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Abstract: The Lijiang–Jinpingshan fault (LJF) is an important secondary boundary fault that obliquely
cuts the Sichuan–Yunnan rhombic block. It is of great significance for understanding the tectonic
evolution of the Sichuan–Yunnan rhombic block and even the southeastern margin of the Tibet
Plateau. Based on a digital elevation model (DEM), this work combines ArcGIS with MATLAB
script programs to extract geomorphic indices including slope, the relief degree of the land surface
(RDLS), hypsometric integral (HI), and channel steepness index (ksn) of 593 sub–watersheds and strip
terrain profiles around the LJF. By analyzing the spatial distribution characteristics of the geomorphic
indices and combining the regional lithology and precipitation conditions, the spatial distribution of
the geomorphic indices around the study area was analyzed to reveal the implications of the LJF’s
activity. The results of this work indicate that (1) the distribution of geomorphic indices around
the LJF may not be controlled by climate and lithological conditions, and the LJF is the dominant
factor controlling the geomorphic evolution of the region. (2) The spatial distribution patterns of
geomorphic indices and strip terrain profiles reveal that the vertical movement of the LJF resulted in a
pronounced uplift on its northwest side, with tectonic activity gradually diminishing from northeast to
southwest. Furthermore, based on the spatial distribution characteristics of these geomorphic indices,
the activity intensity of the LJF can be categorized into four distinct segments: Jianchuan–Lijiang,
Lijiang–Ninglang, Ninglang–Muli, and Muli–Shimian. (3) The activity of the LJF obtained from
tectonic geomorphology is consistent with the conclusions obtained in previous geological and
geodesic studies. This work provides evidence of the activity and segmentation of the LJF in tectonic
geomorphology. The results provide insight for the discussion of tectonic deformation and earthquake
disaster mechanisms in the southeastern margin of the Tibet Plateau.
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1. Introduction

The southeastern margin of the Tibet Plateau is a hotspot for studying the current
crustal deformation pattern and tectonic evolution of the Tibet Plateau because of strong
tectonic activity [1]. The Sichuan–Yunnan rhombic block is a part of the eastward extrusion
of material from the Tibet Plateau and plays an important regulatory role in the diffu-
sion of material on the southeastern margin of the Tibet Plateau [2,3]. The NE trending
Lijiang–Jinpingshan fault (LJF) is a transverse fault that cuts across the Sichuan–Yunnan
rhombic block and is an important component of the southeastern boundary of the Tibet
Plateau. Studies have shown that, since the Pliocene, the southeastward slip of the Tibet
Plateau has been mainly adjusted by large–scale left–lateral strike–slip of the Xianshuihe
fault and the LJF and the clockwise rotation of the Sichuan–Yunnan rhombic block [4].
Therefore, studying the activity characteristics of the LJF is of great significance for un-
derstanding the tectonic evolution of the Sichuan–Yunnan rhombic block and even the
southeastern Tibet Plateau.
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Tectonic geomorphology is an emerging interdisciplinary field in recent years that
combines geomorphology and structural geology [5]. It aims to understand the interaction
between tectonic processes and landforms on a specific regional scale by describing the
landscape characteristics of the surface [6,7]. Tectonics is important in driving landform
evolution and affecting surface processes. The current landforms result from the combined
effects of tectonics and erosion [8]. In areas with active tectonics, the landform development
within the watershed is sensitive to controlling factors such as tectonic uplift, climate,
and lithology. The development and evolution of the rivers within the watersheds record
information on changes in tectonics and climate [9]. The geomorphic index is a quantitative
expression of surface characteristics and a powerful tool for inverting the history, amplitude,
and rate of tectonic activity. It can reveal information on tectonic activities at time scales
ranging from tens of thousands to millions of years and is particularly suitable for areas
with large tectonic differences and strong tectonic uplift. The watershed is an ideal place
to understand the response relationship between tectonics, geomorphology, and river
systems [10,11]. Nowadays, with the advancement of GIS and the gradual refinement
of high–resolution digital elevation models (DEMs) [12], it is increasingly easy to study
tectonic activities through geomorphic indices and achieve remarkable results [13–15].

The purpose of this study is to evaluate the response of geomorphic indices to LJF
activity. The paleoearthquake history [16,17] and slip rate [18–21] of the central and
southern sections of the LJF indicate strong tectonic activities. Previous studies have mainly
focused on geology, geophysics, and geodesy. Areas where the geomorphic features of
the two sides of a fault are significantly different due to normal or thrust faults are more
suitable for applying geomorphic indices for tectonic geomorphological research. The most
typical geomorphic feature of this pattern is high mountains on one side of the fault and
a basin on the other side [13], which is called a basin–mountain pattern. Although the
LJF is a left–slip and thrust fault, the area around the LJF is not a typical basin–mountain
pattern, making it very difficult to conduct geomorphic index research. Currently, there
are very few studies on geomorphic indices in this area, and the only research is limited
to the central and southern sections of the LJF [22], so it is crucial to conduct geomorphic
index research on the entire fault. Based on the DEM, obtained using the US SRTM (Shuttle
Radar Topography Mission) program and named SRTM–1, we extracted and analyzed the
spatial distribution characteristics of geomorphic indices (slope, relief degree of the land
surface (RDLS), hypsometric integral (HI), and channel steepness (ksn)) using ArcGIS and
MATLAB tools. Furthermore, we evaluated the response of geomorphic indices to LJF
activity in combination with the spatial distribution of regional lithology and precipitation.

2. Regional Geological Overview

The southwest border of the LJF is the Jianchuan basin in the north of the Red River
fault, and it moves NE through Lijiang, Yanyuan, etc. After passing Muli, it turns NNE
and intersects with the Anning River fault near Shimian (Figure 1). The terrain on both
sides of the LJF is significantly different: the terrain on the northwest side of the LJF is
steep, mostly mountainous and canyon areas, while the terrain on the southeast side is
relatively flat, with many basins. Most geological [19,21,23] and geodetic [18,24] studies
have shown that the LJF is a high–angle reverse fault with an NW–dipping, left–lateral
strike–slip. According to the activities and geometric characteristics of the LJF, previous
researchers divided it into northeast, middle, and southwest segments, with Lijiang and
Muli as the boundaries [16].

The LJF obliquely cuts the Sichuan–Yunnan rhombic block, which constitutes the
southwestern segment of the Mesozoic–Cenozoic nappe tectonic belt spanning Long-
men Mountain, Jinping Mountain, and Yulong Mountain [1,25,26]. In this fault zone, a
large–scale left–lateral strike–slip initiated in the Late Pliocene or the Early Pleistocene, and
vertical dislocation began in the Middle Pleistocene [4]. It has remained strongly active since
the Quaternary [27,28]. The strata around the LJF are well developed, with pre–Cenozoic
strata ranging from the Sinian to the Jurassic, while the Cretaceous is absent. The Paleozoic
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strata northwest of the LJF are well–developed, thick, and mainly shallow marine facies
deposits. To the southeast of the LJF, the strata thickness gradually becomes thinner, which
is dominated by coastal facies, but the Paleozoic strata are largely missing [29]. As an impor-
tant boundary fault, strong earthquakes frequently occur around the LJF. According to the
Chinese Historical Earthquake Catalog released by the National Earthquake Data Center:
https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi (ac-
cessed on 10 November 2023), there have been 35 destructive earthquakes (M > 5.0) within
20 km around the LJF, including 10 earthquakes with M > 6.0. The largest earthquake,
M = 7.0, occurred in Lijiang on 3 February 1996.
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and introduction of the study area. A–A’ to F–F’ are strip terrain profiles. (1): Qiangtang block, (2)–

Figure 1. The geological map of the study area. (b) is the red frame range in (a). (a) The main
active faults in the southeastern margin of the Tibetan plateau. (b) The geometric distribution of
the LJF and introduction of the study area. A–A’ to F–F’ are strip terrain profiles. (1): Qiangtang
block, (2)–1: Aba sub–block, (2)–2: Longmenshan sub–block, (3): Chaidamu block, (4): South China
block, (5)–1: Northwestern Sichuan sub–block, (5)–2: Central Yunnan sub–block, (6): Jinggu–Ximeng
block, (7): Baoshan sub–block, EKL–F: East Kunlun fault, NMWQM–F: North margin of the West
Qinling Mountains fault, LRB–F: Longriba fault, MJ–F: Minjiang fault, LMS–F: Longmenshan fault,
QC–F: Qingchuan fault, YG–F: Yushu Ganzi fault, XSH–F: Xianshuihe fault, ANH–F: Anninghe
fault, ZMH–F: Zemuhe fault, DLS–F: Daliangshan fault, XJ–F: Xiaojiang fault, LT–F: Litang fault,
JSJ–F: Jinshajiang fault, DZD–F: Deqin Zhongdian Daju fault, RR–F: Red River fault, NJ–F: Nujiang
fault, DL–F: Daluo fault, NTH–F: Nantinghe fault, LR–F: Longling Ruili fault, H E–F: Heqing Eryuan
fault, E Y–F: Eastern Piedmont fault of the Yulong Mountains.

https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi
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3. Data and Methods
3.1. Data

The DEM used in this work is SRTM–1, obtained from the United States’ SRTM
program (Shuttle Radar Topography Mission), with a resolution of 30 m. SRTM utilizes
interferometric synthetic–aperture radar (InSAR) technology to collect a global DEM, which
provides high–precision data for global–scale topographic and geomorphological research.
SRTM can obtain better surface data in mountainous areas with thick vegetation [30,31].
The precipitation data come from the monthly precipitation data of China from 1901 to
2022 [32], published at the Tibetan Plateau Data Center, with a resolution of 1 km. Due to
the influence of data accuracy, this work selected precipitation data from 2000 to 2022 only
and performed spatial analysis in ArcGIS to obtain the average annual precipitation (AAP).
The lithology data are based on the published 1:2.5 million geological maps of China [33].
To obtain the rock hardness (RH) value of the study area, we assigned the RH according to
the lithology and age. Finally, the average RH of the sub–watersheds of the study area was
obtained through spatial analysis in ArcGIS.

3.2. Extracting Watersheds

The southern end of the LJF belongs to the Heihui River basin, which flows into
the Lancang River. Except for the southern end, the rest belongs to the Yangtze River
basin (Figure 2). Field investigations and related studies have shown that most of the
riverbed in the study area is bedrock, and part of the riverbed is covered by a thin layer of
clastic sediments [34]. In addition, there are landslides, collapses, and debris flows at the
headwaters of some rivers. According to relevant studies, debris flows in bedrock mountain
areas mainly occur in areas with a catchment area of <1 km2, and this value is defined
as the critical catchment area for the transition from a colluvial area dominated by debris
flows to a bedrock river [35]. Previous studies have shown that setting the catchment area
to 10 km2 on the eastern side of the Tibet Plateau can eliminate the impact of the colluvial
zone [36,37]. In addition, the calculation of ksn based on the river hydraulic erosion model
should be based on bedrock rivers and bedrock watersheds. Therefore, non–bedrock rivers
and areas greatly affected by humans should be excluded when extracting watersheds. To
summarize the above requirements, this work utilized the ArcGIS software (version 9.2)
to extract the watersheds with a catchment area greater than 10 km2 in the study area. It
obtained 593 bedrock river watersheds, which are located on both sides of the main rivers
around the LJF (Figure 2).
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3.3. Geomorphic Indices
3.3.1. Slope and Relief Degree of the Land Surface (RDLS)

The slope represents the inclination of the Earth’s surface [38], a common indicator
reflecting the tectonic geomorphic conditions of bedrock mountainous areas. The slope can
be obtained through the relationship between a grid in the DEM and its eight surrounding
neighborhood grids. Previous studies have shown that the slope has a certain critical
value, about 30◦ [39]. Beyond 30◦, the slope will no longer increase with the increase in
the erosion rate, and geological disasters such as landslides and collapses are very likely
to occur [40,41].

RDLS is the difference between the maximum and minimum elevation values within
a certain area, representing the degree of incision and erosion. The surface in the early
stages of evolution has a more significant elevation difference, while the older surface has a
smaller relief due to long–term leveling processes. The intensity of surface incision and
erosion is closely related to the strength of tectonic activity. Therefore, RDLS can indirectly
reflect the strength of tectonic activity [42]. Local RDLS is often used in applications, which
can be obtained by calculating the difference between the maximum and the minimum
elevation value around a specific grid through the analysis window (Figure 3). Experiments
have shown that local RDLS has a scale effect. The size of the analysis window directly
affects the accuracy and macroscopic reflection of RDLS. As the analysis window gradually
increases, the relative height difference increases. However, when the analysis window
expands to a certain extent, the growth rate of RDLS slows. The corresponding analysis
window size is the optimal analysis scale [43,44]. The size of the optimal analysis window
varies with the data and resolution. Referring to previous studies on selecting the optimal
analysis window [45,46], this work selects the analysis window of 50 × 50 grid cells based
on the SRTM–1 data.
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3.3.2. Hypsometric Integral (HI)

Strahler proposed using the HI of river watersheds to reflect the geomorphic de-
velopment characteristics, and the value of HI ranges from 0 to 1 [47]. According to
Davis’s geomorphic erosion cycle theory, geomorphic evolution can be divided into juve-
nile (HI > 0.5), mature (0.5 ≥ HI > 0.4), and old stages (HI ≤ 0.4) [48]. The corresponding
basin area–elevation integral curves are convex, S–shaped, and concave, respectively, and
the HI changes from large to small. Generally speaking, the longer the landform evolution
time, the higher the degree of erosion. After the original geological body is weathered,
eroded, and transported, the volume remaining in the original place is smaller, and the
area–elevation integral curve evolves from the initial convex type to the concave type, and
the HI gradually decreases [49]. If the tectonic activity in a region is strong, it is difficult
for the landform evolution to reach a balanced state. The strong vertical activity will keep
the watersheds in the juvenile or mature stage, and the HI will maintain a very high value.
Therefore, HI is very sensitive to tectonic differences and can indirectly reflect the degree of
the vertical uplift of tectonics.
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According to Pike’s research results [50], in practical applications, the HI calculation
formula of a watershed can be simplified to

HI =
Hmean − Hmin
Hmax − Hmin

(1)

In Formula (1), Hmax is the maximum elevation in a specific watershed, Hmin is the minimum
elevation in a specific watershed, and Hmean is the average elevation in a specific watershed.

3.3.3. Channel Steepness Index (ksn)

The hydraulic erosion model under a steady–state river channel links the bedrock
channel uplift rate with the channel erosion rate and uses the concavity index and ksn to
characterize the relative strength of tectonic uplift. The bedrock uplift rate is high in areas
with a large channel gradient and steep slope, and it is low in areas with a small channel
gradient and gentle slope [51]. Bedrock channels are very common in areas with intense
tectonic activity, such as the Southeastern Tibet Plateau. In tectonic uplift areas, since
the elevation change in the river longitudinal profile is the result of competition between
bedrock uplift and channel erosion and incision, the elevation change (z) of a certain point
in the channel within a certain time (t) is jointly determined by the rock uplift rate (U) and
the erosion rate (E) [42,52], which can be expressed by Formula (2):

∂z
∂t

= U(x, t)− K(x, t)A(x, t)m
∣∣∣∣ ∂z
∂x

∣∣∣∣n, (2)

In Formula (2), K is the erosion coefficient, A is the catchment area, m is the area index,
n is the slope index, and x is the horizontal distance from a point to the upstream of the
river. In z = Sx, where S is the slope of the river at that point. The hydraulic erosion model
assumes that the river is in steady state, at which time the elevation of a point in the river
will no longer change with time—that is, z/t = 0, and Formula (2) is transformed into

0 = U − KAmSn, (3)

Formula (2) can further be transformed into

S =

(
U
K

) 1
n

A− m
n , (4)

If ksn =
(

U
K

) 1
n , θ = m

n , Formula (4) is transformed into

S = ksn A−θ, (5)

In Formula (5), ksn is the channel steepness index and A−θ is the concavity index [53].
Formula (5) is the same as the power function relationship between the river slope

(S) and the catchment area (A) [54]. When comparing Formulas (4) and (5), when K and n
are constants, U positively correlate with ksn, so the ksn value can reflect the tectonic uplift.
The steeper the river slope in a certain area, the higher the ksn value, and the stronger the
tectonic uplift in the area [40].

3.4. Strip Terrain Profiles

When terrain analysis is performed based on a DEM, the elevation profile can directly
reflect the elevation changes in the terrain surface. However, the traditional single profile
line is highly subjective when selecting the location, and the results are not convincing [12].
Strip terrain profiles can obtain the maximum, minimum, and average values of terrain
elevation within a certain width, which effectively avoids the accidental results of a single
profile [55,56]. The differential uplift of the two sides of a fault caused by tectonic activity
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can be reflected in the strip terrain profile [57,58]. In this study, six strip terrain profiles
were evenly selected perpendicular to the fault in the southern, middle, and northern
sections of the LJF, each with a width of 6 km and a length of 100 km (Figure 1).

3.5. Correlation Analysis

Pearson and Spearman correlation are the main methods of correlation analysis. The
applicable conditions of the two methods differ. If the data follow a normal distribution,
the Pearson correlation coefficient is used to study the relationship between parameters;
otherwise, the Spearman correlation coefficient is used [59]. The data of this study obviously
do not follow a normal distribution. The Spearman correlation coefficient uses a monotone
equation to evaluate the correlation between X (independent variable) and Y (dependent
variable). When X increases, Y also tends to increase, and the Spearman correlation
coefficient is greater than 0 and less than 1, indicating a positive correlation. When X
increases, Y tends to decrease, and the Spearman correlation coefficient is greater than –1
and less than 0, indicating a negative correlation. The correlation coefficient of 0 indicates
that there is no correlation between X and Y. The Spearman correlation coefficient is
calculated as follows (Equation (6)):

ρ = 1 −
6∑n

i=1 d2
i

n(n2 − 1)
, (6)

where ρ represents the correlation coefficient, di represents the grade difference between X
and Y, and n represents the number of samples.

4. Results
4.1. The Result of Slope and Relief Degree of the Land Surface (RDLS)

The spatial distribution of the slope (a) and RDLS (b) around the LJF is shown in
Figure 4. The spatial distributions of the two are very similar. Perpendicular to the strike
direction of the LJF, the slope and RDLS in the northwest of the LJF are significantly higher
than those in the southeast; along the strike direction of the LJF, the slope and RDLS on
both sides of the LJF show a trend of low in the southwest and high in the northeast.
For example, the slope and RDLS around the Lijiang, Yanyuan, and Mianning basins are
low–value areas. In addition, the slope and RDLS on both sides of most rivers are higher
than those in other regions, especially in RDLS.

Via spatial analysis in ArcGIS, the spatial distribution results of the geomorphic indices
of 593 sub–watersheds around the LJF were obtained. The vector surface elements of the sub–
watersheds were converted into points using spatial analysis tools, and the sub–watersheds
were divided into the northwest and southeast sides of the LJF according to their positions
after point conversion. Among them, 304 sub–watersheds belonged to the northwest side,
and 289 sub–watersheds belonged to the southeast side (see Supplementary Materials).

The spatial distribution of the average slope (a) and RDLS (b) of the sub–watersheds
is shown in Figure 5. The average slope of the sub–watersheds ranges from 6.5 to 41◦,
and the RDLS ranges from 345 to 4695 m. According to statistics, the average slope of
304 sub–watersheds on the northwest side of the LJF is 27.47◦, and the average slope of
289 sub–watersheds on the southeast is 24.2◦; the average RDLS of the sub–watersheds on
the northwest is 2067.93 m, and the average RDLS on the southeast is 1667.29 m (Table 1).
Therefore, the slope and RDLS on the northwest side of the LJF are higher than those
on the southeast. Similar to the whole region, the spatial distribution of the slope and
RDLS in the sub–watersheds also shows a trend of being high in the northwest and low
in the southeast perpendicular to the fault strike and high in the northeast and low in the
southwest along the fault strike. However, unlike the whole region, the slope and RDLS of
the sub–watersheds have an obvious high–value area in the north of Lijiang, which may
be affected by the Eastern Piedmont fault of the Yulong Mountains (Figure 1) [60,61]. In
addition, after rivers in the dashed black area cross the LJF, the slope and RDLS value of the
sub–watersheds on both sides of the river are significantly reduced. Without considering
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other factors, the spatial distribution results of the slope and RDLS on both sides of the
LJF reflect the strong tectonic uplift in the northwest of the LJF and the trend of the fault
activity gradually decreasing toward the southwest.
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Table 1. The mean values of geomorphic indices, AAP, and RH of sub–watersheds on both sides of
the LJF.

AAP Slope RDLS HI ksn–YT ksn–LC RH

NW 675.40 27.47 2067.93 0.5380 50.28 39.43 27.89
SE 716.54 24.20 1667.29 0.4901 36.84 36.23 28.64

Note: AAP: average annual precipitation, RH: rock hardness, YT: Yangtze River, LC: Lancang River.
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4.2. The Result of Hypsometric Integral (HI)

Figure 6 shows the spatial distribution of HI in the sub–watersheds. The HI values
of the watersheds range from 0.22 to 0.74. The detailed values of the HI are shown in
Supplementary Materials. According to the statistics, the average HI of the sub–watersheds
on the northwest side of the LJF is 0.54, and the average HI on the southeast is 0.49 (Table 1).

According to statistics, the number of sub–watersheds with an HI higher than 0.5
on the northwest side of the LJF accounts for 71% of the total number on the northwest
side, while only 45% are located on the southeast side. HI values higher than 0.5 indicate
that the sub–watersheds on the northwest side of the LJF are in their juvenile stage [48].
If other factors are not considered, this can indirectly reflect the strong tectonic uplift in
the northwest of the LJF. Based on the results of the Spearman correlation analysis, the
correlation between HI and other geomorphic indices is weak. The spatial distribution of
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HI shows that the HI on the northwest side of the LJF is higher than that on the southeast,
but the variation trend of HI along the fault direction is not obvious. In this work, the
performance of HI on the difference in geomorphic features is weaker than other indices,
which may be due to the use of the simplified HI formula. Although the variation trend of
HI along the fault direction on the southeast side is not obvious, the HI on the northwest
side decreases toward the southwest, which reflects that the tectonic uplift of the LJF
gradually weakens toward the southwest.
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4.3. The Result of Channel Steepness Index (ksn)

There are many methods that can be used to calculate ksn [62]. We utilized the Topo-
Toolbox program written by Schwanghart and colleagues based on MATLAB to calculate
the ksn of the channels in this work [63,64]. This method can obtain the ksn of the channels
in the largest watershed within the data range. Since the LJF spans the Yangtze River and
Lancang River basins (Figure 2), it is necessary to process the DEM separately to obtain
the ksn of the channels in the two basins. Due to the amount of data, only part of the ksn is
shown in Figure 7b,c.

Figure 7a shows the spatial distribution of the mean ksn of the sub–watersheds. The de-
tailed values of the mean ksn of each sub–watershed are shown in Supplementary Materials.
The statistics show that, in the Yangtze River basin, the average ksn of the sub–watersheds in
the northwest of the LJF is 50.28, and the average ksn in the southeast is 36.84, much smaller
than that in the northwest. In the Lancang River basin, although fewer watersheds are
selected, the average ksn of the sub–watersheds in the northwest is 39.43, and the average
ksn of the sub–watersheds in the southeast is 36.23, which is also smaller than that in the
northwest. The spatial distribution characteristics of ksn are very similar to the slope and
RDLS, showing that perpendicular to the fault direction, the average geomorphic indices of
sub–watersheds in the northwest are higher than that in the southeast, and the geomorphic
indices on both sides of the LJF decrease from northeast to southwest. After rivers cross the
LJF in the dashed black area in Figure 7a, the ksn of the sub–watersheds on both sides also
decrease significantly toward the southeast. Without considering other factors, the spatial
distribution results of ksn also confirm that the tectonic uplift in the northwest of the LJF
is stronger than that in the southeast, and the intensity of fault activity decreases toward
the southwest.
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in the Yangtze River Basin.

4.4. The Result of Strip Terrain Profile

The strip terrain profiles from A–A’ to F–F’ (Figure 1) reflect the variations in elevation
perpendicular to the fault direction. The strip terrain profiles have obvious tectonic uplift
responses at the LJF except for A–A’, and the topography of the two sides of the LJF is
significantly different (Figure 8). If other factors are not considered, the results show that to
the east of the Lijiang basin, the tectonic uplift on the northwest side of the LJF is stronger
than that in the southeast. We also observed that the average elevation from A–A’ to F–F’
profiles increases, which further indicates that the vertical activities of the LJF increase from
southwest to northeast.
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5. Discussion

In active tectonic areas, fault activity controls landform evolution. However, the
landform evolution process is also affected by the combined effects of climate, lithology, etc.
When using landforms to reflect the response of tectonics, the influence of external factors
such as climate and lithology must be considered. Then, the dominant factors controlling
the landform evolution of a certain region can be analyzed [65].

5.1. Climatic Factors

The climate, which plays a role through precipitation, is an important factor affecting
the development of geomorphology. Precipitation affects river flow, which determines
the river’s ability to erode, transport, and deposit, thus affecting the evolution of water-
sheds [66]. When other factors remain unchanged, the greater the watershed precipitation,
the faster the landform evolution, and the smaller the corresponding values of geomor-
phic indices such as slope, RDLS, HI, and ksn. Precipitation is negatively correlated with
geomorphic indices. The AAP of each sub–watershed was obtained via spatial analysis
(Figure 9). The detailed values are shown in Supplementary Materials.
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Figure 9. The spatial distribution of AAP in the sub–watersheds around the LJF from 2000 to 2022.

The study area is affected by the South Asian and Southeast Asian monsoons (Figure 9).
The precipitation gradually increases from the northeast and southwest corners around the
LJF to the center. Compared with the results of the geomorphic indices in this work, the
precipitation on the southeast side of the LJF is generally higher than that on the northwest
side, which is exactly the opposite of the trend of the geomorphic indices. Furthermore, the
precipitation in the northeast along the LJF is significantly higher than in the southwest,
the same as the trend of the geomorphic indices. This negates the view that precipitation
controls the geomorphic evolution in the study of the LJF. In addition, this work also
included Spearman correlation analysis using geomorphic indices and the AAP and RH
of 593 sub–watersheds, and the results are shown in Figure 10. The results show that
AAP positively correlates with slope and RDLS has no correlation with ksn. AAP is only
negatively correlated with HI, and the correlation is very small. This further confirms that
AAP is not the main factor affecting the geomorphic evolution around the LJF.
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5.2. Lithology

The hardness of the rock directly affects the erosion resistance of the bedrock river.
In general, hard rocks have strong erosion resistance, while soft rocks have weak erosion
resistance [67]. When other conditions are the same, the higher the RH, the greater the
slope, RDLS, HI, and ksn corresponding to the area, and conversely for smaller values of
the geomorphic indices. The RH is positively correlated with the geomorphic indices [36].

The hardness of bedrock is related to many factors [68]. Currently, the hardness of
rocks can be measured by the Schmidt rebound hammer [14]. The hardness of bedrock
is expressed by the rebound distance R. The larger the R value, the stronger the RH and
the greater the ability to resist plastic deformation. This method has been widely used
in geomorphology [37,69], rock mechanics engineering exploration, and other research
areas [70]. Since the study area is too large and field measurements are very difficult,
this study refers to the grading score table obtained by previous researchers based on
Selly’s [71] bedrock corrosion resistance scoring method [72]. This work uses two indicators
of rock hardness and weathering degree in the table, with full marks of 25 and 12 points,
respectively. RH is divided into five levels based on the Handbook of Engineering Geology
(fifth edition) and previous research experience [37]. The degree of weathering is roughly
assumed to be related to the age of the rock. The older the rock, the higher the degree of
weathering and the lower the hardness value. Quaternary deposits are classified as very
soft rocks with a hardness of 5, regardless of their degree of weathering. Based on the
lithology and age data of rocks in the 1:2.5 million geological maps of China [33] (Figure 11),
the spatial distribution of RH and the average RH of the sub–watersheds around the LJF
is obtained.
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Figure 11. The spatial distribution of strata around the LJF.

Figure 12 shows that the RH is high in the areas around Yongsheng, Ninglang, and
Yanyuan. Still, compared with the results of the spatial distribution of geomorphic indices
in the previous text, the values of the slope, RDLS, HI, and ksn are all low in this area. The
area between Jiulong and the LJF is a low–value area of RH, but the geomorphic indices
value of this area are very high. However, there are also some areas, such as the bend
of the Yalong River on the west of Xichang, where the RH positively correlates with the
geomorphic indices. However, according to the results of Spearman correlation analysis,
there is no correlation between the geomorphic indices and RH (Figure 11). Therefore,
based on the results of the regional comparison and Spearman correlation analysis, rock
erodibility is not the dominant factor controlling the geomorphic evolution around the LJF.
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5.3. Tectonics

Taking Jianchuan at the southern end of the LJF as the starting point, the geomorphic
indices of the sub–watersheds are projected onto the G–G’ line in Figure 2 along the fault
direction to obtain a scatter plot of the geomorphic indices on both sides of the LJF. Since
the data points are relatively scattered, a comparison chart of the geomorphic indices on
both sides of the LJF is obtained after linear fitting of the data (Figure 13).
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In Figure 13, there are significant differences in the geomorphic indices on both sides
of the LJF. Overall, the geomorphic indices on the northwest side of the LJF are higher
than those on the southeast side, and the variation trends of the slope, RDLS, and ksn are
also very similar, all increasing from southwest to northeast along the fault direction. In
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addition, the slope, RDLS, and ksn increase significantly at about 230 km. This coincides
with the previous division of the LJF into the northeastern and middle sections based on
this point [16,19]. The HI on the northwest side of the LJF also shows an increasing trend
from southwest to northeast, but the amplitude is lower than that of other geomorphic
indices. At 230 km, the HI on the northwest side of the LJF also increased significantly,
while the HI on the southeast showed no obvious variation trend. This may be because the
HI responds more significantly to landform uplift and less to landform subsidence.

An interesting phenomenon is that in the section of 0–70 km, the slope, RDLS, and ksn
are relatively close or not much different on both sides of the LJF, indicating that the vertical
activity component of the LJF in this section is weak, and strike–slip movement is the main
activity. This is also confirmed in the trenches in our recent and previous works [17,29].
However, the HI shows an obvious reversal in this section; that is, the HI on the southeast
side of the LJF is significantly greater than that on the northwest. There may be two reasons
for this phenomenon. One is that the dip of the LJF in this section has changed, and the
southeast side has risen while the northwest side has fallen, but this assumption is contrary
to the results of strip terrain profiles, slope, RDLS, and ksn. Another hypothesis is that a
fault nearly parallel to the LJF developed in the southeast, which undertook the vertical
activity component and caused the relative uplift of the landform in the southeast. In
fact, the Heqing–Eryuan fault (H–E F) is nearly parallelly developed at 10–15 km from the
southeast side of the LJF fault (Figure 1). Therefore, if other factors that affect the spatial
distribution of geomorphic indices are not considered, the geomorphic indices along the
fault not only reflect the difference in uplift rates on both sides of the LJF and the trend of
activity variation along the fault but the mutation position of the geomorphic indices value
also indicates the segmentation of the fault.

We simplified Figure 13, retaining only the fitted line, and superimposed the lines
to obtain a more intuitive comparison of the geomorphic indices on both sides of the LJF
(Figure 14). The dotted box in Figure 14 shows that the four geomorphic indices all showed
mutations at 70 km, 160 km, and 230 km. According to the above discussion, the geomor-
phic indices have a certain indicative effect on the fault segmentation. We used the mutation
zone as the segmentation point and divided the LJF into four sections: the Jianchuan–Lijiang
section, Lijiang–Ninglang section, Ninglang–Muli section, and Muli–Shimian section. In
the Jianchuan–Lijiang section, as discussed above, the geomorphic indices on both sides of
the LJF are close or not much different, and the fault is mainly characterized by strike–slip
movement. In the north of Lijiang, the Lijiang Basin, which is about 6 km wide, separates
the Jianchuan–Lijiang section and the Lijiang–Ninglang section, which may be a rupture
stepover between the two sections. Previous studies on paleoearthquakes in the southwest
and middle sections of LJF [16,17] showed that the paleoearthquake sequences in these
two sections could not be compared. The Lijiang Basin was indeed a ruptured stepover of
LJF. In the Lijiang–Ninglang section, the four geomorphic indices on the northwest side
of the LJF are significantly higher than those on the southeast, indicating strong vertical
activity in this section of the fault; in the north of Ninglang, the LJF is geometrically divided
into two branches, with a distance of about 6 km between the two branches. This may
be the stepover between the Lijiang–Ninglang section and Ninglang–Muli section, which
caused a sudden change in the geomorphic indices. In the Ninglang–Muli section, the
four geomorphic indices differ significantly on both sides of the LJF, but the values of the
indices are lower than those in the adjacent sections, indicating that the fault activity in this
section is relatively weakened. North of Muli, the geomorphic indices show a consistent
mutation that causes the segmentation of the Ninglang–Muli section and Muli–Shimian
section. This may be due to the strike of the LJF changes from NE to NNE at this point. In
the Muli–Shimian section, the vertical activity of the fault is significantly enhanced.
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Geological studies have shown that the average extrusion rate of the Sichuan–Yunnan
rhombic block southeast of the Tibet Plateau decreases from the rear edge and middle to
the front edge in the SE direction, which is mainly related to the thrust shielding effect of
the LJF [21]. The results of this work also verify this point. The values of the slope, RDLS,
HI, and ksn in the southeast of the LJF are significantly smaller than those in the northwest.
The six strip profiles perpendicular to the fault also have obvious vertical height difference
responses at the fault. In addition, previous studies have found that the LJF absorbed about
one–third of the left–lateral strike–slip deformation transmitted to the southeast by the
Xianshuihe fault, resulting in the sum of the strike–slip rate of the Anninghe, Zemuhe, and
Xiaojiang fault zones being significantly lower than that of the Xianshuihe fault [4]. We
summarized the vertical and left–lateral strike–slip rates of the LJF obtained from previous
geological research (Table 2). The left–lateral strike–slip rates of the southwestern section
of the LJF (south of the Lijiang Basin) and the middle section (Lijiang to Muli) are not much
different. Still, the vertical slip rates of the middle section are significantly higher than
those of the southwest. The geological slip rate results are consistent with the trend of the
geomorphic indices, which are low in the southwest and high in the northeast. Although
there is a lack of vertical slip rate data for the northeast section of the LJF, it can be inferred
from the geomorphic indices that the slip rate in the northeast section is higher than that
in the southwest and middle sections. The geodetic results also show that the vertical
activity of the LJF decreases from northeast to southwest [73,74], which is consistent with
the results of geology and this work.

Based on the above analysis, the LJF is the dominant factor controlling the geomorphic
evolution around the LJF. The vertical activity of the fault causes the geomorphic tectonic
uplift on the northwest side of the LJF to be higher than that on the southwest side, and the
results of the geomorphic indices and strip profiles also show the same characteristics. At
the same time, fault activity geomorphic indices also decrease from northeast to southwest.
The results of tectonic geomorphology and geology are consistent with each other, proving
the rationality of the results of this work.
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Table 2. The slip rate of the LJF in the south of Muli obtained from previous geological research.

Segments Sites Left–Lateral Strike–Slip (mm/a) Vertical Slip Rate (mm/a) Reference

Southwestern segment

Jianchuan 0.7 ± 0.2 0.2 [29]

3.8 [21]

↓ 2.37 ± 0.2 [19]

3.1 ± 0.4 0.15 ± 0.05 [23]

Lijiang 3.7 [21]

Middle segment

3.5 ± 0.8 0.2 ± 0.02 [29]

4.5 ± 0.2 0.65 ± 0.14 [23]

3.1–4.3 [29]

3.3 1–1.3 [21]

↓ 3.5 1.5–1.75 [21]

3.7–4.8 0.55 ± 0.03 [29]

0.9–2.4 [29]

3.23 ± 0.22 0.35 ± 0.02 [19]

3 ± 0.3 0.33 ± 0.04 [29]

Muli 2.5 [29]

6. Conclusions

The purpose of this study is to evaluate the response of geomorphic indices to LJF
activity. Based on a DEM, this study used ArcGIS in combination with MATLAB to obtain
the spatial distribution of the slope, RDLS, HI, and ksn of 593 sub–watersheds on the
southeast and northwest sides of the LJF. Combining the results of the two methods, we
studied the response of the geomorphology in the area around the LJF to the fault activity
and analyzed the spatial differences in the activity of the LJF. The results show the following:

(1) The spatial distribution of climate and lithology have no significant correlation with
the spatial distribution of geomorphic indices. The results of Spearman correlation
analysis also further revealed no correlation among the three. This study shows that
climate and lithology are not the controlling factors of the geomorphic evolution
around the LJF.

(2) Tectonic activity is the dominant factor controlling the geomorphic evolution around
the LJF, and the geomorphic indices convey the tectonic information of the LJF. The
spatial distribution of the geomorphic indices reflects that the uplift of the northwest
side of the LJF caused by the vertical activity of the LJF is higher than that of the
southeast side and reveals that the vertical activity along the fault direction from
northeast to southwest shows a gradual declining trend. In addition, with the north of
Muli as the boundary, the geomorphic indices of the sub–watersheds in the northeast
of Muli are significantly higher than those in the south, indicating that the LJF is
segmented at this location. Taking the north side of the Lijiang basin as the boundary,
the geomorphic indices show the change in fault activity pattern, confirming the
rationality of the Lijiang basin as a stepover, which is consistent with the results
of geological research. The Ninglang–Muli section is divided by the indices of the
mutation zone, which corresponds to the geometric distribution and tectonic transition
of the LJF on the north side of Ninglang.

(3) The elevation of the strip terrain profiles in the northwest direction of the LJF is
significantly greater than in the southeast direction, and there is an obvious vertical
activity response at the LJF. The average elevation of the profile from southwest
to northeast constantly increases. The results of the strip terrain profiles verify the
rationality of the results of the geomorphic indices.
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(4) The results of tectonic geomorphology in this study are consistent with those of
geology and geodesy in previous studies conducted by other researchers, which
indicates that the spatial distribution of geomorphic indices can be used to indicate
the variation trends of differential uplift and tectonic rates caused by fault activity.

This work provides evidence of the activity and segmentation of the LJF in tectonic
geomorphology. The results also provide insight for the discussion of tectonic deformation
and earthquake disaster mechanisms in the southeastern margin of the Tibet Plateau.
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