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Abstract: Marine mammal acoustic signal recognition is a key technology for species conservation
and ecological environment monitoring. Aiming at the complex and changing marine environment,
and because the traditional recognition method based on a single feature input has the problems of
poor environmental adaptability and low recognition accuracy, this paper proposes a dual-feature
fusion learning method. First, dual-domain feature extraction is performed on marine mammal
acoustic signals to overcome the limitations of single feature input methods by interacting feature
information between the time-frequency domain and the Delay-Doppler domain. Second, this paper
constructs a dual-feature fusion learning target recognition model, which improves the generalization
ability and robustness of mammal acoustic signal recognition in complex marine environments.
Finally, the feasibility and effectiveness of the dual-feature fusion learning target recognition model
are verified in this study by using the acoustic datasets of three marine mammals, namely, the Fraser’s
Dolphin, the Spinner Dolphin, and the Long-Finned Pilot Whale. The dual-feature fusion learning
target recognition model improved the accuracy of the training set by 3% to 6% and 20% to 23%, and
the accuracy of the test set by 1% to 3% and 25% to 38%, respectively, compared to the model that used
the time-frequency domain features and the Delay-Doppler domain features alone for recognition.

Keywords: marine mammals; acoustic signals; feature fusion; target recognition; neural networks

1. Introduction

The ability of marine mammals to use sound for communication is one of the key
features of their adaptation to the underwater living environment, and their acoustic
signals exhibit remarkable diversity. American scholar Lilly categorized these acoustic
signals into three main types based on their functions and parameters, Click, Whistle, and
Burst Pulse, with each sound type serving distinct purposes [1]. Studying the acoustic
signals of marine mammals holds great significance for understanding their biological
behavior, rational utilization of marine resources, and conservation efforts to protect these
species. Passive Acoustic Monitoring (PAM) of marine mammals is a widely employed
biomonitoring method. Since acoustic waves propagate with lower energy attenuation
in the ocean than light waves, they can travel longer distances, making them particularly
suitable for monitoring and identifying marine mammals [2]. In the pursuit of developing
PAM systems for detecting and classifying marine mammals, numerous algorithms have
been devised specifically to analyze the acoustic characteristics of these animals. Notably,
most of these detection and classification algorithms rely on the distinct acoustic features
exhibited by marine mammals [3].

Feature extraction is a crucial step in acoustic signal processing. By employing feature
extraction techniques, one can obtain the acoustic features of the target, which subse-
quently serve as a reliable basis for target identification. Ibrahim et al. demonstrated the
effectiveness of using Mel-Frequency Cepstral Coefficients (MFCC) and Discrete Wavelet
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Transformation Coefficients in classifying marine mammal calls using Support Vector Ma-
chines (SVM) [4]. Brown et al. pioneered the use of the Gaussian Mixture Model combined
with the Hidden Markov Model (GMM-HMM) for recognizing MFCC features [5]. In their
study, they achieved a classification consistency of over 90% for a set of 75 killer whale
calls. Dugan, on the other hand, extracted time-frequency features from cetacean calls
and classified them using three different models, achieving the highest assignment rate
of 86.45% [6]. Maheen et al. acoustically classified six marine mammal species by fusing
one-dimensional localized binary patterns with MFCC features. Their approach yielded a
training test accuracy of 90.4% [7]. Meanwhile, Zhong Mingtuo et al. fused MFCC, Linear
Cepstral Coefficients, and time-domain features from 61 species of marine mammals as
feature parameters [8]. By utilizing SVM for classification, they managed to improve the
recognition rate by 5.5% compared to traditional MFCC-based methods. Li Songbin et al.
extracted six features—MFCC, FBanks, PNCC, PSRCC, GFCC, and MSRCC—from three
marine mammal species for comparative analysis [9]. They employed a Convolutional
Neural Network-Gated Recurrent Unit (CNN-GRU) structure for recognition and achieved
a classification accuracy of 74%. Some of these studies use one feature to identify marine
mammal acoustic signals, and some use multiple, but none of the features they use can
be separated from the time-frequency domain. Since climatic factors, such as rainfall
and typhoons, have a great impact on the marine acoustic environment, the recognition
of marine mammal acoustic signals only by time-domain features or frequency-domain
features has certain limitations. Zhang Xuebo et al. coherently synthesized signals in the
range-Doppler domain associated with each receiver after performing range cell migration
correction (RCMC) for each receiver, and then corrected the azimuth offset [10,11]. To
improve the simulation efficiency of multi-receiver synthetic aperture sonar (SAS) echo
signal, Zhang Xuebo et al. multiplied the spectrum of the transmitted signal with the
phase shift related to the delay so that the spectrum of the echo signal can be accurately
obtained [12,13]. Compared with the traditional echo simulation algorithm, this method
significantly improves the simulation efficiency of the echo signal without losing perfor-
mance. Although the MFCC features have achieved good recognition results in the current
field, the Delay-Doppler (DD) domain features can respond to the speed information of the
target and are not easily affected by environmental factors such as climate, so combining
them with the MFCC features can increase the reliability of the recognition, and the use
of the dual-feature fusion learning method may be beneficial to improve the accuracy of
the recognition.

Convolutional Neural Networks (CNNs) are widely utilized in the field of speech
recognition. Traditionally, acoustic signal recognition involves time-frequency analysis of
the acoustic signal to generate a spectrogram, which is then used to identify the acoustic
signal based on its unique patterns. Detailed information on machine learning and deep
learning-based methods and underwater sound sources, features, classifiers, datasets,
related techniques, challenges, and future trends for marine ship sound classification and
fish sound classification are discussed by Aslam et al. [14]. Bianco et al. presented the
development of machine learning in four acoustic research areas: source localization in
speech processing, source localization in marine acoustics, bioacoustics, and environmental
sounds in everyday scenes [15]. In the process of feature extraction for speech signals, the
original acoustic features are often replaced with acoustic feature images, and CNN-based
image recognition techniques are employed to recognize the acoustic signals. This approach
has proven to achieve accuracy rates that are difficult to match using traditional methods,
especially when dealing with large-sample datasets. Zhang Xuebo et al. focus on the
application of a nonlinear chirp scaling algorithm in SAS and validate the proposed method
through simulation and real data. The processing results show that the imaging efficiency
is greatly improved compared with the phase center approximation (PCA) method [16].
Wang et al. proposed a comprehensive underwater image enhancement framework, the
metalantis framework, which enhances state-of-the-art physical models of underwater
imaging by utilizing virtually generated data for reinforcement learning [17,18]. Meanwhile,
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they gave two examples in [19,20]. Shiu et al. explored the use of deep CNNs and Recurrent
Neural Networks (RNNs) with spectrograms to detect vocalizations of North Atlantic Right
Whales [21]. Their findings indicated that deep learning architectures can produce false
positive rates several orders of magnitude lower than other algorithms. Griffiths et al.
proposed a multivariate clustering method to identify distinct Click vocal clusters of Dall’s
Porpoise in the U.S.A., and the validity of the three clusters was verified using the Random
Forest method [22]. Cai et al. designed a multichannel-based classification model with
a parallel structure, fusing predictions and introducing data enhancement techniques to
further improve classification accuracy [23]. Duan Dexin et al. trained a random forest
classifier using time-frequency graph features to detect and distinguish echolocation signals,
achieving higher recall and accuracy under low Signal-to-Noise Ratio (SNR) conditions [24].
Cominelli et al. combined pre-trained acoustic classification models (VGGish, NOAA,
and Google Humpback Whale Detector), dimensionality reduction (UMAP), and balanced
random forest algorithms to demonstrate how machine-learned acoustic features can
capture different aspects of the marine acoustic environment [25]. The current state of
research suggests that applying deep learning to marine mammal acoustic recognition
has become a trend, but most of the methods proposed so far are based on a feature-
based recognition model. Although neural network models for marine mammal acoustic
recognition offer higher accuracy and reduce time and labor costs, traditional neural
network models often suffer from complexity, computational costs, and other problems.

To address the limitations of traditional recognition methods that rely solely on a
single feature input, this paper proposes a dual-feature fusion learning target recognition
model. To validate the effectiveness of the proposed model for marine mammal acoustic
recognition, this study combines three common CNN recognition models with two signal
features, respectively, for single-feature recognition, which is compared with two-feature
recognition. The innovations of the dual-feature fusion learning method presented in this
paper are as follows:

The marine mammal acoustic signal is preprocessed using adaptive filtering to enhance
the SNR and mitigate the interference of environmental noise.

1. Delay-Doppler domain features are introduced into the acoustic feature recognition of
marine mammals, effectively addressing the impact of seasonal changes in the marine
environment on marine mammal acoustic signals.

2. A dual-feature fusion learning target recognition model is developed, capable of
recognizing both MFCC features and Delay-Doppler domain features simultaneously.
This model exhibits high recognition accuracy and strong generalization ability for
mammal acoustic signal recognition in complex marine environments.

2. Theory
2.1. Least Mean Square Adaptive Filter

To mitigate the effects of environmental noise on marine mammal identification, this
study employs the Least Mean Square (LMS) adaptive filter to process the acoustic signals
of marine mammals, thereby enhancing the SNR [26]. LMS is an adaptive filter based
on the minimum mean square error criterion. The core idea is to minimize the sum of
squares of the errors between the output signal of the filter and the desired signal by
continuously adjusting the coefficients of the filter. The LMS algorithm is based on the
Wiener filtering theory, and adopts the algorithm of estimating the gradient vector by
instantaneous values to update the adaptive filter weights coefficients by minimizing the
energy of the error signal. The structure of the adaptive filter is shown in Figure 1, the input
signal x(n) is passed through a parameter-adjustable digital filter to produce an output
signal y(n), which is compared with the desired signal d(n) to form an error signal e(n), and
the filter-parameters are adjusted by an adaptive algorithm to minimize the mean square
value of e(n) [27].
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Figure 1. The structure of the LMS adaptive filter.

Let the input signal be a vector x(n) and the output of the LMS adaptive filter be y(n).
Then we have [28]:

y(n) =
N

∑
i=0

s0x(n − i) = ST(n)X(n) (1)

e(n) = d(n)− y(n) = d(n)− ST(n)X(n) (2)

where S(n) is the weight coefficient of the filter and N is the order of the filter.
Adaptive filtering can utilize the results of the filter parameters that have been obtained

at the previous moment to automatically adjust the filter parameters at the current moment
to adapt to the unknown or time-varying statistical characteristics of the signal and noise,
thus achieving optimal filtering to improve the SNR.

2.2. Mel-Frequency Cepstral Analysis

The Mel-Frequency Cepstral Coefficient is a cepstral parameter derived from the
Mel scale frequency domain. By employing equally spaced band divisions on the Mel
scale, MFCC more closely mimics the human auditory system compared to linearly spaced
bands used in traditional logarithmic cepstral analysis. This results in superior recognition
performance, particularly when the SNR is low [29]. Figure 2 illustrates the steps involved
in extracting MFCC features from a signal.

Figure 2. The procedure for extracting MFCC features.

(1) Preprocessing: Pre-emphasis, framing, windowing. The purpose of pre-emphasis
is to boost the high-frequency part so that the gap between the peaks of the spectrum of
the whole signal is reduced by passing the audio signal through a high-pass filter. Due
to the non-smooth and short-time smooth characteristics of the speech signal, the speech
signal is divided into frames, N samples are gathered into one frame, and there should be a
section of overlapping area between two neighboring frames to avoid too large variations
between two neighboring frames. To increase the continuity of the left and right ends of
the frame, it is necessary to multiply the audio signal of each frame by a window function,
and the Hamming window matrix C is multiplied by the post-split-frame matrix S to get
the post-windowed matrix SC.
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(2) Fast Fourier Transform (FFT) and calculation of energy spectrum. The spectrum of
each frame is obtained by performing FFT on each frame of the signal after framing and
windowing [30]:

X(i) =
N−1

∑
n=o

x(n)e−j 2πi
n , 0 ≤ i ≤ N (3)

where x(n) is the input signal and N represents the number of points of the Fourier trans-
form.

(3) Mel filter. The filter bank consists of 32 triangular filters, with dense filters and
high thresholds at low frequencies and sparse filters and low thresholds at high frequencies.
The conversion relationship between frequency and the Mel scale is [31]:

Mel( f ) = 2595lg
(

1 +
f

700

)
(4)

where f is the frequency in Hz.
(4) Discrete Cosine Transform (DCT). The filter bank coefficients are highly correlated,

which may be problematic in machine learning algorithms; as such, the DCT is applied to
de-correlate the filter bank coefficients to finally obtain the MFCC features [31]:

C(n) =
p

∑
k=1

logX(k)cos
(

π(k − 0.5)n
p

)
, n = 1, 2, . . . , L (5)

where L is the MFCC coefficient order and p is the number of triangular filters.

2.3. Delay-Doppler Domain Analysis

The Delay-Doppler domain combines the properties of a signal in the time and fre-
quency domains, mapping the signal into a two-dimensional time-frequency lattice by
placing lattice points in both the time-delay dimension and the Doppler dimension. This
representation allows the signal to maintain relatively stable transmission characteristics in
a complex Doppler frequency shift environment. The relative motion between the target
and the signal-receiving equipment induces a Doppler effect on the signal. The Delay-
Doppler domain analysis of the signal can reveal the frequency shift caused by this effect.
Since different marine mammals exhibit distinct average speeds, they generate unique
Doppler shifts, allowing the Delay-Doppler domain features of the signal to reflect the
movement characteristics of these animals.

There exists a defined relationship between the time-frequency domain and the Delay-
Doppler domain of the signal. Specifically, the time-domain signal undergoes FFT to
convert it into the frequency domain. Subsequently, two-dimensional sampling with
specific periods and frequency intervals is performed to obtain the time-frequency domain
features. Finally, the time-frequency domain signal is subjected to the Symplectic Finite
Fourier Transform (SFFT) to derive Delay-Doppler domain features. The expression for
SFFT is provided in [32]:

Y[p, q] =
1√
PQ

Q−1

∑
n=0

P−1

∑
m

X[l, k]e−j2π(
qk
Q − pl

P ) (6)

where X [l, k] is the signal after Fourier transform and sampling of the time domain
signal, M and N denote the number of time delay dimensions and Doppler dimensions,
respectively, and 0 ≤ p ≤ P, 0 ≤ q ≤ Q.

Inverse Symplectic Finite Fourier Transform (ISFFT) is the inverse transformation of
SFFT, which is able to simultaneously transform the time-delay domain to the frequency
domain and the Doppler domain to the time domain, so as to complete the transformation
of the received signal from the Delay-Doppler domain to the time-frequency domain. The
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transform relationships in the time-frequency domain and Delay-Doppler domain are
shown in Figure 3.

Figure 3. Transformation relations in the time-frequency and Delay-Doppler domains. The green
arrow indicates Inverse Symplectic Finite Fourier Transform (ISFFT), the yellow arrow indicates
Symplectic Finite Fourier Transform (SFFT). The red font indicates the two transformations.

2.4. Convolutional Neural Network Model

CNN is a deep learning model commonly used in fields such as image and audio
recognition The core idea is to extract the features of the data such as images through
convolutional operations to achieve the purpose of classification and recognition of the
data. Figure 4 illustrates the typical architecture of a CNN, which typically encompasses
convolutional layers, pooling layers, and fully connected layers.

Figure 4. The architecture of CNN.

The convolutional layer consists of multiple convolutional kernels and the complete
feature map is obtained by using different convolutional kernels. The eigenvalue of position
(i, j) in the kth feature map of the lth layer is [33]:

vl
p,q,k = W l

k
T

il
p,q + Bl

k (7)

where W lT
k is the weight vector of the kth filter of the lth layer, Bl

k is the bias term of the kth
filter of the lth layer, and il

p,q is the input segment centered at position (i, j).
As hardware technology and computational capabilities continue to advance at a rapid

pace, so too do the design and application of convolutional neural network models. These
models are tailored to specific tasks and application scenarios to optimize performance and
efficiency, with notable examples including VGG16, GoogleNet, ResNet, and others.

The VGG16 model consists of 13 convolutional layers and 3 fully connected layers; the
convolutional part uses a smaller 3 × 3 convolutional kernel and a convolutional operation
with a step size of 1 [34]. This design approach allows the network to be deeper. Between
every two convolutional layers, VGG16 also uses a 2 × 2 maximum pooling layer to reduce
the size of the feature map and retain the most salient features. After the final convolutional
layer, VGG16 uses 3 fully connected layers, each with 4096 hidden units, and the last fully
connected layer outputs the predictions of the model.

The GoogleNet model has about 22 layers, including convolutional layers, pooling
layers, fully connected layers, and the Inception module [35]. Its most important feature
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is the use of the Inception module, which allows the simultaneous use of multiple convo-
lutional kernels of different sizes and pooling layers to extract features, thus increasing
the expressive power and accuracy of the network. GoogleNet also uses global average
pooling instead of maximal pooling, which averages the entire feature map in an average
operation to obtain a feature vector as the final output, reducing the model’s number of
parameters and preventing overfitting.

The ResNet model is proposed to solve the network degradation problem when
there are too many hidden layers in a deep neural network [36]. While traditional neural
networks try to learn a function of the input and target mapping, ResNet learns the residuals
between the input and target. The residuals are obtained by comparing the input signal
with the desired output signal and then learning the residuals; this approach helps to solve
the problems such as gradient vanishing. The ResNet model can learn a deep network with
152 layers and can obtain higher accuracy than the VGG model and GoogleNet model.

3. Method

First, this research performs adaptive filtering on acoustic signals of marine mammals
to enhance their SNR. Subsequently, it extracts the MFCC and DD domain features of marine
mammals as the two input features of this recognition method. This study constructs a
dual-feature fusion learning target recognition model, which can be trained by inputting
two marine mammal acoustic signal features at the same time and can improve the target
recognition accuracy. The overall idea of the paper is shown in Figure 5.

Figure 5. Overview of the experimental procedure. The red font indicates the innovations of this
paper: dual-feature extraction, DD domain features and target recognition model.

3.1. Framing and Normalization

Framing: The purpose of framing is to extract a series of shorter, discrete time segments
(frames) from a continuous signal so that each frame can be further analyzed and processed.
A frame is a fixed-length sequence of samples extracted from an audio signal. The length
of a frame is usually a power of 2, such as 256, 512, or 1024, because such a length makes
subsequent Fast Fourier Transform (FFT) calculations more efficient. The frameshift is the
number of samples between two consecutive frames. The frameshift determines the degree
of overlap between frames. Smaller frameshifts provide higher temporal resolution, but
increase computational effort; larger frameshifts reduce computational effort, but decrease
temporal resolution.

For example, after inputting a segment of the signal, set the number of samples per
frame to 1024 and the frameshift to 512, i.e., move 512 samples at a time to get a new
frame, which ensures 50% overlap, and draw the data of the first three frames as shown
in Figure 6.

Normalization: Min-Max Normalization is a method of scaling data features to a spe-
cific range (usually between 0 and 1). This method is implemented through the maximum
and minimum values of each feature, using a linear transformation to map the data to the
new range. The formula for this is [37]:

x’ =
x − min(x)

max(x)−min(x)
(8)

where x is the original data point, min(x) is the minimum value in the data set, max(x) is the
maximum value in the data set, and x’ is the normalized data point.
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The advantage of Min-Max Normalization is that it is sensitive to outliers, since
changes in the maximum and minimum values directly affect the normalized result, and
the data can be easily scaled to any specified range.

Figure 6. Time-domain plot of three frames.

3.2. Dual-Feature Extraction Analysis

Due to its excellent nonlinear perception ability, MFCC has been widely applied in
acoustic signal recognition research. However, this feature remains a traditional time-
frequency domain feature, susceptible to environmental changes. In this study, we extract
the DD domain feature of marine mammals, which complements the MFCC feature and
can reflect the motion characteristics of marine mammals. This approach addresses the
limitations of recognizing marine mammals using a single feature.

Figure 7 depicts the MFCC features of the Fraser’s Dolphin acoustic signal. The
horizontal axis represents the frame rate, where each frame encompasses a specific number
of samples with a certain overlap between neighboring frames. The more frames there
are, the higher the temporal resolution, which can more accurately capture the dynamic
properties of the signal and changes in short-term characteristics. This is because more
frames mean that the signal is more finely segmented, which better reflects changes in the
signal over time. The vertical axis indicates the MFCC parameter dimension, signifying the
number of MFCCs extracted per frame. This number determines the dimensionality of the
feature vector for each frame. For example, if the order of the DCT is 30, then 30 MFCC
coefficients will be generated for each frame, but usually only the first 13 coefficients are
retained because these lower-order coefficients contain the main spectral information, while
the higher-order coefficients tend to be associated with noise.

Figure 8 illustrates the Delay-Doppler domain features of the Fraser’s Dolphin acoustic
signal. The horizontal axis represents the Doppler frequency shift, indicating the change
in signal frequency resulting from the relative motion between the target and the receiver.
The vertical axis depicts the time delay, which is the duration of signal propagation. The
Delay-Doppler domain features effectively reflect the speed characteristics of organisms,
as varying speeds among different organisms inherently leads to distinct Delay-Doppler
domain features. As evident from the figure, the signal exhibits a pronounced frequency
shift at approximately 8 Hz.
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Figure 7. MFCC features.

Figure 8. Delay-Doppler features.

3.3. Dual-Feature Fusion Learning Target Recognition Model

Traditional CNN models are typically based on a single feature and can only be trained
for that specific feature, which often limits their generalization ability and robustness.
Consequently, in this paper, we introduce a dual-feature fusion learning target recognition
model that is capable of simultaneously inputting features from both the time-frequency
and Delay-Doppler domains. The acoustic signals generated by different targets may
have frequency overlap, so it is challenging to rely only on the time-frequency domain
features of the signals to identify the targets. Since different targets move at different speeds,
they are characterized differently in the DD domain. The target attributes in the other
feature domain of the signal can be described by DD domain features, and the classification
approach is equivalent to combining the MFCC features and the DD domain features as a
joint feature and classifying the different marine mammals by using this joint feature as an
axis, which corresponds to different points on this axis. Due to the increased dimensionality
of the described signal, the target information can be reflected more comprehensively. We
compare the recognition performance of this model with three widely used single-feature
models: VGG16, GoogleNet, and ResNet.

As depicted in Figure 9, our dual-feature fusion learning target recognition model
comprises nine convolutional layers and two fully connected layers. Notably, a max
pooling layer is inserted between every two convolutional layers, and the recognition task
is ultimately carried out by a SoftMax layer. The maximum pooling layer reduces the size of
the feature map by selecting the maximum value of each region, which reduces the amount
of computation and the number of parameters in the subsequent layers, helping to improve
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the computational efficiency of the model and reduce the risk of overfitting. In addition to
this, the maximum pooling layer provides a degree of translation invariance, so that even if
there is a small translation of the image, the maximum pooling layer can extract the same
features. With the pooling operation, the model is able to retain the most important features
and ignore unimportant details, thus improving the robustness of the features. The SoftMax
layer transforms the output of the neural network into a probability distribution, such that
the output value of each category is between 0 and 1, and the sum of the output values of all
the categories is 1. This allows the model to perform better on multi-classification tasks and
improves the accuracy of the classification. The fully connected layer is able to integrate
the features extracted from the convolutional and pooling layers and map these features to
the sample labeling space, enhancing the feature integration capability of the model.

Figure 9. The architecture of the dual-feature fusion learning target recognition model.

Figure 10 presents the specific parameters of the nine convolutional layers. For in-
stance, the parameter “1 × 1 × 32” signifies the following: the convolutional kernel size is
1 × 1, allowing for cross-channel information integration without altering the spatial di-
mensions; furthermore, the number of convolutions is 32, indicating that the convolutional
operation yields 32 feature maps that reflect the outcomes of convolving the input data
with this kernel. Additionally, the activation function employed is ReLU (Rectified Linear
Unit), renowned for its simplicity in computation, rapid convergence, and effectiveness in
mitigating the gradient vanishing problem. The normalization method used is Min-Max
Normalization, which is implemented by the maximum and minimum values of each
feature, using linear transformations to map the data to new ranges.

Figure 10. Parameters of the convolutional layers in the model.

4. Experiment and Analysis

In this section, the effectiveness of the aforementioned dual-feature fusion learning
target recognition model is verified. First, the pre-processed signal undergoes MFCC and
DD domain feature extraction. Subsequently, these two types of features are input into
VGG16, GoogleNet, ResNet, and the dual-feature fusion learning target recognition model
for training. The recognition performances of these different models are then analyzed
and compared. The experimental environment configuration for this study is as follows:
the GPU is NVIDIA GeForce RTX 4080 (NVIDIA Corporation, Santa Clara, CA, USA), the
CPU is Intel i9-13900K (Intel Corporation, Santa Clara, CA, USA), and the neural network
is trained to utilize the GPU. The operating system is Windows 10, with 128 GB of RAM
(Samsung, Seoul, Republic of Korea). The Python version used is 3.9, and the neural
network is constructed using the PyTorch framework. The development environment is
PyCharm 2018.

4.1. Experimental Data and Evaluation Metrics

The marine mammal acoustic data used in this study were obtained from the Watkins
Marine Mammal Sound Database open-source database, which was collected by William
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Watkins, one of the founding fathers of marine mammal bioacoustics, and contains record-
ings from seven decades, from the 1940s to the 2000s. The database contains approximately
2000 unique recordings of more than 60 species of marine mammals, ranging in length from
one second to several minutes, all in .wav format. Figure 11 shows three marine mammals
used in the experiment [38].

Figure 11. Types of marine mammals used in this study.

Due to the varying lengths of the audio data in the dataset and the short duration
of marine mammal vocalizations, in this paper, the longer audio data are clipped into
multiple short segments, which increases the amount of input data and improves the
accuracy of the training. To ensure that each short segment after clipping contains at least
one complete animal vocalization, this paper utilizes Adobe Audition 2024 software to
analyze the time-frequency diagrams of the audio data before clipping. The dataset is
divided into training sets and test sets in the ratio of 4:1, and the following experimental
results are analyzed from these two aspects.

In this study, four metrics were selected to evaluate the experimental results: Accuracy,
Precision, Recall, and F1 Score. These metrics are derived from the confusion matrix, which
evaluates the model’s accuracy by comparing the predicted category labels with the actual
category labels. The structure of the confusion matrix is presented in Table 1 [39].

Table 1. Structure of the confusion matrix.

Actual Category: Positive Actual Category: Negative

Predicted category: Positive TP FP
Predicted category: Negative FN TN

True Positives (TP): the number of samples that the model correctly predicts as positive.
False Positives (FP): the number of samples that the model incorrectly predicts as positive.
True Negatives (TN): the number of samples that the model correctly predicts as negative.
False Negatives (FN): the number of samples that the model incorrectly predicts as negative.
Accuracy is the proportion of correctly predicted samples to the total number of

samples. Precision is the proportion of samples that are positive classes among all samples
that are predicted to be positive classes. Recall is the proportion of samples that are correctly
predicted to be positive classes among all samples that are positive classes. The F1-score
is the harmonic mean of precision and recall, which is used to measure the balanced
performance of the model. They are calculated as follows [40]:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2 × Precision × Recall
Precision + Recall

(12)
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4.2. Experimental Validation

In this paper, Section 2 mentions that a set of triangular filters is used for extracting
MFCC features, which serve to improve the SNR of the original signal. The DD features
are extracted without filtering the signal, whereas the signal is analyzed by LMS adaptive
filtering before DD feature extraction. The analysis results are presented in Figure 12, which
shows the DD domain feature extraction of the Spinner Dolphin before and after filtering,
respectively. Notably, the results are significantly different, with the DD domain feature
extraction after filtering making the visualization features more obvious and enhancing
image contrast.

Figure 12. Comparison of DD domain features before and after filtering.

In this study, all marine mammal acoustic signals were minimum mean square filtered,
and then the DD-domain features of the original signals and the DD-domain features of the
filtered signals were input into the three single feature models of VGG16, GoogleNet, and
ResNet as the target recognition features, respectively. The accuracy, precision, recall, and
F1 scores of the two groups were obtained for comparison, and the results are shown in
Tables 2 and 3:

Table 2. Recognition results of DD domain features before filtering.

Model-Feature Acc (%) Pre (%) Re (%) F1 (%)

VGG16-DD 62.47/64.71 62.76/75.87 62.47/64.71 62.31/64.42
GoogleNet-DD 72.60/54.90 73.13/55.90 72.59/54.90 72.55/54.01

ResNet-DD 74.82/57.84 75.15/57.84 74.82/57.84 74.69/57.78

Table 3. Recognition results for DD domain features after filtering.

Model-Feature Acc (%) Pre (%) Re (%) F1 (%)

VGG16-DD 75.56/59.80 75.71/67.08 75.56/59.80 75.55/59.22
GoogleNet-DD 79.26/72.55 79.29/73.23 79.26/72.55 79.24/72.74

ResNet-DD 77.28/59.80 77.44/60.48 77.28/59.80 77.33/59.82

The table contains the results of the training set and the test set; the two kinds of
data are separated by “/”, the data in front of “/” is the result of the training set, the data
on the right side of “/” is the result of the test set. By comparing the recognition results
of DD domain features from single-feature models before and after filtering, it becomes
evident that the recognition accuracy of each model improves by 3% to 13% after filtering.
Consequently, applying LMS adaptive filtering before feature extraction and recognition
can effectively enhance recognition accuracy.

MFCC and DD domain features are extracted from preprocessed data and individually
input into VGG16, GoogleNet, and ResNet models for single-feature training. Subsequently,
these two types of features are simultaneously input into the dual-feature fusion learning
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target recognition model for training. Table 4 presents the recognition results for the two
features using the four models.

Table 4. Recognition results (Fraser’s Dolphin, Spinner Dolphin, Long-Finned Pilot Whale).

Model-Feature Acc (%) Pre (%) Re (%) F1 (%)

VGG16-MFCC 94.07/95.10 94.09/95.10 94.07/95.10 94.08/95.13
VGG16-DD 75.56/59.80 75.71/67.08 75.56/59.80 75.55/59.22

GoogleNet-MFCC 93.09/95.10 93.22/95.18 93.09/95.10 93.11/95.10
GoogleNet-DD 79.26/72.55 79.29/73.23 79.26/72.55 79.24/72.74
ResNet-MFCC 96.05/97.06 96.09/97.11 96.05/97.06 96.06/97.07

ResNet-DD 77.28/59.80 77.44/60.48 77.28/59.80 77.33/59.82
Dual-feature 99.26/98.04 99.28/98.04 99.26/98.04 99.26/98.04

In the final line, “Dual-feature” signifies that the dual-feature fusion learning target
recognition model is employed to recognize both MFCC features and DD domain features.
Analyzing the training results reveals that the accuracy rate stands at 59% to 80% for DD
domain features alone, 93% to 98% for MFCC features alone, and a remarkable 98% to
99% when both MFCC features and DD domain features are utilized through the dual-
feature fusion learning target recognition model. Therefore, the dual-feature fusion learning
target recognition model is better than the other models in recognizing the acoustic signals
of three marine mammals, namely, the Fraser’s Dolphin, the Spinner Dolphin, and the
Long-Finned Pilot Whale. Comparison with other models alone does not adequately
demonstrate the superiority of the model proposed in this paper. As such, this study
conducts generalizability experiments and ablation experiments to validate the model’s
ability to generalize and the reasonableness of the methodology.

4.3. Generalization Ability Analysis

To verify the generalizability of this dual-feature fusion learning target recognition
model, two distinct marine mammal acoustic signals—the Ross seal and the Bearded
seal—were chosen for training in this study. The training results are presented in Table 5.

Table 5. Recognition results (Ross seal, Bearded seal).

Model-Feature Acc (%) Pre (%) Re (%) F1 (%)

VGG16-MFCC 97.73/73.91 97.84/73.91 97.73/73.91 97.73/73.91
VGG16-DD 88.64/69.57 88.74/77.43 88.64/69.57 88.64/70.15

GoogleNet-MFCC 92.05/73.91 92.09/74.47 92.05/73.91 92.06/73.61
GoogleNet-DD 90.91/86.96 91.03/89.97 90.91/86.96 90.92/86.96
ResNet-MFCC 97.73/86.96 97.73/87.39 97.73/86.96 97.73/87.01

ResNet-DD 77.29/59.80 77.44/60.48 77.28/59.80 77.33/59.82
Dual-feature 98.86/91.30 98.89/92.55 98.86/91.30 98.87/91.20

When DD domain features are recognized in isolation, the accuracy ranges from 59%
to 90%. When MFCC features are recognized alone, the accuracy lies between 73% and
97%. However, when the dual-feature fusion learning target recognition model recognizes
both MFCC and DD domain features, the accuracy soars to 91% to 98%. The superior
recognition accuracy achieved by the dual-feature fusion learning target recognition model,
as compared to other models, underscores its excellent generalization capabilities.

4.4. Ablation Experiment

Ablation Study is an experimental design method commonly used in scientific re-
search, especially in the fields of machine learning and deep learning. The core idea is
to gain a deeper understanding of how the model works and how the components inter-
act with each other by systematically removing or modifying certain parts of the model
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(e.g., layers, nodes, features, parameters, etc.) and observing how such changes affect the
model’s performance.

An ablation experiment was conducted in this study to validate the efficacy of MFCC
features, DD domain features, and LMS adaptive filtering within the proposed method for
marine mammal acoustic signal recognition. By systematically removing each component
from the model, we aimed to assess their contributions to the overall performance.

Ablation Experiment 1: MFCC features are removed and DD domain features are
trained using CNN.

Ablation Experiment 2: Remove DD domain features and train on MFCC features
using CNN.

Ablation Experiment 3: Remove LMS adaptive filtering and directly perform feature
extraction on the original signal.

The training results of the three ablation experiments and the complete target recog-
nition model are compared in Table 6, which shows that the removal of MFCC features
decreases the target recognition accuracy by about 43%; the removal of DD domain fea-
tures decreases the target recognition accuracy by 0–3%; and the removal of LMS adaptive
filtering decreases the target recognition accuracy by 1–3%.

Table 6. Results of ablation experiments.

Ablation
Experiment Acc (%) Pre (%) Re (%) F1 (%)

1 56.30/54.90 56.38/57.62 56.30/54.90 56.15/54.35
2 96.54/98.04 96.54/98.10 96.54/98.04 96.53/98.03
3 97.29/95.10 97.40/95.34 97.28/95.10 97.30/95.10

Dual-feature 99.26/98.04 99.28/98.04 99.26/98.04 99.260/98.04

These findings demonstrate that the inclusion of MFCC features, DD domain features,
and LMS adaptive filtering is crucial for achieving optimal performance in the target
recognition model. Removing any of these components leads to a decrease in model
accuracy, highlighting their contributions to the overall performance.

4.5. Qualitative Validation

The loss function is a non-negative real-valued function used to quantify the difference
between model predictions and true labels [41]. By calculating the value of the loss function,
the accuracy of the model predictions can be quantified, and thus the performance of the
model can be evaluated. By minimizing the value of the loss function during training, the
parameters of the model can be optimized so that the model’s predictions are closer to
the true labels. To provide a more intuitive analysis of the processes and effects of each
model and feature recognition, we have plotted the loss function curves during the training
process and the recognition accuracies of each model in Figures 13 and 14.

An explanation of the legend follows:
VGG-MFCC. Recognition of MFCC domain features using the VGG16 model.
VGG-DD. Recognition of DD domain features using the VGG16 model.
GoogleNet-MFCC. Recognition of MFCC features using the GoogleNet model.
GoogleNet-DD. Recognition of DD features using the GoogleNet model.
ResNet-MFCC. Recognition of MFCC features using the ResNet model.
ResNet-DD. Recognition of DD domain features using the ResNet model.
MFCC-DD. Recognition of MFCC and DD domain features using the dual-feature

fusion learning target recognition model.
Figure 13 illustrates the variation of the loss function during the training of the

three single-feature models and the dual-feature fusion learning target recognition model.
Figure 14, on the other hand, shows the accuracies of different models for two types
of feature recognition, including both the training and test sets, enabling a more direct
comparison of the recognition performance of each model.
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Figure 13. Loss function of each model during the training process.

Figure 14. Recognition accuracy of each model.

(1) When recognizing DD domain features alone, the loss function decreases slowly
and exhibits significant fluctuations. In contrast, recognizing MFCC features alone results
in a relatively faster decrease in the loss function with fewer fluctuations. Notably, the
dual-feature fusion learning target recognition model, which incorporates both MFCC
and DD domain features, achieves an even faster decrease in the loss function with a
smoother curve.

(2) Compared to the model using MFCC features alone, the dual-feature fusion learn-
ing target recognition model improves the accuracy of the training set by 3% to 6% and
the accuracy of the test set by 1% to 3%. When compared to the model using DD domain
features alone, the improvement in accuracy is even more pronounced, with an increase
of 20% to 23% for the training set and 25% to 38% for the test set. Additionally, compared
to models utilizing single features such as VGG16, GoogleNet, and ResNet, the structure
of the dual-feature fusion learning target recognition model is simpler, contributing to an
overall enhancement in model recognition efficiency.

5. Conclusions

In this paper, we propose a dual-feature fusion learning method that mainly consists
of two parts: feature extraction and target recognition.
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(1) Feature Extraction: The MFCC and DD domain features of marine mammals
are extracted as input features. The MFCC, being closer to the human auditory system
than other spectral features, captures the auditory characteristics of the marine mammals’
vocalizations. Meanwhile, the DD domain features reflect the motion characteristics of
these animals, providing complementary information. By combining these two features,
the model ensures robust recognition performance even under low SNR conditions.

(2) Dual-Feature Fusion Learning Target Recognition Model: We introduce a novel
dual-feature fusion learning target recognition model that can simultaneously input both
features into a convolutional neural network for target recognition. In addition, general-
izability experiments and ablation experiments are carried out in this study, which prove
that the model has good generalization ability.

Compared with the traditional single-feature recognition model, the method proposed
in this paper simplifies the model structure, improves the recognition accuracy and training
efficiency, and has good generalization ability, which can provide some references for
research in marine mammal acoustic recognition and other related fields. The method
is based on the recognition of marine mammals by passive sonar, so it is suitable for
the recognition of marine mammals that can actively emit sound, but it is less effective
for the recognition of some fish. The acoustic signals emitted by underwater targets are
transmitted through acoustic channels in the ocean, and their signal-to-noise ratio is bound
to be greatly reduced, so noise in the ocean is an important issue affecting target recognition.
With the increasing changes in the marine environment, including the impacts of climate
change and human activities, the habitats and behavioral patterns of marine mammals are
also changing [42]. Effective acoustic signal recognition techniques can help monitor these
changes and study and protect animals and their habitats non-invasively and at ecologically
relevant temporal and spatial scales. The future of this research can be applied to (1) the
combination of active and passive sonar for the identification of marine organisms; (2) the
combination of marine environmental noise filtering technology for detection; and (3) the
upgrading of hardware and software technology, which will be mounted on a variety of
marine observation platforms to observe organisms in the ocean in real-time, allowing us
to achieve the goal of monitoring and protecting the marine biological environment.

In this paper, three models, VGG16, GoogleNet, and ResNet, are used as references
in the comparison experiments, and future research will consider using more up-to-date
algorithms for comparisons to improve the recognition efficiency of other models and
to find more appropriate models. This study mainly relies on marine mammal acoustic
signal data from the Watkins Marine Mammal Sound Database open-source database, and
future studies will consider using more diverse datasets, including real-world data, to
explore the performance of the target recognition model with dual-feature fusion learning
in different environments.
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