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Abstract: Reliable and continuous information on cropping intensity is crucial for assessing cropland
utilization and formulating policies regarding cropland protection and management. However, there
is still a lack of high-resolution cropping intensity maps for recent years, particularly in fragmented
agricultural regions. In this study, we combined Landsat-8 and Sentinel-2 imagery to generate
cropping intensity maps from 2019 to 2023 at a 10 m resolution for Shaanxi Province, China. First,
the satellite imagery was harmonized to construct 10-day composite enhanced vegetation index
(EVI) time series. Then, the cropping intensity was determined by counting the number of valid
EVI peaks within a year. Assessment based on 578 sample points showed a high level of accuracy,
with overall accuracy and Kappa coefficient values exceeding 0.96 and 0.93, respectively. We further
analyzed the spatiotemporal patterns of cropping intensity and generated a map of abandoned
cropland in Shaanxi. The results indicated that cropland in Shaanxi Province was mainly utilized for
single-cropping (52.9% of area), followed by double-cropping (35.2%), with non-cropping accounting
for 11.9%. Cropping intensity tended to be lower in the north and higher in the south. Temporally,
the average cropping intensity of Shaanxi increased from 1.1 to over 1.3 from 2019 to 2023. Despite
this upward trend, large areas of cropland were abandoned in northern Shaanxi. These results
demonstrate the potential of utilizing Landsat-8 and Sentinel-2 imagery to identify cropping intensity
dynamics in fragmented agricultural regions and to guide more efficient cropland management.

Keywords: cropland use; multiple cropping; multi-source remote sensing; rainfed agriculture

1. Introduction

Understanding the spatiotemporal dynamics of cropping intensity is pivotal for effec-
tive cropland management and sustainable agricultural development. Cropping intensity,
defined as the cultivation frequency on a cropland plot within a year, serves as a crucial
indicator of cropland utilization efficiency and productivity [1]. In China, the multiple
cropping system, i.e., harvesting two or more crops within a single year, has a long history
dating back to the first century [2]. This strategic approach to land use aims to increase
crop production within the constraints of limited cropland area, thereby maximizing the
utilization of agroclimatic resources [3].

Shaanxi Province, located in northwestern China, is a typical agricultural region
characterized by diverse topography and climatic conditions. Shaanxi was one of three
pilot provinces at the beginning of the Grain for Green program in 1999 in which steeply
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sloping cropland was converted to forest or grassland [4]. Consequently, there has been a
substantial reduction in cropland area in Shaanxi [5,6]. Yet, large portions of abandoned
cropland have also been observed in gently sloping areas [7]. Since 2020, Shaanxi has
implemented several measures aimed at the recultivation of abandoned cropland to increase
food supply. Thus, the period from 2019 to 2023 marked a critical juncture in the trajectory
of cropland management in Shaanxi.

Remote sensing technology has played a crucial role in agricultural land use mapping
since the 1970s [8]. Over the past few decades, research in crop mapping using remote
sensing has grown significantly, with an increasing reliance on time series imagery to
monitor crop phenology and seasonal variability [9,10]. Medium-resolution imagery, such
as from the Moderate Resolution Imaging Spectroradiometer (MODIS), has been extensively
used for generating cropping intensity assessments [11,12]. For example, [12] produced
a global cropping intensity dataset from 2001 to 2019 using MODIS enhanced vegetation
index (EVI) time series with a 16-day temporal resolution.

While earlier studies have made significant progress in crop intensity mapping using
remote sensing, many still rely on data from a single sensor [8], which involves trade-
offs between spatial and temporal resolution due to the physical limitations of individual
sensors [13]. For example, Landsat imagery provides a high spatial resolution (30 m), but its
temporal resolution is often insufficient to capture cropping patterns [14]. To address these
limitations, spatiotemporal fusion techniques have been developed, combining fine- and
coarse-resolution imagery to generate datasets with high spatiotemporal resolutions [15,16].
By fusing Landsat and MODIS data, it is possible to create 8-day-interval time series with a
30 m spatial resolution [17]. Additionally, the fusion of Landsat-8 and Sentinel-2 imagery
offers even richer observations, achieving a temporal resolution of less than 5 days [18],
enabling more detailed analysis of seasonal cropland dynamics. Given the substantial
data volume and computational complexity involved, cloud computing platforms like
Google Earth Engine (GEE) have become indispensable, offering planetary-scale processing
capabilities for handling large datasets efficiently [19]. By leveraging its multi-petabyte
data catalog and freely accessible computational service, GEE has been widely used for
large-scale crop mapping and agricultural monitoring [20–22].

Despite these advancements, the potential of high-spatiotemporal-resolution imagery
to accurately reveal cropping intensity remains underexplored, particularly in fragmented
agricultural regions with complex cropping patterns like Shaanxi Province [23]. Although
some studies have employed fused data to develop cropping intensity maps for individual
years [14,24,25], these is still a notable gap in the availability of continuous, high-resolution
cropping intensity maps for such challenging regions.

The primary objective of this study was to create a continuous, high-resolution crop-
ping intensity dataset for Shaanxi Province from 2019 to 2023. Using a combination of
Landsat-8 and Sentinel-2 imagery processed through GEE, we aimed to capture the spa-
tiotemporal dynamics of cropping intensity and identify abandoned cropland in this region.
Our findings will provide valuable insights to inform more effective cropland management
strategies, and the methodology developed in this research offers the potential for broader
applicability, facilitating continuous monitoring of the cropping intensity in other regions
by leveraging multi-source remote sensing data.

2. Materials and Methods
2.1. Study Area

This study was conducted for Shaanxi Province (105◦29′–111◦15′E, 31◦42′–39◦35′N) in
China, which has a total land area of 20.56 × 104 km2 (Figure 1a). Shaanxi exhibits a varied
range of altitudes and climates. Geographically, it is characterized by three natural zones
from north to south: the Loess Plateau, the Guanzhong Plain, and the Qinba mountainous
region. Shaanxi spans three climate zones: temperate, warm temperate, and northern
subtropical regions. In recent years, the annual accumulated temperature above 0 ◦C
ranged between 4000 and 6000 ◦C (Figure 1b), while annual precipitation increased from
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400 mm in the north to 1400 mm in the south (Figure 1c). Cropland is dispersed throughout
the entire province, with the majority concentrated in central Shaanxi. The cropping system
in Shaanxi transitions from single-cropping in the north to double-cropping in the south.
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Figure 1. The geographical location of Shaanxi Province in China and the distribution of agroclimatic
resources within Shaanxi. (a) Geographical location of Shaanxi Province and its regions along with
elevation distribution. (b) Spatial distribution of the average annual accumulated temperature above
0 ◦C during 2019–2023. (c) Spatial distribution of the average annual precipitation during 2019–2023.

2.2. Workflow

The data and workflow for generating cropping intensity are presented in Figure 2.
First, Sentinel-2 and Landsat-8 imagery were processed and harmonized to create a high-
spatiotemporal-resolution dataset. Next, we constructed a consistent EVI time series
through compositing, gap-filling, and smoothing techniques. Subsequently, cropping
intensity was derived by counting the number of valid EVI peaks within a year. The
accuracy of the generated product was then assessed using a large number of sample points.
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Figure 2. Data and workflow for generating cropping intensity.
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2.3. Satellite Imagery

To gather cropland planting information, we utilized Landsat and Sentinel time series
data spanning from 2019 to 2023. On a globe scale, the dual Sentinel satellite constellations
(S2A and S2B) revisit every 3.8 days, and incorporating Landsat-8 data will further reduce
the interval to 2.9 days on average [18]. The surface reflectance products of Landsat-
8 Operational Land Imager (OLI) and Sentinel-2 MultiSpectral Instrument (MSI) were
processed through GEE [19]. Low-quality observations were identified and excluded from
further processing. We used the quality assurance layers QA60 and QA_PIXEL for Sentinel-
2 and Landsat-8, respectively, to remove clouds and other low-quality observations.

Imagery harmonization was conducted to merge Landsat-8 and Sentinel-2 time series.
We used the red, blue, and near-infrared bands from two sources: OLI bands 2, 4, and
5, and MSI bands 2, 4, and 8A [26]. First, given the spectral response similarities of OLI
and MSI sensors, as shown in Table 1 and Figure 3, we employed linear models described
by [27] to transform MSI data into OLI-like data. Then, to reconcile the difference in
spatial resolutions, bands with 20 m or 30 m resolution were downscaled to 10 m. Finally,
two normalized datasets with comparable spectral ranges and spatial resolutions were
merged into a single dense dataset.

Table 1. The spectral band characteristics of Landsat-8 OLI and Sentinel-2 MSI sensors and the
transformation equations.

Spectral
Band

OLI MSI-2A MSI-2B
Transformation

Equation
Central

Wavelength
(nm)

Bandwidth
(nm)

Central
Wavelength

(nm)

Bandwidth
(nm)

Central
Wavelength

(nm)

Bandwidth
(nm)

Blue 482.0 60 492.7 65 492.3 65 OLI = 0.0003 +
0.9570 MSI

Red 654.6 37 664.6 30 664.9 31 OLI = 0.0041 +
0.9533 MSI

NIR 864.7 28 864.7 21 864.0 21 OLI = 0.0077 +
0.9644 MSI
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We counted the total number of observations and the number of good-quality obser-
vations per pixel in Shaanxi throughout 2021 as an example (Figure 4). On average, the
Sentinel-2 constellations and Landsat-8 exhibited revisit cycles of approximately 2.9 days
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and 13 days, respectively. Their combination resulted in a more frequent observation
interval, reduced to 2.4 days. After the removal of cloud-affected data, the frequency of
good-quality observations remained reasonably high. To provide a comparative perspec-
tive, the revisit cycles for Landsat-8, Sentinel-2, and the combined Landsat-8 and Sentinel-2
datasets were approximately 21.2 days, 4.8 days, and 3.9 days, respectively.
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Figure 4. Distributions of total observations (a–c) and good-quality observations (d–f) in data from
various sensors during 2021 in Shaanxi Province.

2.4. WorldCover Product

We used the European Space Agency (ESA) WorldCover land cover product to prepare
the cropland basemap (Figure 5a). This product was the first global land cover product
at 10 m resolution based on both Sentinel-1 and Sentinel-2 data. The WorldCover 2021
product [30] represents the global land cover for 2021 and is the successive version of the
initial product obtained for 2020. It was generated with an improved algorithm (v200 vs.
v100), leading to an overall improved retrieval and an increased accuracy (76.6% vs. 74.7%).
As shown in Figure 5a, extensive croplands in Shaanxi are predominantly situated within
the Guanzhong Plain, characterized by the prevalence of moderate- and large-sized crop



Remote Sens. 2024, 16, 3832 6 of 18

fields. Conversely, the Loess Plateau in northern Shaanxi, as well as the Qinba mountainous
area of southern Shaanxi, exhibit small-sized crop fields.
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Figure 5. Cropland map of Shaanxi Province and accuracy at city levels. (a) Cropland map of Shaanxi
derived from the WorldCover 2021 product. (b) Comparison between cropland area estimated
from the map and data acquired from the Third National Land Survey (TNLS) results for cities in
Shaanxi Province.

The Third National Land Survey (TNLS) data of Shaanxi Province, released in 2022,
served as the benchmark for evaluating the derived cropland basemap. This dataset
resulted from tremendous efforts integrating field surveying, drones, and satellite imagery
with a resolution of less than or equal to one meter [31]. By collecting the cropland area
figures from the TNLS result for each city, ranging from 85.6 Kha to 926 Kha, we assessed
the accuracy of the WorldCover cropland product. To achieve this, we calculated the
cropland area for each city using the cropland basemap and compared it with the TNLS
data, employing linear regression for analysis.

For cropland area at the city level, the derived cropland map from the WorldCover
product exhibited reasonably good agreement with the TNLS dataset. The correlation coef-
ficient between these two datasets was 0.85, and the regression line closely approximated
the 1:1 line, as depicted in Figure 5b. For most cities, the data points were near to the 1:1
line. As a whole, the cropland area estimated from the WorldCover product was higher
than the area from the TNLS dataset by about 354 Kha. Consequently, the WorldCover
product shows promise as a reliable source for generating a land use map for Shaanxi,
particularly for extracting the distribution of cropland.

2.5. EVI Calculation

EVI has shown a strong correlation with canopy structural attributes, such as leaf area
index and chlorophyll content, making it a prevalent indicator of green vegetation [32].
EVI time series have been employed extensively to effectively identify crop phenological
traits, reflecting various growth stages, such as time of planting and harvesting. Notably,
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different cropping intensities exhibit distinct EVI patterns within one year [11]. Therefore,
EVI has been used in several studies for crop intensity mapping [11,12]. The EVI calculation
formula is as follows:

EVI = 2.5 × NIR − Red
NIR + 6 × Red − 7.5 × Blue + 1 (1)

where NIR, Red, and Blue represent the surface reflectances in the near-infrared, red, and
blue bands, respectively.

2.6. Time Series Construction

The minimum blue compositing method [11] was employed to create EVI products
with uniform intervals. Within each compositing period, the EVI value with the lowest
reflectance in the blue band was extracted. This approach is particularly effective in identify-
ing the clearest conditions owing to the blue band’s sensitivity to aerosol contamination [33].
Considering the good-quality satellite observations and typical crop phenology in Shaanxi,
a 10-day compositing period was chosen to generate 10-day composite EVI time series. Still,
the composite time series might contain gaps due to a continuous absence of good-quality
observations during the compositing period. Linear interpolation was utilized to fill these
gaps by referencing EVI values before and after the respective time of the data gap.

We utilized the Savitzky–Golay filter [34] to smooth the composite EVI time series.
Disturbances in the observations caused by snow and other factors often result in dramatic
fluctuations within EVI curves. These fluctuations, theoretically, should not normally mani-
fest themselves due to the limited duration of crop growth. Therefore, it was imperative
to apply smoothing techniques to the composite time series before further analysis. The
Savitzky–Golay filter is a widely used approach for reconstructing vegetation index time
series [35,36]. This method performs polynomial least squares fitting over successive sets
of adjacent values within a temporal window. The window size dictates the number of
observations considered, while the polynomial degree regulates the order of the smoothing
function. We implemented a moving window comprising nine composite dates, consid-
ering that the crop growth period typically exceeds 90 days in Shaanxi. A second-order
polynomial was chosen to preserve subtle information related to crop phenology. Conse-
quently, we generated a gap-filled and smoothly refined 10-day composite EVI time series
for subsequent analysis (Figure 6).
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Figure 6. Typical enhanced vegetation index (EVI) patterns of different cropping intensities through-
out a year in Shaanxi Province. (a) Spatial locations of three sites in Shaanxi. (b) EVI time series
derived from Sentinel-2 and Landsat-8 data. Symbol and line colors correspond to the label colors in
panel (a). (c) True color Sentinel-2 images at three sites.
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2.7. Cropping Intensity Identification

The determination of cropping intensity relied on the extraction of phenological
characteristics from smoothed EVI time series. Throughout a crop growing season, EVI
values take a distinctive pattern: a gradual increase during the vegetative growth stage,
reaching a peak when the canopy closes, and declining through the reproductive growth
stage until harvest. Within one year, single-cropping systems will exhibit one distinctive
cycle, whereas double-cropping systems will display two complete cycles. In contrast,
non-cropping areas or fallow lands tend to have consistently low EVI values or significantly
lower EVI peaks during the growing season. Therefore, the count of EVI peaks serves as
a robust indicator of cropping intensity (Figure 6b). In this study, potential peaks in the
EVI time series were identified as local maxima using a moving window spanning nine
composite dates. Peaks with an EVI value lower than 0.35 were disregarded as spurious
peaks [17]. Furthermore, peaks occurring after late October were excluded because winter
wheat could exhibit a peak before entering dormancy. Cropping intensity was quantified
by tallying the total count of peaks observed within the calendar year. Finally, we obtained
the annual cropping intensity map for Shaanxi during 2019–2023.

2.8. Accuracy Assessment

The accuracy of cropping intensity quantification was assessed at the pixel scale
using a stratified random sampling dataset. Sample points were randomly collected from
each cropping intensity region estimated for the year 2019. The actual cropping intensity
was independently determined through visual interpretation of EVI time series, very
high-resolution imagery, and true color Sentinel-2 images. This process utilized tools
such as Collect Earth v1.20.6 [37] and the Copernicus Browser [38]. Notably, during the
interpretation, the points whose buffer zones contained noisy features such as ridges and
trees were deliberately excluded. As a result, a total of 578 individual sample points
were retained for the accuracy assessment (Figure 7). To enhance the independence of the
validation, only sample points for the years from 2020 to 2023 were used for assessment,
with each year containing more than 500 sample points. Subsequently, the confusion matrix
and various metrics were calculated, such as overall accuracy and the Kappa coefficient.
The overall accuracy serves as a fundamental metric for assessing the performance in terms
of correct classifications across the entire dataset. It is determined as follows:

po =
t
n (2)

where po represents the overall accuracy, t is the number of correctly classified samples,
and n is the total number of samples. The Kappa coefficient is a statistic that measures the
performance considering class imbalances and the possibility of agreement occurring by
chance. It is calculated as follows:

k = po−pe
1−pe

(3)

where pe is the expected proportion of samples correctly classified by chance. The Kappa
coefficient (k) ranges from −1 and 1, with a value of 1 indicating perfect agreement between
the truth and predictions.
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3. Results
3.1. Spatial Distribution of Cropping Intensity

The spatial distribution of cropping intensity and the corresponding area in Shaanxi
Province during 2019–2023 are shown in Figure 8. In agricultural practice, single-cropping
dominates in Shaanxi, followed by double-cropping, with non-cropping being the least
common. In terms of the percentage of cropland area occupied by each cropping intensity,
single-cropping consistently maintained the highest proportion of the total cropland area
from 2019 to 2023, averaging approximately 52.9%. Double-cropping accounted for 35.2%
of the total cropland area, while non-cropping occupied 11.9% of the total cropland area.
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to 2023.
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A considerable amount of cropland in northern Shaanxi has remained idle (Figure 9).
For instance, in 2019, nearly 1/3 of the cropland in northern Shaanxi (366.4 Kha) had
a cropping intensity of 0, constituting 72.3% of the non-cropping cropland in the entire
province. This proportion remained consistently high, reaching or exceeding 90% from
2020 to 2023, peaking at 96.1% in 2021. This indicates that the majority of idle cropland was
concentrated in northern Shaanxi, which is also evidenced by Figure 8. In contrast, there
was very little idle cropland in central and southern Shaanxi, both in terms of absolute area
and proportion, which were far lower than observed for the northern region. For example,
in central Shaanxi, the proportion of idle cropland was 7.4% in 2019, the highest in the past
five years, and subsequently remained below 2%.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 18 
 

 

A considerable amount of cropland in northern Shaanxi has remained idle (Figure 9). 
For instance, in 2019, nearly 1/3 of the cropland in northern Shaanxi (366.4 Kha) had a 
cropping intensity of 0, constituting 72.3% of the non-cropping cropland in the entire 
province. This proportion remained consistently high, reaching or exceeding 90% from 
2020 to 2023, peaking at 96.1% in 2021. This indicates that the majority of idle cropland 
was concentrated in northern Shaanxi, which is also evidenced by Figure 8. In contrast, 
there was very little idle cropland in central and southern Shaanxi, both in terms of abso-
lute area and proportion, which were far lower than observed for the northern region. For 
example, in central Shaanxi, the proportion of idle cropland was 7.4% in 2019, the highest 
in the past five years, and subsequently remained below 2%. 

 
Figure 9. Cropland area for each cropping intensity in different regions of Shaanxi Province from 
2019 to 2023. NS: Northern Shaanxi, CS: Central Shaanxi, SS: Southern Shaanxi. 

3.2. Temporal Dynamics of Cropping Intensity 
Temporally, the cropping intensity of most cropland in Shaanxi has undergone tran-

sitions over the past five years (Figure 10a). Only about 1/3 of cropland maintained a con-
sistent cropping intensity during this period, including 100.4 Kha of non-cropping, 614.1 
Kha of single-cropping, and 390.7 Kha of double-cropping cropland. In adjacent years, 
transitions primarily occurred between 1 and 2 or between 0 and 1. For example, from 
2019 to 2020, the cropping intensity of 368.5 Kha of cropland increased from 1 to 2, while 
267.0 Kha declined from 2 to 1. Additionally, 188.8 Kha and 160.9 Kha transitioned from 
0 to 1 and from 1 to 0, respectively. When comparing 2019 and 2023, approximately 62% 
of croplands maintained their cropping intensity, with the remaining 656.8 Kha transi-
tioning from 1 to 2, 233.1 Kha transitioning from 0 to 1, and 183 Kha and 104 Kha transi-
tioning from 2 to 1 and from 1 to 0, respectively (Figure 10b). 

Figure 9. Cropland area for each cropping intensity in different regions of Shaanxi Province from
2019 to 2023. NS: Northern Shaanxi, CS: Central Shaanxi, SS: Southern Shaanxi.

3.2. Temporal Dynamics of Cropping Intensity

Temporally, the cropping intensity of most cropland in Shaanxi has undergone tran-
sitions over the past five years (Figure 10a). Only about 1/3 of cropland maintained a
consistent cropping intensity during this period, including 100.4 Kha of non-cropping,
614.1 Kha of single-cropping, and 390.7 Kha of double-cropping cropland. In adjacent years,
transitions primarily occurred between 1 and 2 or between 0 and 1. For example, from
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2019 to 2020, the cropping intensity of 368.5 Kha of cropland increased from 1 to 2, while
267.0 Kha declined from 2 to 1. Additionally, 188.8 Kha and 160.9 Kha transitioned from 0
to 1 and from 1 to 0, respectively. When comparing 2019 and 2023, approximately 62% of
croplands maintained their cropping intensity, with the remaining 656.8 Kha transitioning
from 1 to 2, 233.1 Kha transitioning from 0 to 1, and 183 Kha and 104 Kha transitioning
from 2 to 1 and from 1 to 0, respectively (Figure 10b).
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average cropping intensity for Shaanxi Province from 2019 to 2023.

The transition of cropping intensity has led to an increasing trend in the utilization of
cropland in Shaanxi Province (Figure 10c). From 2019 to 2022, the area of double-cropping
cropland steadily increased from 844.9 Kha to 1443.7 Kha. Although there was a slight
decrease in 2023, the decline was relatively small. In contrast, the area of single-cropping
cropland decreased annually from 2019 to 2023. The area of idle cropland exhibited a
significant decrease in 2022, reduced by 45% compared to the preceding year. Consequently,
the average cropping intensity of Shaanxi, which was 1.10 in 2019, increased to 1.37 in 2022
and 1.32 in 2023.

3.3. Distribution of Abandoned Cropland

The abandoned cropland map of Shaanxi Province was derived from cropping in-
tensity maps, as shown in Figure 11. The definition of abandoned cropland varies across
previous studies, particularly in terms of the duration of time for which the land remains
uncultivated [39–41]. In this study, we followed the FAO’s definition, considering cropland
that has been idle for at least five consecutive years as abandoned [42]. Cropland with a
cropping intensity of zero for the period 2019–2023 was recognized as abandoned. In total,
Shaanxi Province has 100.4 Kha (about 3%) of abandoned cropland, primarily concentrated
in northern Shaanxi. At the city level, Yulin and Yan’an account for 90.0 Kha and 8.4 Kha of
the abandoned cropland, respectively. Of the other regions, Weinan has the largest area of
abandoned cropland, at approximately 0.58 Kha.
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Figure 11. Distribution of abandoned cropland in Shaanxi Province and its area by city. (a) Map
of abandoned cropland in Shaanxi Province. (b) Area of abandoned cropland in each city of
Shaanxi Province.

3.4. Accuracy of Cropping Intensity Based on Sample Points

The accuracy assessment, conducted on 578 sample points, exhibited a high level of
accuracy in extracting cropping intensity. Detailed confusion matrix and accuracy metrics
for estimating the cropping intensity from 2020 to 2023 are presented in Table 2. On average,
the overall accuracy and Kappa coefficient values reached 0.969 and 0.947, respectively.
Moreover, for each year, the overall accuracy and Kappa coefficient values exceeded 0.96
and 0.93, respectively. Thus, the proposed approach could accurately detect the cropping
intensity across multiple years in Shaanxi.
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Table 2. The confusion matrix and accuracy metrics for estimating cropping intensity for Shaanxi
Province in 2020–2023.

2020 2021 2022 2023

Truth Truth Truth Truth

0 1 2 0 1 2 0 1 2 0 1 2

Pr
ed

ic
ti

on 0 76 4 0
Pr

ed
ic

ti
on 0 73 4 0

Pr
ed

ic
ti

on 0 30 3 0

Pr
ed

ic
ti

on 0 43 3 0

1 1 255 4 1 0 247 2 1 4 265 1 1 1 252 1

2 0 10 175 2 0 5 200 2 0 11 199 2 0 10 201

Overall Accuracy: 0.964 Overall Accuracy: 0.979 Overall Accuracy: 0.963 Overall Accuracy: 0.971

Kappa Coefficient: 0.940 Kappa Coefficient: 0.966 Kappa Coefficient: 0.933 Kappa Coefficient: 0.949

4. Discussion
4.1. Distribution of Cropping Intensity and Influencing Factors

Cropping intensity in Shaanxi generally exhibited a distribution pattern of lower in
the north and higher in the south, aligning with the spatial pattern of thermal conditions.
We examined the annual accumulated temperature above 0 ◦C from 2019 to 2023, a reliable
indicator for assessing the suitability of multiple cropping systems [1,43,44]. This parameter
was calculated as the sum of daily average air temperature consistently above 0 ◦C, with
the beginning and end dates determined using a moving average method over five days.
Based on the average values during 2019–2023 (Figure 1b), most parts of Shaanxi had
accumulated temperatures ≥ 0 ◦C ranging between 4000 and 6000 ◦C, with less in the north
and more in the south. Recent research by [45] suggested that the minimum accumulated
temperature requirement was about 4400 ◦C for double-cropping systems, and 6000 ◦C for
triple-cropping systems. In northern Shaanxi, accumulated temperatures mostly ranged
between 4000 and 4500 ◦C, making the area suitable for single-cropping, while central
and southern Shaanxi had accumulated temperatures ranging between 4500 and 6000 ◦C,
sufficient to support double-cropping, but inadequate for triple-cropping.

Topography likely plays the dominant role in shaping the distribution of idle crop-
land in Shaanxi. Topographical attributes have been demonstrated to have a significant
influence on agricultural production, affecting the spatial arrangement of soil nutrients,
water resources, and cultivation practices [46,47]. The abandoned cropland map (Figure 11)
illustrates that idle cropland in Shaanxi is predominantly concentrated in high-altitude
regions of northern Shaanxi. To delve deeper, we conducted a statistical analysis of the
area of idle cropland under different relief degrees of land surface (RDLSs) (Figure 12). The
RDLS, originally proposed by [48], is a synthetic representation of the regional altitude
and surface cutting degree. Leveraging the RDLS dataset for China [49], we projected it to
align with the cropping intensity map prior to analysis. The findings suggested that during
2020–2023, more than 80% of idle cropland was concentrated in regions where the RDLS
ranged from 0.9 to 1.6, with a sparse distribution observed in flat areas.
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Figure 12. Histogram depicting the distribution of idle cropland area across different land surface
relief degrees in Shaanxi Province.

4.2. Implication for Cropland Management

The rise in cropping intensity in Shaanxi was closely linked to the strong cropland
protection policies implemented in recent years. China has devoted great efforts to cropland
protection, and the 14th Five-Year Development Plan has reinforced the strictest cropland
protection system to ensure national food security [41]. Guidance from the Ministry of
Agriculture and Rural Affairs emphasized the urgent need to rehabilitate abandoned
cropland in plain areas for cultivation. Our findings revealed a notable decline in idle
cropland area in central Shaanxi in 2020 (Figures 8 and 9). Additionally, the increasing trend
in the utilization of cropland over the past five years reflects the efficacy of the “storing
grain in land” strategy.

We found that there were still some idle croplands in the hilly and mountainous areas
of northern Shaanxi, which should be the areas of focus for the recultivation of abandoned
cropland. This region has complex terrain, with alternating ridges and hills, numerous
gullies, and serious fragmentation of cropland. Additionally, there are some areas affected
by salinization and wind erosion. Therefore, we recommend the development of diverse
agricultural production based on the local conditions, and thereby growing suitable crops
for different areas, such as staple crops, miscellaneous grains, and forage grasses, to increase
the supply of diversified products.
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The northern part of central Shaanxi Province also exhibited cropping intensity gaps.
This region is primarily dominated by single-cropping cultivation, and there are also
scattered idle croplands. In terms of the thermal conditions, the accumulated temperature
≥0 ◦C in this region has exceeded 4500 ◦C in recent years, which is sufficient to meet the
requirements for double-cropping (Figure 1b). Additionally, the annual precipitation in
this region has also surpassed 600 mm in recent years (Figure 1c). Furthermore, climate
change may increase the production potential of this area in the future [50]. However, the
lack of water infrastructure makes this region a typical rainfed agriculture area. On the one
hand, rainfed farming techniques and water-saving irrigation can be promoted to elevate
non-cropping to single-cropping. On the other hand, improving irrigation conditions
through construction of water infrastructure could help further increase cropping intensity,
thereby fully exploiting the production potential of thermal and water resources.

4.3. Potential of Landsat-8 and Sentinel-2 Imagery to Identify Cropping Intensity

The combination of Landsat-8 and Sentinel-2 has demonstrated significant potential
for mapping cropping intensity. Globally, the median revisit interval of their combination
is 2.9 days [18]. For Shaanxi Province, our results showed an even shorter interval of
2.4 days. After eliminating cloud-affected, low-quality data, the fusion still offers frequent
observations at a 3.9-day interval. This short revisit cycle allows for the creation of dense
time series, enabling the capture of seasonal variability and the assessment of cropping in-
tensity. Additionally, the high spatial resolution enhances the ability to monitor fragmented
cropland, which is common in Shaanxi and similar agricultural regions, as compared to pre-
vious studies [11,12]. The long historical archive of Landsat-8 and Sentinel-2 also supports
continuous temporal analysis, facilitating the identification of cropland abandonment. The
combination delivers the data needed for high-accuracy and consistent cropping intensity
mapping, ultimately supporting more effective cropland management strategies.

4.4. Potential Sources of Uncertainty

Several factors may affect the accuracy of cropping intensity maps generated from the
proposed algorithms. Firstly, we utilized the WorldCover product to derive the cropland
basemap of Shaanxi Province. While the extracted cropland areas were largely consistent
with the TNLS results, there were still some disparities. For example, the cropland areas
appeared slightly smaller in southern Shaanxi (Figure 5b). This could be attributed to
the high degree of fragmentation in these regions [51], where individual cropland plots
may be smaller than the size of a single pixel, leading to misclassification as other land
cover types. Secondly, in some areas of Shaanxi, the two-year–three-crop rotation system
is practiced [52]. However, this study did not specifically distinguish this category, but
rather broke it down into a single-cropping and a double-cropping classification. While
this approach may slightly impact the calculated cropping intensity, its effect was limited
due to the relatively small area of these plots.

4.5. Limitations and Future Directions

At present, there are numerous spectral indices available in addition to the EVI used
in this study. Although EVI alone showed a high accuracy, incorporating additional indices
could potentially enhance the robustness of the results. For example, the land surface water
index may improve the differentiation of cropping cycles [23]. Furthermore, the cropping
intensity generation method in this study relies on the shape characteristics of the EVI time
series, which can be effectively extracted using deep learning techniques [8]. Applying
deep learning to automate the feature extraction process could significantly improve the
efficiency of cropping intensity assessments. In summary, while this study demonstrates
the effectiveness of EVI in mapping cropping intensity, future research should consider
integrating multiple spectral indices and deep learning techniques to provide more robust
and reliable assessments.
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5. Conclusions

We explored the potential of fused high spatiotemporal remote sensing imagery for
revealing cropping intensity dynamics. Using Shaanxi Province, China, as a case study,
we combined Landsat-8 and Sentinel-2 imagery to generate cropping intensity maps at
a 10 m resolution from 2019 to 2023. Subsequently, we investigated the spatiotemporal
characteristics of cropping intensity and the distribution of abandoned cropland. Our
findings revealed that single-cropping dominated crop production in Shaanxi (52.9% of
cropland area), followed by double-cropping (35.2%), with non-cropping accounting for
11.9%. Cropping intensity tended to be lower in the north and higher in the south. While
the transition in cropping intensity led to an upward trend in cropland utilization, large
areas of cropland were abandoned, particularly in northern Shaanxi. These findings
demonstrate the capability of high-resolution imagery to identify cropland utilization
dynamics in fragmented agricultural regions and offer valuable guidance for effective
cropland management practices.
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