Tree Species Classification from UAV Canopy Images with Deep Learning Models
Abstract
:1. Introduction
Author | Task Types * | Location | #Species | Acquisition Time | Models | Results | GSD (cm/pixel) |
---|---|---|---|---|---|---|---|
Karrenborn et al. (2019) [35] | SS | Chile | 2 | Fall | U-net | 84% | 3 |
Natesan et al. (2019) [15] | CL | Canada | 2 | Summer | ResNet50 | 80% on two pines | 1, 2, 4 |
Santos et al. (2019) [24] | DT | Brazil | 1 | Winter, Spring, Summer | Faster RCNN, YOLOv3, RetinaNet | Urban tree 92% | 0.82 |
Natesan et al. (2020) [19] | CL | Canada | 5 | Summer, Fall | DenseNet | 5 coniferous trees 84% | 2.5 |
Ferreira et al. (2020) [36] | SS | Brazil | 3 | Summer | ResNet18 in DeepLabv3+ | 3 species of Palm trees 78.6–96.6% | 4 |
Schiefer et al. (2020) [11] | SS | Germany | 9 | Fall, Winter | U-net | Average F1-score 0.73 | 2 |
Osco et al. (2021) [29] | DT | Brazil | 2 | Summer, Fall | CNN | Plantation detection and counting 87.6% | 1.55–2.28 |
Martins et al. (2021) [37] | SS | Brazil | 9 | Spring | DeepLabv3+, ResNet | F1-score of 0.79 on urban trees | 15 |
Veras et al. (2022) [16] | SS | Brazil | 8 | Summer, Fall, Winter, Spring | ResNet, DeepLab | 90.50% | 4 |
Onishi et al. (2022) [20] | SS | Japan | 58 | Summer, Fall | EfficientNet B7 | Kappa: 0.97 and 0.72, species 0.47 on 26 species | 2.74 |
Wang et al. (2023) [38] | CL | China | 5 | Summer | DenseNetBL | Overall accuracy 0.90 | 5 |
This study | CL | United States | 8 | Summer, Fall | ResNet18, DenseNet, EfficientNetB0, Vision Transformer, YOLOv5 | Average F1-scores 0.93 | 1.51–2.01, 0.77 |
2. Methods
2.1. Data Acquisition
2.2. Label Generation
2.3. Model Explored
2.4. Model Training Setting
2.5. Transferability Experiments
2.6. Model Accuracy Assessment
3. Results
3.1. Model Performance by Seasons and Species
3.2. Transferability of Models across Two Seasons
4. Discussion
4.1. Performance among Different Models
4.2. Seasonal Difference for Species Classification
4.3. Model Transferablity
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Christin, S.; Hervet, É.; Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 2019, 10, 1632–1644. [Google Scholar] [CrossRef]
- Martin, M.; Newman, S.D.; Aber, J.D.; Congalton, R.G. Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ. 1998, 65, 249–254. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258–270. [Google Scholar] [CrossRef]
- Lu, X.; Liu, G.; Ning, S.; Su, Z.; He, Z. Tree Species Classification based on Airborne Lidar and Hyperspectral Data. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2787–2790. [Google Scholar] [CrossRef]
- Roffey, M.; Wang, J. Evaluation of Features Derived from High-Resolution Multispectral Imagery and LiDAR Data for Object-Based Support Vector Machine Classification of Tree Species. Can. J. Remote Sens. 2020, 46, 473–488. [Google Scholar] [CrossRef]
- Mäyrä, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen, S.; Kumpula, T.; et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 2021, 256, 112322. [Google Scholar] [CrossRef]
- Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data. Remote Sens. Environ. 2022, 280, 113143. [Google Scholar] [CrossRef]
- Liu, X.; Frey, J.; Munteanu, C.; Still, N.; Koch, B. Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data. Remote Sens. Environ. 2023, 292, 113576. [Google Scholar] [CrossRef]
- Murray, B.A.; Coops, N.C.; Winiwarter, L.; White, J.C.; Dick, A.; Barbeito, I.; Ragab, A. Estimating tree species composition from airborne laser scanning data using point-based deep learning models. ISPRS J. Photogramm. Remote Sens. 2024, 207, 282–297. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215. [Google Scholar]
- Hartling, S.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Carron, J. Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning. Sensors 2019, 19, 1284. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ferreira, M.P.; Lotte, R.G.; D’Elia, F.V.; Stamatopoulos, C.; Kim, D.H.; Benjamin, A.R. Accurate mapping of Brazil nut trees (Bertholletia excelsa) in Amazonian forests using WorldView-3 satellite images and convolutional neural networks. Ecol. Inform. 2021, 63, 101302. [Google Scholar] [CrossRef]
- Natesan, S.; Armenakis, C.; Vepakomma, U. Resnet-based Tree Species Classification using UAV Images. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 475–481. [Google Scholar] [CrossRef]
- Veras, H.F.P.; Ferreira, M.P.; da Cunha Neto, E.M.; Figueiredo, E.O.; Dalla Corte, A.P.; Sanquetta, C.R. Fusing multi-season UAS images with convolutional neural networks to map tree species in Amazonian forests. Ecol. Inform. 2022, 71, 101815. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Jing, L.; Wang, P. Individual Tree Species Classification Based on Convolutional Neural Networks and Multitemporal High-Resolution Remote Sensing Images. Sensors 2022, 22, 3157. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Natesan, S.; Armenakis, C.; Vepakomma, U. Individual tree species identification using Dense Convolutional Network (DenseNet) on multitemporal RGB images from UAV. J. Unmanned Veh. Syst. 2020, 8, 310–333. [Google Scholar] [CrossRef]
- Onishi, M.; Watanabe, S.; Nakashima, T.; Ise, T. Practicality and Robustness of Tree Species Identification Using UAV RGB Image and Deep Learning in Temperate Forest in Japan. Remote Sens. 2022, 14, 1710. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, USA, 7–12 December 2015. [Google Scholar]
- Santos, A.A.d.; Marcato Junior, J.; Araújo, M.S.; Di Martini, D.R.; Tetila, E.C.; Siqueira, H.L.; Aoki, C.; Eltner, A.; Matsubara, E.T.; Pistori, H.; et al. Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs. Sensors 2019, 19, 3595. [Google Scholar] [CrossRef]
- Beloiu, M.; Heinzmann, L.; Rehush, N.; Gessler, A.; Griess, V.C. Individual tree-crown detection and species identification in heterogeneous forests using aerial RGB imagery and deep learning. Remote Sens. 2023, 15, 1463. [Google Scholar] [CrossRef]
- Hao, Z.; Lin, L.; Post, C.J.; Mikhailova, E.A.; Li, M.; Chen, Y.; Yu, K.; Liu, J. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN). ISPRS J. Photogramm. Remote Sens. 2021, 178, 112–123. [Google Scholar] [CrossRef]
- Reder, S.; Mund, J.P.; Albert, N.; Waßermann, L.; Miranda, L. Detection of Windthrown Tree Stems on UAV-Orthomosaics Using U-Net Convolutional Networks. Remote Sens. 2021, 14, 75. [Google Scholar] [CrossRef]
- Onishi, M.; Ise, T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci. Rep. 2021, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Osco, L.P.; de Arruda, M.d.S.; Gonçalves, D.N.; Dias, A.; Batistoti, J.; de Souza, M.; Gomes, F.D.G.; Ramos, A.P.M.; de Castro Jorge, L.A.; Liesenberg, V.; et al. A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 1–17. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Maurício, J.; Domingues, I.; Bernardino, J. Comparing vision transformers and convolutional neural networks for image classification: A literature review. Appl. Sci. 2023, 13, 5521. [Google Scholar] [CrossRef]
- Jiang, J.; Shu, Y.; Wang, J.; Long, M. Transferability in deep learning: A survey. arXiv 2022, arXiv:2201.05867. [Google Scholar]
- Verhulst, M.; Heremans, S.; Blaschko, M.B.; Somers, B. Temporal transferability of tree species classification in temperate forests with Sentinel-2 time series. Remote Sens. 2024, 16, 2653. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Fassnacht, F.E. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep. 2019, 9, 17656. [Google Scholar] [CrossRef]
- Ferreira, M.P.; de Almeida, D.R.A.; de Almeida Papa, D.; Minervino, J.B.S.; Veras, H.F.P.; Formighieri, A.; Santos, C.A.N.; Ferreira, M.A.D.; Figueiredo, E.O.; Ferreira, E.J.L. Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. For. Ecol. Manag. 2020, 475, 118397. [Google Scholar] [CrossRef]
- Martins, G.B.; La Rosa, L.E.C.; Happ, P.N.; Coelho Filho, L.C.T.; Santos, C.J.F.; Feitosa, R.Q.; Ferreira, M.P. Deep learning-based tree species mapping in a highly diverse tropical urban setting. Urban For. Urban Green. 2021, 64, 127241. [Google Scholar] [CrossRef]
- Wang, N.; Pu, T.; Zhang, Y.; Liu, Y.; Zhang, Z. More appropriate DenseNetBL classifier for small sample tree species classification using UAV-based RGB imagery. Heliyon 2023, 9, e20467. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, M.; Malyuk, M.; Holmanyuk, A.; Liubimov, N. Label Studio: Data Labeling Software, 2020–2022. Open Source Software. Available online: https://github.com/heartexlabs/label-studio (accessed on 2 October 2022).
- Jocher, G.; Stoken, A.; Borovec, J.; NanoCode012.; ChristopherSTAN.; Changyu, L.; Laughing; tkianai; Hogan, A.; lorenzomammana; et al. ultralytics/yolov5: V3.1—Bug Fixes and Performance Improvements. Available online: https://zenodo.org/records/4154370 (accessed on 15 January 2023).
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8. 2023. Available online: https://github.com/ultralytics/ultralytics/blob/main/docs/en/models/yolov8.md (accessed on 15 May 2023).
- Masum, M.I.; Sarwat, A.; Riggs, H.; Boymelgreen, A.; Dey, P. YOLOv5 vs. YOLOv8 in Marine Fisheries: Balancing Class Detection and Instance Count. arXiv 2024, arXiv:2405.02312. [Google Scholar]
- Hussain, M. YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision. arXiv 2024, arXiv:2407.02988. [Google Scholar]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do vision transformers see like convolutional neural networks? Adv. Neural Inf. Process. Syst. 2021, 34, 12116–12128. [Google Scholar]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. arXiv 2015, arXiv:1405.0312. [Google Scholar]
- Zhou, Q.; Zhu, W.; Li, F.; Yuan, M.; Zheng, L.; Liu, X. Transfer learning of the ResNet-18 and DenseNet-121 model used to diagnose intracranial hemorrhage in CT scanning. Curr. Pharm. Des. 2022, 28, 287–295. [Google Scholar] [CrossRef]
- Dey, B.; Ahmed, R.; Ferdous, J.; Haque, M.M.U.; Khatun, R.; Hasan, F.E.; Uddin, S.N. Automated plant species identification from the stomata images using deep neural network: A study of selected mangrove and freshwater swamp forest tree species of Bangladesh. Ecol. Inform. 2023, 75, 102128. [Google Scholar] [CrossRef]
- Kansal, K.; Chandra, T.B.; Singh, A. ResNet-50 vs. EfficientNet-B0: Multi-Centric Classification of Various Lung Abnormalities Using Deep Learning. Procedia Comput. Sci. 2024, 235, 70–80. [Google Scholar] [CrossRef]
- Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D.; Unterthiner, T.; Veit, A. Understanding robustness of transformers for image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10231–10241. [Google Scholar]
- Lu, K.; Xu, Y.; Yang, Y. Comparison of the potential between transformer and CNN in image classification. In Proceedings of the ICMLCA 2021—2nd International Conference on Machine Learning and Computer Application, Shenyang, China, 17–19 December 2021; pp. 1–6. [Google Scholar]
- Modzelewska, A.; Kamińska, A.; Fassnacht, F.E.; Stereńczak, K. Multitemporal hyperspectral tree species classification in the Białowieża Forest World Heritage site. For. Int. J. For. Res. 2021, 94, 464–476. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S.; Yu, Q. Assessing the potential of multi-seasonal high resolution Pléiades satellite imagery for mapping urban tree species. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 144–158. [Google Scholar]
- Hesketh, M.; Sánchez-Azofeifa, G.A. The effect of seasonal spectral variation on species classification in the Panamanian tropical forest. Remote Sens. Environ. 2012, 118, 73–82. [Google Scholar] [CrossRef]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sens. Environ. 2021, 267, 112743. [Google Scholar] [CrossRef]
Dataset | Date | Flight Information | Description |
---|---|---|---|
Summer | 18 August 2021 | Altitude at 120 m, sidelap 85%, overlap 85%, DJI ZENMUSE P1 | Fully green canopies |
Fall | 2 November 2021 | Same as above | Mixed canopies with different coloration, leaf-on and off |
Common Name | Species Name | Summer | Fall |
---|---|---|---|
Black cherry | Prunus serotina | 585 | 548 |
Butternut | Juglans cinerea | 358 | 1002 |
American chestnut | Castanea dentata | 44 | 121 |
Northern red oak | Quercus rubra | 739 | 1954 |
Red pine | Pinus resinosa | 192 | 102 |
Black walnut | J. nigra | 585 | 1840 |
White oak | Q. alba | 119 | 96 |
White pine | P. strobus | 200 | 317 |
Total | 2819 | 5980 |
Dataset | ResNet18 | DenseNet | EfficientNet-B0 | ViT | YOLOv5 | All | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 | Avg F1 * | |
Summer | ||||||||||||||||
Black cherry | 0.97 | 0.96 | 0.97 | 0.99 | 0.97 | 0.98 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.98 | 0.99 | 0.98 | 0.98 |
Butternut | 0.80 | 0.94 | 0.86 | 0.88 | 0.92 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.91 | 0.99 | 0.95 | 0.94 |
American chestnut | 0.83 | 0.67 | 0.74 | 0.88 | 0.78 | 0.82 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.89 | 0.89 | 0.89 | 0.89 |
Northern red oak | 0.98 | 0.97 | 0.98 | 0.98 | 0.97 | 0.97 | 1.00 | 0.99 | 0.996 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 0.99 |
Red pine | 1.00 | 0.97 | 0.99 | 0.89 | 1.00 | 0.94 | 0.97 | 0.97 | 0.97 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 0.98 |
Black walnut | 0.95 | 0.97 | 0.96 | 0.97 | 0.96 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 |
White oak | 0.92 | 0.92 | 0.92 | 0.84 | 0.88 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.96 | 0.96 | 0.96 | 0.95 |
White pine | 0.97 | 0.98 | 0.97 | 1.00 | 0.95 | 0.97 | 0.97 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.75 | 0.86 | 0.96 |
Average | 0.93 | 0.92 | 0.92 | 0.93 | 0.93 | 0.93 | 0.99 | 0.99 | 0.99 | 1.00 | 1.00 | 1.00 | 0.97 | 0.95 | 0.95 | 0.96 |
Fall | ||||||||||||||||
Black cherry | 0.78 | 0.64 | 0.70 | 0.69 | 0.88 | 0.77 | 0.91 | 0.99 | 0.95 | 0.98 | 0.95 | 0.97 | 0.94 | 0.99 | 0.96 | 0.87 |
Butternut | 0.79 | 0.95 | 0.86 | 0.88 | 0.93 | 0.90 | 1.00 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.95 |
American chestnut | 0.76 | 0.92 | 0.83 | 0.79 | 0.79 | 0.79 | 0.90 | 0.95 | 0.92 | 1.00 | 0.95 | 0.97 | 0.96 | 0.92 | 0.94 | 0.89 |
Northern red oak | 0.89 | 0.99 | 0.94 | 0.92 | 0.96 | 0.94 | 0.97 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | 1.00 | 1.00 | 0.97 |
Red pine | 0.95 | 1.00 | 0.98 | 0.83 | 0.90 | 0.86 | 0.94 | 0.94 | 0.94 | 1.00 | 0.94 | 0.97 | 1.00 | 0.70 | 0.82 | 0.91 |
Black walnut | 0.94 | 0.79 | 0.86 | 0.93 | 0.79 | 0.85 | 1.00 | 0.96 | 0.98 | 0.97 | 0.99 | 0.98 | 1.00 | 0.95 | 0.97 | 0.93 |
White oak | 0.82 | 0.45 | 0.58 | 0.63 | 0.60 | 0.62 | 0.94 | 1.00 | 0.97 | 0.93 | 0.87 | 0.90 | 0.81 | 0.85 | 0.83 | 0.78 |
White pine | 0.97 | 0.98 | 0.98 | 0.97 | 0.97 | 0.97 | 0.98 | 0.96 | 0.97 | 0.98 | 0.98 | 0.98 | 0.77 | 0.98 | 0.86 | 0.95 |
Average | 0.86 | 0.84 | 0.84 | 0.83 | 0.85 | 0.84 | 0.95 | 0.97 | 0.96 | 0.98 | 0.96 | 0.97 | 0.93 | 0.92 | 0.92 | 0.91 |
Model | Dataset | Summer | Fall |
---|---|---|---|
ResNet18 | Summer | - | 0.40 |
Fall | 0.17 | - | |
ViT | Summer | - | 0.42 |
Fall | 0.39 | - |
Species | Precision | Recall | F1-Score |
---|---|---|---|
Summer model | Fall images | ||
Black cherry | 0.106 | 0.182 | 0.134 |
Butternut | 0.238 | 0.194 | 0.214 |
American chestnut | 0.053 | 0.042 | 0.047 |
Northern red oak | 0.763 | 0.936 | 0.840 |
Red pine | - | - | - |
Black walnut | 0.308 | 0.043 | 0.076 |
White oak | - | - | - |
White pine | 0.661 | 0.578 | 0.617 |
Fall model | Summer images | ||
Black cherry | 0.333 | 0.009 | 0.017 |
Butternut | - | - | - |
American chestnut | - | - | - |
Northern red oak | 0.873 | 0.324 | 0.473 |
Red pine | - | - | - |
Black walnut | 0.042 | 0.009 | 0.014 |
White oak | 0.400 | 0.250 | 0.308 |
White pine | 0.133 | 1.000 | 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Ou, B.; Meng, K.; Yang, B.; Carpenter, J.; Jung, J.; Fei, S. Tree Species Classification from UAV Canopy Images with Deep Learning Models. Remote Sens. 2024, 16, 3836. https://doi.org/10.3390/rs16203836
Huang Y, Ou B, Meng K, Yang B, Carpenter J, Jung J, Fei S. Tree Species Classification from UAV Canopy Images with Deep Learning Models. Remote Sensing. 2024; 16(20):3836. https://doi.org/10.3390/rs16203836
Chicago/Turabian StyleHuang, Yunmei, Botong Ou, Kexin Meng, Baijian Yang, Joshua Carpenter, Jinha Jung, and Songlin Fei. 2024. "Tree Species Classification from UAV Canopy Images with Deep Learning Models" Remote Sensing 16, no. 20: 3836. https://doi.org/10.3390/rs16203836
APA StyleHuang, Y., Ou, B., Meng, K., Yang, B., Carpenter, J., Jung, J., & Fei, S. (2024). Tree Species Classification from UAV Canopy Images with Deep Learning Models. Remote Sensing, 16(20), 3836. https://doi.org/10.3390/rs16203836