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Abstract: Forests play a critical role in the provision of ecosystem services, and understanding
their compositions, especially tree species, is essential for effective ecosystem management and
conservation. However, identifying tree species is challenging and time-consuming. Recently,
unmanned aerial vehicles (UAVs) equipped with various sensors have emerged as a promising
technology for species identification due to their relatively low cost and high spatial and temporal
resolutions. Moreover, the advancement of various deep learning models makes remote sensing
based species identification more a reality. However, three questions remain to be answered: first,
which of the state-of-the-art models performs best for this task; second, which is the optimal season
for tree species classification in a temperate forest; and third, whether a model trained in one season
can be effectively transferred to another season. To address these questions, we focus on tree species
classification by using five state-of-the-art deep learning models on UAV-based RGB images, and we
explored the model transferability between seasons. Utilizing UAV images taken in the summer and
fall, we captured 8799 crown images of eight species. We trained five models using summer and fall
images and compared their performance on the same dataset. All models achieved high performances
in species classification, with the best performance on summer images, with an average F1-score was
0.96. For the fall images, Vision Transformer (ViT), EfficientNetB0, and YOLOv5 achieved F1-scores
greater than 0.9, outperforming both ResNet18 and DenseNet. On average, across the two seasons,
ViT achieved the best accuracy. This study demonstrates the capability of deep learning models in
forest inventory, particularly for tree species classification. While the choice of certain models may
not significantly affect performance when using summer images, the advanced models prove to be a
better choice for fall images. Given the limited transferability from one season to another, further
research is required to overcome the challenge associated with transferability across seasons.

Keywords: species classification; UAV; RGB; deep learning; temperate forest; supervised learning

1. Introduction

Forest, as a significant component of terrestrial ecosystems, provides critical ecosystem
services such as food, water, and wood products. Understanding forest compositions,
especially regarding tree species, is essential for forest management and conservation.
Recently, machine learning algorithms have advanced rapidly. In light of this, increasing
attention is being paid to utilizing them with various data to identify species [1]. Due to its
effectiveness in cost and labor, remote sensing data such as hyperspectral, multispectral,
and RGB images are commonly used in tree species classification. Using hyperspectral
and multispectral images to identify tree species can achieve accuracies of about 70–90%,
depending on the number of species and type of forests studied [2–10]. Despite their
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effectiveness, the collection and processing of high resolution hyperspectral and multi-
spectral images are costly and require spectral selection. In contrast, the cost of acquiring
RGB images using unmanned aerial vehicles (UAVs) has significantly decreased in recent
years due to improvements in consumer-grade UAV technology. UAV-based RGB sensors
have gained increasing attention and applying these low-cost RGB sensors can address the
practical challenges of data collection in resource-constrained situations, where access to
hyperspectral and multispectral sensors may not always be feasible. High spatial resolution
RGB images allow for a detailed analysis of individual trees and for the identification of
subtle morphological features, such as shapes of the canopy and leaves, or colors of the
flowers. As a result, UAV-based RGB images have become a more attractive option for
identifying tree species, quantifying tree populations, and other forestry applications [11].

To identify tree species, many algorithms have been developed. Applications of
deep learning models on UAV-based RGB images have become the most promising and
practical methods to automate this procedure [12]. Four types of tasks have been explored
for tree species recognition with deep learning models including classification, detection,
semantic segmentation, and instance segmentation. Tree species classification is used to
determine what species are present in an image. Tree detection focuses on localizing trees
or determining what species are detected. Semantic segmentation aims to detect trees or
species at the pixel level and instance segmentation of forests can achieve segmenting each
individual tree with species information. For tree species classification applications, the
Residual network (ResNet) and its variants are most commonly used [13–16]. Other CNN-
based models, such as DenseNet, MaskRCNN, DeepLab++, GoogLeNet, and EfficientNets,
are also popularly applied [11,14,16–21]. For tree detection, several models that detect or
localize individual canopies with bounding boxes are applied, including YOLOs, Faster-
RCNN, and RetainaNet [22–25]. To conduct semantic segmentation of tree canopy images,
U-net, MaskRCNN, and DeepLab+ have been applied to detect live trees and windthrowns
at the pixel level [26,27]. Some studies use self-crafted models for their needs, which
can offer more flexibility but require an extensive dataset to train these models from
scratch [28,29].

Previous studies have demonstrated the potential of applying deep learning algo-
rithms and UAVs for tree species identification. We reviewed 11 recent studies that focused
on the use of UAV-based RGB images for tree species recognition with deep learning
models. In Table 1, we included the type of task, location, number of species, time of data
acquisition, model(s) applied, performance of model(s), and ground sample distance(s)
(GSD). These studies investigated different deep learning models (all CNN-based mod-
els) on images collected from different seasons and regions including tropical, temperate,
and boreal forests. Data were collected at different altitudes (varying from 30 to 150 m),
resulting in GSDs ranging from 0.82 to 15.00 cm. These studies reported overall accuracy
varying from 40% to 92% depending on their images GSD, spatial coverage, number of
species included, and complexity of the forests. However, there is still a lack of comparisons
of the accuracy of species classification among different models, and model accuracy in
temperate forests is relatively low. Notably, the deep neural networks employed have
been limited to CNN-based models [30], with few investigations of transformer-based
models [30]. Transformer-based models such as the Vision Transformer (ViT) [31] have
demonstrated a powerful and promising performance in solving computer vision tasks;
however, there is limited discussion on selecting a particular deep learning model over
others in species classification. CNN-based models, which rely on convolutional layers
to extract hierarchical features, and process features layer by layer. Transformer-based
models leverage the multi-head attention mechanism to learn globally and understand
spatial relationships between all parts of the images without relying on filters or localized
kernels [32].

Although efforts have been made to build more robust deep learning models for tree
species classification by using images from multiple seasons, there are only a few studies
that trained and tested their models with images from different times and sites with RGB



Remote Sens. 2024, 16, 3836 3 of 16

data; and they found that model accuracy significantly decreased and the transferability of
models was low [15,20]. The transferability of a machine learning model reflects its ability
to generalize knowledge from existing data and reuse such knowledge in unseen data [33].
By exploring models’ transferability among seasons, we can evaluate the adaptability and
generalizability of a model on images acquired from different seasons, and improve model
performance by choosing the optimal time windows for data acquisition [34]. However,
few studies have examined the impacts of seasonal variations on species classification
using multi-season UAV RGB images for temperate forests and the model’s transferability
across seasons. Despite the progress in applying RGB images and deep learning models
in tree species classification, several issues remain. First, model accuracy for temperate
forests is relatively low, and deep learning methods employed thus far have been lim-
ited to CNN-based models, lacking investigation of transformer-based models. Second,
the impact of image acquisition time on species classification and model transferability
are underexplored.

To address these issues, this study focuses on the following main research questions:
(1) What is the comparative performance of various deep learning models on the same dataset
for tree species classification? (2) Does the seasonal variation in tree canopy features impact
the accuracy of species classification in temperate forests? (3) Can deep learning models
trained on a one season be generalized and transferable to another season?

Through these research inquiries, this study aims to advance the current understanding
of the applicability and effectiveness of deep learning models for tree species classifica-
tion. We thoroughly compared the state-of-the-art AI models, built a dataset across two
seasons, compared the accuracy of five state-of-the-art deep learning models, and tested
transferability across seasons. Thus, our findings can provide insights into the application
of state-of-the-art deep learning models on species classifications across different seasons.

Table 1. Related work using UAV RGB images and deep learning algorithms for tree species
identification. This study’s results are included at the bottom.

Author Task
Types * Location #Species Acquisition Time Models Results GSD

(cm/pixel)

Karrenborn et al. (2019) [35] SS Chile 2 Fall U-net 84% 3
Natesan et al. (2019) [15] CL Canada 2 Summer ResNet50 80% on two pines 1, 2, 4

Santos et al. (2019) [24] DT Brazil 1 Winter, Spring,
Summer

Faster RCNN,
YOLOv3, RetinaNet Urban tree 92% 0.82

Natesan et al. (2020) [19] CL Canada 5 Summer, Fall DenseNet 5 coniferous trees 84% 2.5

Ferreira et al. (2020) [36] SS Brazil 3 Summer ResNet18 in
DeepLabv3+

3 species of Palm trees
78.6–96.6% 4

Schiefer et al. (2020) [11] SS Germany 9 Fall, Winter U-net Average F1-score 0.73 2

Osco et al. (2021) [29] DT Brazil 2 Summer, Fall CNN Plantation detection
and counting 87.6% 1.55–2.28

Martins et al. (2021) [37] SS Brazil 9 Spring DeepLabv3+, ResNet F1-score of 0.79 on
urban trees 15

Veras et al. (2022) [16] SS Brazil 8 Summer, Fall, Winter,
Spring ResNet, DeepLab 90.50% 4

Onishi et al. (2022) [20] SS Japan 58 Summer, Fall EfficientNet B7
Kappa: 0.97 and 0.72,

species 0.47 on 26
species

2.74

Wang et al. (2023) [38] CL China 5 Summer DenseNetBL Overall accuracy 0.90 5

This study CL United
States 8 Summer, Fall

ResNet18, DenseNet,
EfficientNetB0, Vision
Transformer, YOLOv5

Average F1-scores 0.93 1.51–2.01,
0.77

* SS = Semantic segmentation; CL = Classification; DT = Detection. #Species: Number of species.

2. Methods

The pipeline for this study consists of five main steps: data acquisition, label generation
with ground information and visual interpretation, model exploration, model training, and
model’s transferability experiments (Figure 1).
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Figure 1. Work pipeline for tree species classification with UAV images and deep learning models.

2.1. Data Acquisition

The study area, Martell Forest, located in Tippecanoe County, Indiana, USA, is a
research forest owned by Purdue University that contains monoculture plantations, mixed
plantations, and natural forests (Figure 2a). We collected UAV images using the DJI ZEN-
MUSE P1 (35 mm) camera, flying the drone with 85% overlap and 85% sidelap for two
flights in August and November 2021 (Table 2). Our flights were programmed at a height
of 120 m above the ground. The plots we covered had about 30 m differences in alti-
tude due to the sloped terrain, resulting in a GSD of approximately 1.5 cm to 2.01 cm.
We focused on eight ecologically and economically important tree species from planta-
tions (Table 3). Black cherry (Prunus serotina), northern red oak (Quercus rubra), red pine
(Pinus resinosa), black walnut (Juglans nigra), and white oak (Q. alba) were primarily located
at the top of the slope, while butternut (J. cinerea), American chestnut (Castanea dentata),
and white pine (P. strobus), were located near the valley at the Martell Forest. The flights
were carried out during summer and fall to capture seasonal variations in the appearance
of the tree species, particularly in terms of foliage color change. These two seasons were
selected as they represent critical phenological stages. The summer images included full
leaf development and the fall images captured senescence and leaf color change.

Table 2. Flight information, including date, flight settings, and brief description for images.

Dataset Date Flight Information Description

Summer 18 August 2021
Altitude at 120 m, sidelap 85%,

overlap 85%, DJI
ZENMUSE P1

Fully green canopies

Fall 2 November 2021 Same as above Mixed canopies with different
coloration, leaf-on and off
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Table 3. Labeled number of images for eight tree species over two seasons.

Common Name Species Name Summer Fall

Black cherry Prunus serotina 585 548
Butternut Juglans cinerea 358 1002

American chestnut Castanea dentata 44 121
Northern red oak Quercus rubra 739 1954

Red pine Pinus resinosa 192 102
Black walnut J. nigra 585 1840

White oak Q. alba 119 96
White pine P. strobus 200 317

Total 2819 5980

Figure 2. Study area and label examples. (a) Martell Forest in Indiana, USA; (b) Canopy image of a
black cherry (Prunus serotina) plantation; (c) Label examples of the black cherry plantation (all crowns
were identified with bounding boxes).

2.2. Label Generation

With the field record about species information, we used an open-source program,
Label Studio [39], to label individual canopies from raw images with a bounding box on
each crown. We used the raw images, which have a better quality than orthophotos, to
generate training and validation datasets. In Figure 2b,c, we show examples of raw images
and label examples in bounding boxes. The reason for using original UAV images is that
trees have complicated geometry appearance and structures, making it challenging to
overcome the limitations of orthophoto generation without blurring (Figure 3). Due to the
different sizes of trees, all of the crown images had various numbers of pixels ranging from
100 to 300. Before training, all of the images were resized to a size of 224 × 224.

Visible differences could be observed in the photos taken from the same trees collected
in different seasons (Figure 3). Specifically, images that were captured on 18 August 2021
showed fully green canopies. In contrast, images taken on 2 November 2021 showed a
range of colors, reflecting the trees’ different phenological stages. Among the deciduous
species in fall images, both black walnut and black cherry had already shed most of their
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leaves, while other species demonstrated varying degrees of leaf coloration and defoliation.
The two coniferous species, white pine and red pine, exhibited yellowish coloration on
certain leaves in their green crowns in November.

Figure 3. Examples of seasonal differences among eight species. These crown images are cropped
from orthophotos of our study area and show the crown variation of the same trees.

We generated 8799 labeled crown images for these eight tree species from the two
seasons (Table 3). Different species have different numbers of images depending on the
size of the plantations. The dataset represents two seasons that have different numbers
of images because the area of different flights covered is diverse and different images are
picked. With raw images, we observed the same plantations from different angles so that a
small portion of images covered the same plantations from different perspectives, especially
for small plantations. Northern red oak, black walnut, and black cherry had more images
than others. American chestnut and white oak had the least images, with an average of 82
and 107, respectively.

2.3. Model Explored

To use the best available models in this study, we carefully considered the previous
applications of deep learning models in species classification and chose five state-of-the-art
models. Two of the models we selected, ResNet18 and Densenet, have been frequently em-
ployed in earlier investigations (Table 1). We used ResNet18 as a baseline model. Another
model we selected, YOLOv5 [40], was designed for real-time object detection, but can also
be adapted for classification tasks. While more advanced versions like YOLOv8 [41] offer
improvements for detection tasks, YOLOv5 strikes an effective balance among speed, accu-
racy, and ease of implementation, making it an ideal candidate for tree classification tasks
and future tree detection [42,43]. In addition to these models, we also included EfficientNet-
B0, a highly effective CNN model that is less sophisticated than ResNet18, yet still achieves
similar accuracy levels. EfficientNet-B0 is known to be effective for applications with
limited computational resources. Finally, we also included Vision Transformer (ViT) in
our selection. This transformer-based model can learn rich, hierarchical representations of
the input data, making it more flexible and adaptable to various tasks. It has been shown
to outperform ResNet18 on a sizable dataset and such transformer-based models are the
state-of-the-art model for solving image-based problems. This makes it an ideal choice for
applications where accuracy is of the utmost importance, as it has been shown to achieve a
state-of-the-art performance on a range of computer vision tasks [44,45].

2.4. Model Training Setting

Considering the relatively limited amount of images in the dataset, we chose to fine-
tune the pre-trained open-sourced models [46]. ResNet18, DenseNet, EfficientNet, and
ViT were pre-trained with ImageNet [47] dataset. YOLOv5 was pre-trained by another
benchmark dataset(COCO) [48]. In all of the experiments, the tree images dataset was
divided into a training set comprising 80% of the data and a testing set comprising the
remaining 20%. The training was performed on a Linux machine with an NVIDIA Tesla T4
GPU (TSMC’s fabs, Taichung, Taiwan) and Intel(R) Xeon(R) CPU @ 2.00 GHz with 12 G
memory (Intel, Hillsboro, OR, USA). The ResNet18, DenseNet, and YOLOv5 models were
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trained for 100 epochs using a batch size of 8. The EfficientNet-B0 model was trained for
100 epochs with a batch size of 16. The ViT model has more hyperparameters and is more
computationally intensive. For the training process, ViT was trained for 30 epochs as it
converged at five epochs. During training, data augmentation techniques were employed,
including random horizontal flip and random-sized crop on the training dataset, and resize
and center crop on the test dataset.

2.5. Transferability Experiments

To explore the model’s performance across different seasons, we conducted transfer-
ability testing experiments. Our key approach was to train a model using one seasonal
dataset and then utilize the model to predict species on another seasonal dataset. To evalu-
ate the transferability accuracy, the best models’ weights were loaded to predict species
and to assess accuracy. We tested the transferability of models using ResNet18 (as the
baseline model).

2.6. Model Accuracy Assessment

The performance of each model was evaluated using three accuracy metrics—precision,
recall, and F1-score. Precision refers to the proportion of correctly classified positive
examples over the total number of images the model classifies as positive. Recall refers
to the proportion of correctly classified positive images over the dataset’s total number of
reference images. In other words, it measures how well the model can identify positive
examples. F1-score combines precision and recall, making it a useful metric to evaluate the
overall performance of a classification model.

3. Results
3.1. Model Performance by Seasons and Species

All five models achieved F1-scores ranging from 0.84 to 0.99 across seasons, with
an average F1-score of 0.93, which demonstrates that the state-of-the-art models have an
exceptional performance for tree species classification. ResNet18 and Densenet have similar
results (with average F1-scores of 0.87 and 0.89, respectively). The other two CNN-based
models, EfficientB0 and YOLOv5, had good results based on the average F1-score (0.98 and
0.92, respectively). ResNet18, as our baseline model, achieved the lowest average F1-scores
of 0.87, and, in contrast, ViT model achieved the highest average F1-score of 0.986 (Table 4).
Among the data collected in different seasons, all models achieved better performance on
the summer dataset than the fall dataset (average F1-score of 0.96 vs. 0.91) (Figure 4).

The results of classification accuracy varied slightly among species. Butternut, north-
ern red oak, red pine, black walnut, and white pine had F1-scores above 0.9 across all
models and seasons. Black cherry, American chestnut, and white oak had F1-scores ranging
from 0.78 to 0.9. Specifically, northern red oak and white pine had the highest F1-scores
across two seasons (Table 4). Black walnut and red pine also attained similar results with
high F1-scores in the two seasons. Models on American chestnut had the lowest perfor-
mances and the least images. The number of images for each class might have affected
the accuracy, but the unique features of different species also affected the classification
accuracy. These results also matched the observations for the baseline model (see the
Figures A1 and A2 in Appendix A).

To sum up, our results demonstrate that summer is the optimal season for species
classification in temperate forests. If only fall season images are available, EfficientNet-B0,
ViT, and YOLOv5 are better choices than ResNe18 and DenseNet. Within the same training,
different species have slightly different results depending on the crown features and the
number of images.
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Figure 4. F1-scores of five models for summer and seasons.

Table 4. Five models test accuracy on two datasets. F1-scores under 0.8 are highlighted with
background color.

Dataset
ResNet18 DenseNet EfficientNet-B0 ViT YOLOv5 All

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Avg
F1 *

Summer

Black cherry 0.97 0.96 0.97 0.99 0.97 0.98 0.99 0.99 0.99 1.00 1.00 1.00 0.98 0.99 0.98 0.98
Butternut 0.80 0.94 0.86 0.88 0.92 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.99 0.95 0.94
American chestnut 0.83 0.67 0.74 0.88 0.78 0.82 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.89 0.89 0.89
Northern red oak 0.98 0.97 0.98 0.98 0.97 0.97 1.00 0.99 0.996 1.00 1.00 1.00 0.99 1.00 1.00 0.99
Red pine 1.00 0.97 0.99 0.89 1.00 0.94 0.97 0.97 0.97 1.00 1.00 1.00 0.98 1.00 1.00 0.98
Black walnut 0.95 0.97 0.96 0.97 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98
White oak 0.92 0.92 0.92 0.84 0.88 0.86 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.95
White pine 0.97 0.98 0.97 1.00 0.95 0.97 0.97 1.00 0.98 1.00 1.00 1.00 1.00 0.75 0.86 0.96

Average 0.93 0.92 0.92 0.93 0.93 0.93 0.99 0.99 0.99 1.00 1.00 1.00 0.97 0.95 0.95 0.96

Fall
Black cherry 0.78 0.64 0.70 0.69 0.88 0.77 0.91 0.99 0.95 0.98 0.95 0.97 0.94 0.99 0.96 0.87
Butternut 0.79 0.95 0.86 0.88 0.93 0.90 1.00 0.98 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.95
American chestnut 0.76 0.92 0.83 0.79 0.79 0.79 0.90 0.95 0.92 1.00 0.95 0.97 0.96 0.92 0.94 0.89
Northern red oak 0.89 0.99 0.94 0.92 0.96 0.94 0.97 0.99 0.98 0.98 0.98 0.98 0.99 1.00 1.00 0.97
Red pine 0.95 1.00 0.98 0.83 0.90 0.86 0.94 0.94 0.94 1.00 0.94 0.97 1.00 0.70 0.82 0.91
Black walnut 0.94 0.79 0.86 0.93 0.79 0.85 1.00 0.96 0.98 0.97 0.99 0.98 1.00 0.95 0.97 0.93
White oak 0.82 0.45 0.58 0.63 0.60 0.62 0.94 1.00 0.97 0.93 0.87 0.90 0.81 0.85 0.83 0.78
White pine 0.97 0.98 0.98 0.97 0.97 0.97 0.98 0.96 0.97 0.98 0.98 0.98 0.77 0.98 0.86 0.95

Average 0.86 0.84 0.84 0.83 0.85 0.84 0.95 0.97 0.96 0.98 0.96 0.97 0.93 0.92 0.92 0.91

* Prec = Precision, Rec = Recall, F1 = F1-score, Avg F1 = Average F1-score.
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3.2. Transferability of Models across Two Seasons

As shown in Table 5, models trained on one season can hardly be transferred to another
season, with an overall transferability under 0.5. Our results indicate that the models did
not all transfer well to each other in the summer and fall seasons overall, but the models
could learn some shared features from images and had huge differences among the two
seasons and different species. Diving deeper to examine accuracy at the species level, we
found that transferability among different species performed differently in two seasons.
Taking the results of ResNet18 as an example (Table 6), the summer model could predict
species well on fall images of northern red oak (F1-score: 0.84). Meanwhile, the fall images
of white pine could be partially classified by the summer model (F1-score: 0.62). As for
the transferability accuracy, many classes had large differences in precision and recall.
Species with a higher recall and lower precision, such as northern red oak and white pine,
tend to be over-classified compared with other species. For these classes with a higher
precision and lower recall, models tended to misclassify these species as another species,
including black walnut on summer and fall models. Interestingly, the fall model had a low
precision and high recall on summer images of white pine. To summarize the results of
the transferability experiments, we observed that models could not transfer well between
these seasons because of their significant differences in canopy attributes, but the models
learned the features of different species like leaves and colors. The models could partially
transfer their ability to recognize canopies with continuous features such as white pine and
red pine across seasons.

Table 5. Overall accuracy on transferability of models across seasons on ResNet18 and ViT.

Model Dataset Summer Fall

ResNet18 Summer - 0.40
Fall 0.17 -

ViT Summer - 0.42
Fall 0.39 -

Table 6. Results of model’s transferability trained on ResNet18 across seasons for eight species.

Species Precision Recall F1-Score

Summer model Fall images
Black cherry 0.106 0.182 0.134
Butternut 0.238 0.194 0.214
American chestnut 0.053 0.042 0.047
Northern red oak 0.763 0.936 0.840
Red pine - - -
Black walnut 0.308 0.043 0.076
White oak - - -
White pine 0.661 0.578 0.617

Fall model Summer images
Black cherry 0.333 0.009 0.017
Butternut - - -
American chestnut - - -
Northern red oak 0.873 0.324 0.473
Red pine - - -
Black walnut 0.042 0.009 0.014
White oak 0.400 0.250 0.308
White pine 0.133 1.000 0.235

4. Discussion

With the rapid advancement of AI models, it is critical to understand and utilize them
to solve challenges in ecology and forestry effectively. We conducted a comprehensive
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evaluation of these deep learning models on species classification, along with correspond-
ing performance and model transferability between summer and fall seasonal images.
Our results outperformed most of the studies, especially working on classification tasks
reported in Table 1, by comparing the number of species and accuracy metrics because
advanced models and images with lower GSDs were applied. For instance, Mäyrä et al.
(2021) [7] achieved an overall accuracy of 0.89 on four species in a Norway boreal forest
with hyperspectral and Lidar data. Ferreira et al. (2020) [36] achieved an accuracy of 0.78
for Amazonian palm trees in Brazil. The data acquisition time plays a more important role
than the selection of CNN models for classification tasks. Our study reveals that summer is
better than fall to acquire data for species classification using the five deep learning models.
In terms of model transferability across seasons, it is challenging due to the variations in
seasonal features of temperate forests.

4.1. Performance among Different Models

The study findings demonstrate the effectiveness of applying deep learning models in
species classification. The five models adopted in this study all achieved great accuracy,
especially on the dataset collected during the growing season. EfficientNet-B0 [21] and
YOLOv5 [40] had better accuracy than ResNet18 and DenseNet, with fall data. Among
these models, the ViT consistently outperformed the others and achieved the highest F1-
scores across two seasons due to its ability to capture both local and global features of
tree canopies.

The differences in classification accuracy among models can stem from their underly-
ing architectures. ResNet18 is known for its relatively shallow architecture with 18 layers.
Its residual connections help mitigate vanishing gradients and make model training more ef-
fective. DenseNet achieved a comparable performance in our experiments to ResNet18 [49].
DenseNet with 121 layers utilizes dense connections between layers, through dense blocks,
where each layer receives inputs from all previous layers. The dense connectivity helps
retain more information across the network, leading to a slightly better performance than
ResNet18 on certain species such as American chestnut and butternut. However, both
models exhibited difficulty in maintaining a high classification accuracy for certain species
in the fall dataset.

YOLOv5 and EfficientNet-B0 achieved a better performance on these two datasets,
compared with DenseNet and ResNet18. YOLOv5 is primarily focused on object detec-
tion and uses real-time detection. Even though object detection is not the focus of this
study, YOLOv5’s balance between classification speed and accuracy makes it a strong
candidate for integrating tree classification algorithms into handheld devices or drones,
enabling efficient and large-scale forest monitoring. EfficientNet-B0, on the other hand,
has outperformed other selected CNN-based models. Similarly, Dey et al. (2023) [50]
found that EfficientNetV0 outperformed several other CNN models, including ResNets
and DenseNets, in identifying swamp forest tree species. Its architecture leverages a
compound scaling approach that balances the model’s depth, width, and resolution to
optimize accuracy while minimizing computational cost, and EfficientNet-B0 is particularly
well-suited for future field applications where computational resources are limited [51].

Lastly, compared with the CNN-based models, ViT achieved marginally better results
on the two datasets. Our results agree with Bhojanapalli et al. (2021) [52], that using
pre-trained ViT can outperform ResNets on a small dataset. Unlike CNNs, which primarily
focus on learning local patterns through convolutional filters, ViT uses self-attention mech-
anisms to analyze entire images and incorporates more global features at lower layers [45].
This capability to learn from complex spatial relationships, both local and global features al-
lowed ViT to outperform CNNs in tree species classification, where the variation in canopy
structure and phenological features between seasons can significantly impact classification
accuracy [53].
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4.2. Seasonal Difference for Species Classification

Temperate forests have more complicated seasonal dynamics than tropical forests,
including leaf-on, leaf-off, and different coloration stages. The impact of seasonal variations
on temperate forests has mainly been studied through hyperspectral and multispectral
images. Modzelewska et al. (2021) [54] found early summer hyperspectral images produced
a slightly higher accuracy than late summer and fall for the temperate forest in Poland. Pu
et al. (2018) [55] found that late spring images achieved a higher accuracy for tropical and
subtropical urban forests than in other months using multispectral images. Hesketh and
Sánchez-Azofeifa (2012) [56] analyzed tropical forests in Panama using seasonal spectral
images and indicated that noticeable variations imposed by dry and wet seasons on leaf
optical properties affected the classification accuracy.

From our results, we observed that summer images with fully green canopies achieved
the highest accuracy across all models. Despite having more images in the fall dataset, the
models achieved lower accuracies for black cherry and black walnut. For white oak, the
model accuracy might have been influenced by the slightly lower number of images (119 in
summer and 96 in fall). The phenological variations on canopies during fall might have
had an impact on accuracy. When we collected the fall images, these forests were at their
fall foliage peak, and different species displayed various phenological attributes. Notably,
these three species tend to shed their leaves and transition to fall colors earlier than other
deciduous species such as northern red oak. Consequently, their fall images present varying
densities of remaining leaves or complete leaf-off. Furthermore, within other species that
transition more slowly into fall phenological stages, the colors of their crowns can vary for
the same species, and different species from the same genus can exhibit similar colorations,
increasing the difficulty of classifying species. For example, northern red oak can display a
range of colors from red to orange, even among trees of the same age and located in the
same area during fall. Additionally, northern red oak and white oak, being from the same
genus, can exhibit very similar canopy coloration. Hence, we can observe that seasonal
phenological changes in tree canopies can impact species classification.

4.3. Model Transferablity

Exploring a model’s transferability from various perspectives, such as timing, location,
and resolution, is important as it helps us understand the model’s reliability. Our exper-
iments observed that the model’s transferability is time-sensitive. Among eight species,
black cherry, butternut, and black walnut were almost leaf-offs in the fall dataset. Sum-
mer models were trained on images with green canopies and it was difficult to recognize
leaf-off images, for which there are new features. Conifers, such as white pine and red
pine, have better accuracy than other broadleaf trees for the accuracy of transferability.
They also have a high accuracy for the model’s transferability. White pine and red pine
include more constant features from summer to fall. Our exploration of models’ seasonal
transferability demonstrates that AI models can learn the critical attributes of canopies,
like leaf shapes and colors. Due to the massive changes in the appearances of canopies
at various phenological stages for most temperate forest species, species classifications
and models’ transferability are time-sensitive. This demonstrates the unique and chal-
lenging features of trees in comparison with other object classification tasks. We need to
explore more factors, particularly timing, that might impact the classification accuracy
and models’ transferability [34,57]. A deeper understanding of these factors can benefit
us by identifying the optimal time for data collection and model application, and enhance
our understanding of the models’ compatibility and generality across various months or
seasons. Additionally, further studies are necessary to explore the impacts of forest features
under varying illumination, weather, phenological stages, seasons, and tree sizes. These
factors could also have significant impacts on species classifications.
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4.4. Limitations and Future Work

One of the major limitations of this study is the imbalanced number of images among
different species, which could potentially impact classification accuracy. Future studies
should aim to build a balanced dataset to mitigate this problem. Additionally, due to the
absence of ground truth data for natural forests, this study focused on plantation images,
which may limit generalizability. Furthermore, differences in ground sampling distance
(GSD) across images could result in varying species features, introducing uncertainty in
classification and transferability performance. Therefore, conducting more comprehensive
comparative studies is necessary to determine the suitable range of image GSD for effective
species classification. The lack of a general standard for effective data acquisition in this
field is notable. For future studies, developing such a protocol would be invaluable in
identifying general principles and best practices for UAV data acquisition. Furthermore,
applying deep learning models requires substantial data for model training, yet there is
no open-source benchmark dataset for this task. Given the time and cost associated with
generating reference data for training models, potential strategies to tackle this challenge
include developing open-source datasets through crowd-sourcing and standardizing label
generation or even automating the procedures. To gain a deeper understanding of the
impact of phenological variations from UAV images, further research is required to investi-
gate the seasonal factors that influence tree species classification. Moreover, this study only
focused on individual tree classification. For the automatic generation of tree canopy maps,
there is a need to integrate tree detection and species classification procedures to achieve
individual tree segmentation and accurate species classification.

5. Conclusions

Our study demonstrates the effectiveness of these state-of-the-art deep learning models
in tree species classification tasks using UAV-based RGB images. We found summer to
be the optimal season for species classification when applying models from our selection.
Classification accuracy is further influenced by the attributes unique to each species; notably,
the models tend to exhibit a higher performance with two coniferous species, white pine
and red pine, compared with other deciduous species. The models trained on specific
seasons are sensitive to timing and cannot reliably predict species of images from another
season. Tree species with more consistent features across seasons tend to demonstrate better
model transferability—coniferous trees, for instance. Deep learning models demonstrate
promising results on tree species classification, and further studies are needed to investigate
how to improve the transferability of models for broad applications.
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Appendix A

Figure A1. Number of images VS F1-score on summer datasets for four species with ResNet18. Due
to the limits of numbers of images, we selected four species and the number of training images starts
from 60 to 280, with 20 as an increment. In each training session, all four classes have an equal
amount of training images and the same test dataset. Thus, we trained ResNet18 12 times with
various numbers of images. When the number of images ranges from 60 to 180, the increment of
accuracy is faster than the further part image numbers ranging from 200 to 280. For the experiments
on images with the numbers 260 and 280, their change in accuracy was unremarkable. Hence, from
our observation, the number of images impacts the model’s classification accuracy, and after training
images reach a certain amount, the influences decrease.

Figure A2. Number of images VS F1-scores with ResNet18 on two datasets for eight species. Different
shapes of points stand for different seasons. The round shape points stand for the summer dataset,
the squares belong to fall.
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