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Abstract: Numerous challenges are associated with the classification of satellite images of coffee
plantations. The spectral similarity with other types of land use, variations in altitude, topography,
production system (shaded and sun), and the change in spectral signature throughout the pheno-
logical cycle are examples that affect the process. This research investigates the influence of biennial
Arabica coffee productivity on the accuracy of Landsat-8 image classification. The Google Earth
Engine (GEE) platform and the Random Forest algorithm were used to process the annual and
biennial mosaics of the Média Mogiana Region, São Paulo (Brazil), from 2017 to 2023. The parameters
evaluated were the general hits of the seven classes of land use and coffee errors of commission and
omission. It was found that the seasonality of the plant and its development phases were fundamental
in the quality of coffee classification. The use of biennial mosaics, with Landsat-8 images, Brightness,
Greenness, Wetness, SRTM data (elevation, aspect, slope), and LST data (Land Surface Temperature)
also contributed to improving the process, generating a classification accuracy of 88.8% and reducing
coffee omission errors to 22%.

Keywords: coffee; biennial; GEE; Landsat; Random Forest

1. Introduction

Coffee is a perennial crop whose characteristics can restrict the accuracy of satellite
image classification [1]. Its cultivation occurs between the tropics, a region with a high
concentration of clouds in the rainy season and significant topographic variations [2]. The
spectral signature of the coffee tree is very similar to other crops and native vegetation [3–5].
Coffee production can have areas combined with another type of crop [6,7], the size of plant-
ing areas can vary [8], the maturity stages of the coffee plantations change significantly [9],
and the lighting condition age can change, as they are grown in sun or shade [10].

The characteristics of the images also have a direct influence on the mapping results.
The use of medium resolutions, such as Landsat, is widespread [6,7,11,12], as the availability
of images and their revisit frequency make it possible to create a longer time series, which
is fundamental in agricultural monitoring.

The use of multi-temporal mosaics is recurrent in agricultural mapping. When in-
tegrated with meteorological indicators, texture types, and topographic information, the
performance of classifiers tends to increase [1,6–11,13]. The temporal mosaics of satellite
images are important in evaluating different phases of crop development. Arabica coffee,
in addition to the phenological cycle marked by different stages of seasonal development
of the plant, is characterized by a biennial production cycle, with alternation between more
productive and less productive years.

Biennial cycles are also important in other agricultural crops, particularly perenni-
als, due to cyclical variations in productivity [14]. The analysis of biennial periods can
contribute to optimizing harvest management and improving crop yield prediction mod-
els [9,11,15]. The classification of biennial mosaics can improve the accuracy of satellite
image classification in several agricultural monitoring systems [16].
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Investigating the influence of this biennial period showed potential to improve the
image classification process and refine coffee production estimates [17]. Other agricultural
research using the GEE platform has corroborated the importance of data integration and
indicated that plant phenology could contribute to improving the quality of classifications
of wheat and corn [18,19], rice [20], and grape [21]. Some pioneering research on coffee
GEE classification was carried out by [4,8]. In both, the authors used temporal mosaics,
temperature data, topography data, and addressed seasonal influences on plant phenology.
Although they opted for different methodologies, images, resolutions, and study areas, the
results indicated an improvement in the accuracy of coffee classification.

It is considered, however, that knowledge about the classification of satellite images
of biennial coffee production can be expanded. Thus, the research analyzes the effects of
bienniality in the supervised classification of Landsat 8 images of Arabica coffee in the
Media Mogiana region, São Paulo, Brazil, between 2017 and 2023. The biennial and annual
mosaics were evaluated for the accuracy of the classification of land use (water, urban area,
vegetation, coffee, agricultural area, pasture and eucalyptus) and the errors of omission
and commission of coffee, on the GEE platform with Random Forest. This case study aims
to answer the following question: what is the relevance of bienniality in the supervised
classification of Arabica coffee areas?

2. Arabica Coffee

According to the International Coffee Organization, world coffee production in 2022
was 171,268,000 60 kg bags. Of this total, 57.5% are Arabica coffees, and 42.5% Robusta
coffees [22]. In Brazil, Arabica coffee crops are predominant under the sun, compared to
shaded coffee. Arabica coffees are sold at considerably better prices than Robusta types
due to the superior quality of the drink [23]. Total Brazilian coffee production in 2020
was 65.5 million bags and, in 2021, 60.4 million bags. This reduction can be considered a
consequence of the biennial production of Arabica coffee and climatic events in producing
areas of the country [22].

The Arabica coffee tree is a perennial woody shrub with a complex phenological
cycle [24]. Coffea arabica has a phenological development divided into two vegetative
and four reproductive phases: (1) vegetation and formation of flower buds (September
to March); (2) induction and maturation of floral buds (April to August); (3) flowering
(September to November); (4) fruit granulation (January to March); (5) maturation (April to
June); and (6) rest and senescence of the branches (July to August) [25].

This phenological characteristic of Arabica coffee generates a variation in productivity.
The years in which the plant is in the first vegetative phase, in which there is a concentration
of leaves, are called “negative biennially”, that is, the least productive phase. The years in
which the plant is in the second vegetative phase, in which flowers and fruits are produced,
are called “positive biennially”, in which there is more expressive productivity [26]. Table 1
shows the variation in the biennial productivity of Arabica coffee in the state of São Paulo,
from 2017 to 2023, the production of bags of coffee, and the climatic observations of each
cycle studied.

Table 1. Variation in biennial productivity of Arabica coffee in São Paulo.

Cycles Year Biennial Period Bags Harvested
(Millions) Climate Observations

1st cycle

Annual
2017–2018 Positive 6.2 Good weather

conditions

Annual
2018–2019 Negative 4.3 Standard weather

conditions

Biennial
2017–2019 - 10.5 -



Remote Sens. 2024, 16, 3833 3 of 21

Table 1. Cont.

Cycles Year Biennial Period Bags Harvested
(Millions) Climate Observations

2nd cycle

Annual
2019–2020 Positive 6.2 Good weather

conditions

Annual
2020–2021 Negative 4.0

Bad weather
conditions (droughts

and frosts)

Biennial
2019–2021 - 10.2 -

3rd cycle

Annual
2021–2022 Positive 3.9 Bad weather

conditions

Annual
2022–2023 Negative 5.0 Recovery from the

previous harvest

Biennial
2021–2023 - 8.9 -

Source: [26].

Coffee production also varies in relation to the planted area. During the evaluated
period, fluctuations in coffee planting in Brazil can be observed in Figure 1, and in the state
of São Paulo, in Figure 2.
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Exploring the distinct phenological and biennial phases of the plant can be significant
in improving the quality of mapping coffee areas [25]. In high-production phases, some
plants tend to lose more leaves than in low-production phases. As a result, the difference
in coffee productivity can be related to leaf biomass and monitored through time series of
satellite images. The production volume, when associated with climatic conditions, can
provide additional information about the situation of the coffee plant in situ [17].
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3. Materials and Methods
3.1. Study Area

The case study was carried out in an area formed by 45 municipalities in the northeast
of the state of São Paulo (Brazil) and covers approximately 13,500 km2 (Figure 3). The
region is called Média Mogiana because of the Mogiana railway, built at the end of the 19th
century, a period of great expansion of coffee culture in the state.
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Figure 3. Location of the study area—Média Mogiana Region.

The region studied has average monthly temperatures that vary from 18 ◦C to 24 ◦C
(64.4 ◦F and 75.2 ◦F) and an average annual precipitation of 1378 mm, distributed as follows:
rainy season, from October to March, and dry season, from April to September. Concerning
geomorphological aspects, the Atlantic Plateau predominates in the region, with altitudes
varying between 800 and 900 m. In the eastern region, there are higher areas (around
1300 m) and, in the Peripheral Depression, to the north, altitudes are more modest and vary
between 500 and 700 m. These characteristics are significant, as coffee productivity depends
on altitude and climate throughout its development cycle. Water deficit, for example, is
very harmful during the vegetative and fruiting periods (October and May), but it should
occur moderately during harvest, from June to September [25].
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3.2. Methodology

The research methodology was designed based on the integration of the following
parameters: phenology, seasonality, bienniality, resolution and time series of images, mosaic
composition and processing platform.

The incorporation of the development phases of the coffee plant into the image classi-
fication process determined the temporal interval of the research. The annual cycles begin
in October, when the vegetation and floral buds are formed, coinciding with the start of the
rainy season in the study area. This period extends until September of the following year,
when flowering and the dry season end. In the following month, in October, the second
annual period begins, characterized by the development of the fruits, which continues until
September, when harvesting occurs. At the end of this cycle, the plant enters the resting
and senescence phase. Thus, the two annual periods were combined to form a complete
biennial cycle. And the period from 2017 to 2023 was defined to encompass the last three
complete biennial production cycles of Arabica coffee in the study area.

The selection of images and input data were defined in preliminary tests. The Landsat-
8 satellite was chosen due to the temporal availability and consistency of the data provided.
A total of 429 scenes with less than 80% cloud cover were used, distributed as follows:
70 scenes for 2017–2018, 70 for 2018–2019, 70 for 2019–2020, 72 for 2020–2021, 76 for
2021–2022 and 71 for 2022–2023.

Although images from the Sentinel-1 and Sentinel-2 satellites are frequently used for
agricultural purposes [14,27–29], they were not used in this research because we intend to
develop a methodology that may produce longer time series of data and Landsat images are
available with the same resolution since 1985. The advantages of Sentinel-2 over Landsat-8
include a higher revisit frequency (approximately 5 days) and better spatial resolution
(10 m) [27,28]. However, its availability of images was limited in the study area in 2017 and
early 2018, which would prevent the evaluation of the first biennial cycle (2017–2018).

The Sentinel-1 SAR sensor is very useful in mapping coffee in tropical zones, as it
provides data regardless of atmospheric conditions [1,4,8]. SAR data also allow the analysis
of vegetation structure and contributes to differentiating coffee production systems in
the shade of surrounding vegetation [28]. The use of SAR texture metrics allowed for a
more effective distinction between coffee trees grown in shaded and full sun systems [8].
However, the integration of these images still presents challenges. In the case of Sentinel-2,
it is necessary to consider the differences in the width of the bands, which can generate alter-
nations in the solar and viewing angles, causing variations in reflectance [28]. In Sentinel-1,
the effects of backscatter signal displacement and relief shadows can limit the effectiveness
of data from areas with very irregular topography [1]. The integration of multi-sensor data
(Sentinel-2, Sentinel-1 and Landsat-8), on the other hand, demonstrates a promising path
for future research, as it can increase the efficiency of agricultural mapping [8,14,28].

Numerous methodological references [1–4,6,8,10,11] recommend the assessment of
coffee bienniality using multitemporal mosaics. After evaluating the images, spectral
bands, indices, and additional data, the input data were tested and validated. The adopted
mosaics represent two distinct sets of information. The best results were obtained with
Mosaic 1, which was selected as the reference for the composition of the final mosaics. Its
characteristics are:

• Mosaic 1: bands B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, Brightness, Greenness, Wetness,
LST, elevation, aspect, and slope;

• Mosaic 2: Brightness, Greenness, Wetness, LST, elevation, aspect, and slope.

The main references of this research are related to research on supervised image classi-
fications in which: (I) combined the spectral analysis of Landsat images and the topographic
model to map coffee [6]; (II) predicted the distribution of hybrid zones of shaded coffee
trees with high-resolution images [10]; (III) mapped Coffea arabica with Landsat-8 images
and the Random Forest algorithm [3]; (IV) integrated spectral mixture analysis and data
mining for coffee classification [11]; (V) reviewed remote sensing methods for mapping
coffee production [1]. The references that used cloud processing were: (VI) classified



Remote Sens. 2024, 16, 3833 6 of 21

shaded coffee with GEE [4]; (VII) developed a meta-analysis and systematic review of GEE
for geo-big data applications [2]; (VIII) integrated optical and Sentinel radar data to map
smallholder coffee production [8].

Agricultural crop monitoring is based on the classification of time series of images
and the composition of mosaics, whose most frequent metrics are averages or medians [2].
High spectral heterogeneity can become a significant problem in unitary satellite images;
therefore, the association or fusion of temporal images into mosaics by calculating the
median tends to minimize this difficulty [1].

The selected classifier was Random Forest (RF), which creates classification through
statistical decision trees [30]. Each tree is generated with random ranges or indices, and the
final class of each pixel is assigned by most of the results. The RF showed good accuracy
when differentiating vegetation areas and other cropping systems from coffee planting
areas [3,27,31–33].

The Kauth–Thomas linear transformation [34], or Tasseled Cap method, was used to
integrate spectral data from some bands with the scene characteristics. This method helps
to highlight certain aspects of the image, generating three basic components: Brightness,
which represents the amount of light reflected by the surface; Greenness, which corresponds
to the reflection of vegetated areas at the expense of non-vegetated ones; and Wetness,
which generates reflection of the humidity on the surface [1,34]. The accuracy in classifying
coffee areas has been improved by merging these components [4,35].

Land Surface Temperature (LST) data, extracted from Landsat-8, were also incor-
porated into the mosaics. These surface temperature data are often used in precision
agriculture studies. LST captures thermal radiation emitted by the Earth’s surface and
helps detect subtle differences in leaf and canopy density, morphology, biomass, species
composition, and canopy water status in coffee plantations [4,6,7,9]. The GEE methodology
and algorithms [15] were used to create the LST data of the study area (bands 4, 5, 7, and 8).

Data from the Shuttle Radar Topography Mission (SRTM) was also used. Topographic
information and relief assessment are important in coffee mapping, particularly slope, and
elevation, as they influence the accuracy of classified areas [1,8].

The definition of land-use classes considered the similarity in spectral responses
between coffee trees, vegetation, eucalyptus, and other agricultural areas, mainly perennial
crops [7,36,37]. The annual and biennial mosaics were classified into seven land-use classes:
water, urban area, vegetation, coffee, agricultural area, pasture, and eucalyptus.

Classification accuracy demonstrates credibility in the methodology and reliability
of the final maps. Factors such as the number of points collected, the differentiation of
classes, and the sampling strategy directly influence the results [1]. To validate the classes
and evaluate the coffee classification performance, the accuracy method based on [38] was
used. This method generates an error matrix comparing the reference samples with the
mapped classes. The results provide an overview of the overall mapping accuracy and the
specific commission and omission values for each mapped class.

3.3. Procedures and Data

Figure 4 shows the pre-processing and mosaic composition steps.
Landsat-8 images (USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance) from 2017 to

2023 were used, with bands B2 (blue) to B11 (TIRS-2). Calculating the median to create the
mosaics reduced the image pixel values. In addition to the reflectance bands, LST data and
data derived from SRTM were used.

The mosaics were grouped into three cycles, with biennial and annual periods, accord-
ing to the phenological phases of plant development (positive and negative), as shown
in Table 2. The following filters were used: dates (annual and biennial), study area, and
80% cloud mask. The corrections adopted were radiometric and scale corrections and pixel
quality control (QA_PIXEL and QA_RADSAT bands).
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Table 2. Cycles, biennials, years, and periods (2017 to 2023).

Cycles Year Period Biennial

1st cycle

Annual 2017–2018 1 October 2017 a 30 September 2018 Positive

Annual 2018–2019 1 October 2018 a 30 September 2019 Negative

Biennial 2017–2019 1 October 2017 a 30 September 2019 -

2nd cycle

Annual 2019–2020 1 October 2019 a 30 September 2020 Positive

Annual 2020–2021 1 October 2020 a 30 September 2021 Negative

Biennial 2019–2021 1 October 2019 a 30 September 2021 -

3rd cycle

Annual 2021–2022 1 October 2021 a 30 September 2022 Positive

Annual 2022–2023 1 October 2022 a 30 September 2023 Negative

Biennial 2021–2023 1 October 2021 a 30 September 2023 -

In agricultural landscapes, where the composition of vegetation cover resembles
plantations, the sampling strategy and sample collection determine the quality of image
classification [1]. Although the incorporation of spectral information is relevant, this
measure alone does not guarantee the effectiveness of the classifier. Well-structured sample
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collection is essential, since the lack of representative samples for each class can compromise
the quality of classification results [27].

The samples were collected during fieldwork, starting in 2021, and aimed to differen-
tiate coffee-growing areas from other agricultural crops, both perennial and seasonal. In
relation to past periods, samples were created through the visual interpretation of images
and aerial photographs [27]. High-resolution images and historical data from the Mogiana
Region from the Google Earth Pro platform were used to complement the research samples.

The division of classes in the land use and land cover map was designed to facilitate
the discrimination of coffee. It was necessary to separate eucalyptus from agricultural
areas and natural vegetation. Samples from each class were spatially distributed across the
study area and were individually interpreted. The validation of the results depends on
the heterogeneity of the mapped classes, as well as on the sampling strategies and sample
sizes [1]. The number of samples should vary according to the study area [1]; however, it is
recommended to stratify samples by class to limit distortions caused by less prevalent land
cover classes [38].

The samples collected from the seven classes were divided as follows: 70% of the
collected polygons were used to draw random training points and 30% to draw random
validation points, thus ensuring independence between both. This pattern of training and
validation points was maintained for the RF classifier in all sets of mosaics in all years and
used in all classifications.

From the collected samples (658 polygons), training and validation points were gen-
erated for each class. Table 3 shows the classes and Figure 5 shows examples of samples
collected from each class (approximate visualization scale of 1:50,000).

Table 3. Land-use classes.

Class Definition

Agricultural area
Areas with diverse crops, such as perennials (orange trees and vines) and

seasonal crops (corn and sugar cane), as well as areas destined for
agriculture, were collected (109 samples).

Eucalyptus Areas of eucalyptus plantations (separate class for distinction from the
coffee class) (70 samples).

Urban area Urban areas, clusters of rural houses, and other buildings (75 samples).

Vegetation Areas of preserved and/or native vegetation (121 samples).

Coffee Coffee plantation areas (108 samples).

Pasture Areas of pastures without agricultural uses during the analyzed period
(105 samples).

Water Water concentration areas (rivers and lakes) (70 samples).

The main recommendations for assessing accuracy and estimating area [38] were
carried out. The accuracy of the process was analyzed in two ways: (I) a percentage
of total map hits (all classes), and (II) a percentage of coffee omission and commission
errors. In addition to only considering successes, the research evaluated errors to highlight
what was mapped beyond and below expectations. The observation and variation of
errors, mainly those of omission, were important to define the methodological parameters
since the reduction in the percentage of this error indicates a better ability to distinguish
between land uses that are confused with coffee, such as eucalyptus, agricultural areas, and
vegetation. Figure 6 reveals all stages of classification and evaluation of results.
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4. Results

The classification results for Arabica coffee are presented in Tables 4–6. Table 4 shows
the overall accuracy of the two mosaics, according to the annual and biennial periods of
each cycle. Tables 5 and 6 contain the commission and omission errors for coffee during the
annual and biennial periods of each cycle.

Table 4. General, annual and biennial hits, per cycle (%).

Cycles 1st Cycle 2nd Cycle 3rd Cycle

Year Annual
2017–2018

Annual
2018–2019

Biennial
2017–2019

Annual
2019–2020

Annual
2020–2021

Biennial
2019–2021

Annual
2021–2022

Annual
2022–2023

Biennial
2021–2023

Mosaic 1 85.3 85.4 88.8 83.8 81 83.7 80.8 81 81

Mosaic 2 79.6 81.3 85.5 77.3 80.3 78.1 74.8 74.5 74.2

Table 5. Coffee commission errors per cycle (%).

Cycles 1st Cycle 2nd Cycle 3rd Cycle

Year Annual
2017–2018

Annual
2018–2019

Biennial
2017–2019

Annual
2019–2020

Annual
2020–2021

Biennial
2019–2021

Annual
2021–2022

Annual
2022–2023

Biennial
2021–2023

Mosaic 1 35.1 34.7 31.8 33.5 38.6 31.7 34.6 38.8 39.9

Mosaic 2 45.3 42.7 43.2 41.5 51.2 46.2 52.5 50.8 56.5

Table 6. Coffee omission errors per cycle (%).

Cycles 1st Cycle 2nd Cycle 3rd Cycle

Year Annual
2017–2018

Annual
2018–2019

Biennial
2017–2019

Annual
2019–2020

Annual
2020–2021

Biennial
2019–2021

Annual
2021–2022

Annual
2022–2023

Biennial
2021–2023

Mosaic 1 25.2 23.8 22 30.1 32.2 25.8 43.7 32.2 45.3

Mosaic 2 50.9 35.1 36.7 26.4 38.5 25.7 46.4 35.4 52.4

The results of the supervised classification of Arabica coffee are summarized in Table 7.
The data show the general accuracy of the classification of the seven land-use classes
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and the errors of commission and omission obtained in each cycle in the biennial and
annual periods.

Table 7. Results of biennial and annual mosaics (%).

Cycles Year General Hits
(All Classes)

Commission
Errors (Coffee)

Omission
Errors (Coffee)

1st cycle

Annual 2017–2018 85.3 35.1 25.2

Annual 2018–2019 85.4 34.7 23.8

Biennial 2017–2019 88.8 31.8 22.0

2nd cycle

Annual 2019–2020 83.8 33.5 30.1

Annual 2020–2021 81.0 38.6 32.2

Biennial 2019–2021 83.7 31.7 25.8

3rd cycle

Annual 2021–2022 80.8 34.6 43.7

Annual 2022–2023 81.0 38.8 32.2

Biennial 2021–2023 81.0 39.9 45.3

Figure 7 shows the general accuracy of the classification of the seven types of land
use (%) of the three annual and biennial cycles (2017–2019; 2019–2021; 2021–2023), starting
in October and ending in September. Figure 8 shows the errors (%) of omission and
commission for coffee from the same period.
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Maps of all classes and coffee from the annual and biannual periods are shown in
Figures 9 and 10. The results reveal discrepancies in the mappings, especially in recent
years. Figure 11 highlights the best results observed in the 1st biennial cycle (2017–2019),
both for the classification of the seven land-use classes (left) and for Arabica coffee (right).
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In Figure 11, a more relevant concentration of coffee plantations can be seen in the
eastern portion of the study area, where the relief is higher and has steeper slopes. To
the south of the region, spectral confusions were more evident with vegetation, and,
to the north, the errors were associated with other types of agricultural use since these
municipalities (São João da Boa Vista, Casa Branca, and Mococa) have a greater diversity of
crops (perennial and temporary).
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5. Discussion

The results confirm the importance of bienniality in coffee classification. The time
interval allowed for the comparison of results in three complete biennial periods and
showed coherence with the plant’s development cycle. This period can be extended in
future research, with observations of cycles before 2017 and after 2023. In this way, the
understanding of bienniality and data validation should become even more important.

The composition of the mosaics and the choice of input data were decisive for the
quality of the classification of coffee areas. The integration of additional data [1,3,4,6,8], as
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well as the adoption of strategies to map the different stages and characteristics of coffee,
such as age [3], shaded cultivation [4], different sizes of producing areas and topography
can increase the quality of the classification [6,7]. In this context, one of the contributions of
this research was to highlight the use of individual spectral bands, different from previous
works, which emphasized the RGB (B4, B3 and B2), NIR (B5) and SWIR (B6 and B7)
bands [3,6,7].

Although the discussion about the division of mosaics into seasonal periods is a
consolidated methodological approach [3–8,10,11,27], another contribution of this research
was the composition of mosaics every two years, when there is complete development of
the plant cycle. The results demonstrate that the use of the biennial cycle, instead of the
annual cycle, increased the accuracy of classifying coffee planting areas.

5.1. Data Evaluation

The Landsat-8 bands contributed to the multitemporal composition of the mosaics.
The availability of data was very important to analyze the last three coffee production
cycles, even if the resolution and periodicity of the images are lower than those of Sentinel.
In addition to the individual bands, it was found that the integrated use of KT (Brightness,
Green, Humidity) data, still little discussed in coffee mapping [4,15], presented great
potential, as they helped to discriminate coffee from different seasonal and perennial crops
observed at the study site.

SRTM data, whose use is consolidated and is usually used in land-use mapping [1],
contributed to coffee mapping, helping to distinguish coffee trees from higher areas and
with more significant slopes. Integrating SRTM data into multi-temporal mosaics reduces
omission and commission errors in the coffee class [4].

The LST, integrated with the Landsat-8 bands, KT data, and SRTM, contributed to the
classification process. This combination improved the discrimination of coffee areas, as it
detected subtle changes in the plant, especially in annual periods, when the phenological
variation of coffee trees was more significant.

The Normalized Difference Vegetation Index (NDVI) is frequently used to evaluate
the spectral response of various crops [3,6,8,11] and presented better results compared to
the EVI, NDWI and SAVI indices [1]. The NDVI provided by the Copernicus Global Land
Service was considered a relevant source of information to estimate and predict coffee
productivity. However, the phenological variables were not evaluated by its authors [39].
Another study used PlanetScope orbital images and productivity data, which resulted in a
direct correlation between NDVI and productivity in three coffee harvests. However, the
best NDVI performance occurred in specific periods, after harvest, and during the plants’
dormancy phase (July and August) [27].

When evaluating the research results, it was found that the NDVI was not very useful
for accurately classifying coffee in annual and biennial evaluations. Despite improving
the overall accuracy of mosaics containing all classes by up to 1%, the NDVI increased
errors specifically for the coffee class. Commission and omission errors for coffee increased
by an average of 1.0% and 1.5%, respectively. As a result, NDVI was excluded from the
composition of the mosaics due to the asymmetry between the general hits and the errors
it produced.

The increase in NDVI errors may have been influenced by factors unrelated to vege-
tation, such as the presence of exposed soil or water [27]. Furthermore, it is believed that
the presence of different types of trees, such as eucalyptus, native vegetation, and coffee,
which show considerable variation in leaf density, may have reduced the effectiveness of
this index [29]. One possible approach to mitigate these issues is to combine it with the EVI
(Enhanced Vegetation Index) [8,40] and SAVI (Soil Adjusted Vegetation Index) [8,27], which
can improve accuracy in areas with exposed soil and dense vegetation. The use of NDVI can
be enhanced by utilizing the Red-Edge band (B11 and B12) of Sentinel-2 instead of the NIR
band, generating the NDVIre (Normalized Difference Vegetation Index Red-edge) or NDRE
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(Normalized Difference Red-Edge) [27]. This index composition improved performance in
mapping and distinguishing six different crops at more detailed spatial scales [41].

The use of CHIRPS data can contribute to agricultural mapping, especially due to its
spatial scale of 5 km and the long time series (since 1981) [42]. However, CHIRPS data
depend on meteorological information and, therefore, on the density and distribution of
meteorological stations. Another aspect that can limit the accuracy of CHIRPS data is the
morphological variation of the relief (irregular topography). It is also necessary to consider
the resolution of the images in the integration process with CHIRPS data, as the number
of errors can increase when differentiating between coffee grown in the shade and native
vegetation [5]. For agricultural applications, integrating CHIRPS data with other climate
sources can increase the quality of classifications [5,42].

The use of RF produced good classification results. However, there is a need to
consider the distortions and errors generated by the sensitivity of this classifier to spa-
tial autocorrelation in the training samples. This sensitivity highlights the challenges of
classifying coffee areas with high precision [1,3,4,8].

There are inherent limitations to the spatial resolution of Landsat-8 images, but, on
the other hand, its temporal resolution can be considered advantageous in evaluations of
longer periods. Sentinel-2 images are often incorporated into supervised classifications
to minimize this Landsat spatial resolution issue [5,8,43]. This incorporation should be
evaluated in the future, as studies consider that Sentinel-2’s Red-Edge bands (B5, B6 and
B7) can be used to detect small changes in leaf chlorophyll and improve the classification
of heterogeneous landscapes [28]. The SWIR bands, despite having similar lengths on
Landsat-8 (B6 and B7) and Sentinel-2 (B11 and B12), can be very useful for detecting leaf
water content [28]. SWIR data contributed to distinguishing crops and pastures, improving
the classification of agricultural areas [28].

The occurrence of clouds, especially in summer, can generate spectral noise in areas not
treated by atmospheric corrections and cloud masks. One of the most adopted alternatives
to reduce this problem is the combination of data from SAR sensors, both with Landsat-8
and Sentinel-2 images [44–46]. By having longer wavelengths, the Sentinel-1 SAR can
penetrate clouds and, when combined with other optical sensors, can fill data gaps arising
from cloud cover and maintain temporal resolution. Even so, there are limitations associated
with steep topography because of the displacement of the sensor’s backscatter signal [1].

Discussions about the phenology of crop types, such as grains, cereals, legumes, and
perennial plantings, are common, as they assist in agricultural monitoring, ecological
studies, and the assessment of climate change [47]. In the specific case of coffee, the
discussions have addressed the concept of seasonality [4,8,11], that is, adapting mapping
to the different growth phases of the plant and associating them with distinct climatic
variations (dry, wet, warm periods). However, the inclusion of the concept of bienniality
has been less developed. Remote sensing techniques have been used to evaluate the
influence of biennial production cycles on coffee productivity [15,25]. Nevertheless, the
integration of phenology (plant development), seasonality (initial and final months of the
phenological phases), and the concept of bienniality (a production cycle that is completed
every two years) had not yet been applied to map Arabica coffee areas.

Considering that bienniality is a recurring phenomenon in different types of planta-
tions, especially perennial ones, it is believed that future research could explore its use in
other agricultural crops. There are investigations into the influence of bienniality on the
development of perennial crops, such as raspberries [16], and on cocoa mapping, aiming to
improve the accuracy of classifications [48,49].

It is possible to reproduce the methodology of this research in other Arabica-coffee-
growing areas, particularly in countries such as Colombia, Ethiopia and Costa Rica [1]. In
Brazil, the methodology can be used throughout the southeast region, as coffee plantations
have similar characteristics (phenology, seasonality and bienniality). To classify Robusta-
type coffees, it is suggested to use annual mosaics instead of biennial ones. Conilon coffee,
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a Robusta variety, which predominates in the state of Espírito Santo, is not characterized by
biennial production [24].

It is believed that the trend of future research will be to further expand the integration
of input data, aiming to distinguish with greater precision the spectral characteristics of
Arabica coffee in relation to other types of vegetation and nearby plantations. To this end, it
is considered that the use of Sentinel-2 images and texture data from the SAR sensor, from
Sentinel 1, can improve the distinction of coffee trees, with the use of mosaics after 2018,
especially in small areas of production, in addition to incorporating climate data and other
indices that can increase the accuracy of mapping.

5.2. Map Evaluation

When observing the entire period, it was found that the results in the 1st cycle
(2017–2019) were the best, especially in terms of general successes. Regarding coffee
errors, the 1st cycle showed a decrease in omission errors (22%). The results of the 3rd cycle
(2021–2023), on the other hand, were less efficient in the general classification, especially in
the annual period 2021–2022 (80.8%). Coffee classification errors from the 3rd cycle also
stood out negatively, in the annual and biennial periods. The smallest errors were 32.2%
omission and 34.6% commission. This fact can be related to circumstances exogenous to
processing, such as production losses, in the harvest and planted areas, caused by climate
variations.

The climatic interferences of the 3rd cycle [24] and observed in the reduction in
productivity, reveal how the mapping is susceptible to external variables, mainly rain, and
temperature, which alter the seasonal pattern of the plant. In the biennial period of the
1st cycle, in which climatic conditions remained within the expected standard, the overall
classification accuracy percentage was the best of the entire evaluated period (88.8%).

Unfavorable weather conditions changed the areas planted with coffee during the
research period. The occurrence of frosts and droughts, which caused the reduction of
coffee plantations, and the severe pruning carried out by farmers, which aimed to save the
plants or improve the productivity of the next harvests, influenced these transformations.
As a result, the classification process was affected, and errors of commission and omission
increased. This increase may also be related to the vegetative loss of the coffee plant,
especially in the biennial assessment from 2021 to 2023, whose omission errors reached
45.3%, the highest recorded in the period.

These findings corroborate the considerations of [4] on the relationship between
seasonal cycles and climate issues. For the authors, tree vegetation, such as coffee, presents
sensitive changes in spectral responses in dry and humid periods. Therefore, the climatic
variations may have contributed significantly to the increase in classification errors.

When comparing the biennial and annual periods with the general classification hits
(Figures 9 and 10), it was not possible to observe trends or patterns: in the 1st cycle, the
highest hits were concentrated in the biennial period 2017–2019 (88.8%); in the 2nd cycle,
both the annual period 2019–2020 and the biennial period 2019–2021 presented very similar
results (83.8% and 83.7%); in the 3rd cycle, both the annual period 2021–2022 and the
biennial period 2021–2023 had an overall accuracy rate of 81%.

However, when comparing the results of the biennial and annual coffee periods, the
biennial percentages were more expressive, with fewer errors of commission and omission.
Regarding commission errors, there was a reduction of approximately 3% from the annual
period to the biennial period in the 1st cycle. In the 2nd cycle, there was a reduction of
almost 7% in commission error from the annual period 2020–2021 to the biennial period
2019–2021. Commission errors also reduced from annual to biannual periods: in the 1st
cycle, around 3% and, in the 2nd cycle, around 6%.

In the 3rd cycle, there were more significant errors compared to the other cycles, and
they did not exhibit similar characteristics. The lowest commission error was recorded in
the 2021–2022 annual period (34.6%), while the lowest omission error was observed in the
2022–2023 annual period (32.2%).
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The average number of correct answers for the general classification was 82.9% for
annual cycles and 84.5% for biennial cycles. In coffee accuracy errors, the average com-
mission error for annual periods was 35.9%, and, for biennial cycles, it was 34.5%. In the
omission errors, the average for annual cycles was 31.2% and 31% for biennial cycles.

Coffee plantations worldwide vary in the surrounding land cover and depending on
the type of cultivation itself, whether in the sun or shaded [1]. They also vary depending
on the types of management, such as irrigation, the existence of areas with windbreaks,
the size of the property, and spacing. As these variables influence the classification [36], it
was observed that Arabica coffee crops in full sun were better discriminated against when
compared to crops close to bordering areas with another class of land-use cover.

In the periods evaluated, errors were also motivated by the diversity of perennial
plants (vegetation, agriculture, and eucalyptus). Plant height and age affect processing
accuracy [3,8]. Young and recently planted coffee trees were mistakenly assigned as
other land-use classes, such as pasture, agriculture, and urban areas. Evaluating and
distinguishing the age of the plant can contribute to reducing classification errors since
the spectral signature of the coffee tree changes according to its age, as well as changing
according to its phenological phase [1,8,15].

Furthermore, the significance of biennial mosaics in classifying Arabica coffee can
be indirectly inferred from the findings of other studies. Previous studies in Central
America and Vietnam have shown that models for predicting coffee productivity have
been improved by including flowering date [50–52], as monitoring coffee phenological
development and predicting coffee productivity is a complex activity, given the plant’s
biannual cultivation cycle [53].

6. Conclusions

The effects of biennial cycles on the supervised classification of Arabica coffee in the
southeast region of the State of São Paulo, Brazil, from 2017 to 2023 were examined. The
results indicate that the classification of seasonal multi-temporal mosaics improved the
level of accuracy of the process when considering the phases of phenological aspects of
plant development (from October to September).

The classification accuracy revealed an increase when complete biennial cycles were
processed. The most relevant biennial classifications showed 88.8% accuracy in land-use
classes and 78% for coffee, both in the 1st cycle (2017–2019). The mosaics with bands B2
to B11, from Landsat-8, associated with KT (Brightness, Greenness, Wetness) information,
SRTM (elevation, aspect, slope), and LST data provided the best arrangement for the
general accuracy of the biennial classifications, as well as annual. The classification carried
out on a shared access platform showed the great potential for analyzing temporal mosaics
of coffee.
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