99, which indicates that the model accuracy (MBE) is close to −2% and the
precision (SD) is about 9%.

However, these results might be partially biased by the comparison with images simi-
lar to but not the same as the training dataset. In order to avoid any kind of autocorrelation
between the image training and test sets, the sky images retrieved at another location, the
Marambio station, were used to study the CNN-CMF model’s performance. The model can
predict GHI with a slight overestimation of around 2% with respect to pyranometer data.
This overestimation is higher for lower SZA values and shorter for larger SZA values. The
accuracy and precision of the model changed to values close to 3% and 11%, respectively,
when daily values are analyzed.

Retrieving radiometric measurements using pyranometers still continues to be the
best way to monitor solar irradiance and detect possible changes and tendencies. However,
in sites where these measurements are not available, this work proves that if sky images can
be obtained, they provide a good proxy to estimate the GHI and the GHId. We encourage
researchers to use the proposed CNN-CMF model. We also urge the scientific community
to develop new models or improve existing ones for their benefit. We recommend using our
CNN-CMF model for the reconstruction of a GHI time series, as well as also to comparing
the model with measurements at other sites and improving the quantification of the
uncertainty of this model. Finally, for future scope, we would like to use a long-term
series of sky images to reconstruct the SW radiation values and check if this model is
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able to predict trends as they were observed in the past during global brightening or
global dimming.
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Acronyms

AEMet Meteorological State Agency of Spain
AERONET Aerosol Robotic Network
BRDF Bi-directional Reflectance Distribution Function
BSRN Baseline Surface Radiation Network
CC Cloud Cover
CMF Cloud Modification Factor
CMFGHI Cloud Modification Factor for Global Horizontal Irradiance
CNN Convolutional Neural Network
CNN-CC Convolutional Neural Network-Cloud Cover
CNN-CMF Convolutional Neural Network-Cloud Modification Factor
DNA Argentinian National Direction of the Antarctic
DWD Deutscher Wetterdienst—Germany Weather Service
FMI Finnish Meteorological Institute
GHI Global Horizontal Irradiance
GHIcf Global Horizontal Irradiance under cloud-free conditions
GHId Daily Global Horizontal Irradiation
GHImeas Global Horizontal Irradiance under cloudy conditions
GOA-UVa Group of Atmospheric Optics of the University of Valladolid
GRUAN The Global Climate Observing System (GCOS) Reference Upper-Air Network
HDR High Dynamic Range
LW Longwave
MBE Mean Bias Error
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MODIS Moderate-Resolution Imaging Spectroradiometer
MOL-RAO Meteorologisches Observatorium Lindenberg—Richard-Aßmann-Observatorium
OMI-DOAS Ozone Monitoring System Differential Optical Absorption Spectroscopy
RGGB Red Green Green Blue
RTM Radiative Transfer Models
SBDART Santa Barbara DISORT Atmospheric Radiative Transfer
SD Standard Deviation
SMN National Meteorological Service of Argentina
SW Shortwave
SZA Solar Zenith Angle
WCRP World Climate Research Program
WMO World Meteorological Organization
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