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Abstract: Tropical cyclones (TCs) are associated with severe weather phenomena, making accurate
wind field retrieval crucial for TC monitoring. SAR’s high-resolution imaging capability provides
detailed information for TC observation, and wind speed calculations require wind direction as prior
information. Therefore, utilizing SAR images to retrieve TC wind fields is of significant importance.
This study introduces a novel approach for retrieving wind direction from SAR images of TCs through
the classification of TC sub-images. The method utilizes a transfer learning-based Inception V3 model
to identify wind streaks (WSs) and rain bands in SAR images under TC conditions. For sub-images
containing WSs, the Mexican-hat wavelet transform is applied, while for sub-images containing
rain bands, an edge detection technique is used to locate the center of the TC eye and subsequently
the tangent to the spiral rain bands is employed to determine the wind direction associated with
the rain bands. Wind direction retrieval from 10 SAR TC images showed an RMSD of 19.52° and a
correlation coefficient of 0.96 when compared with ECMWF and HRD observation wind directions,
demonstrating satisfactory consistency and providing highly accurate TC wind directions. These
results confirm the method’s potential applications in TC wind direction retrieval.

Keywords: Sentinel-1; SAR images; tropical cyclone (TC); wind direction

1. Introduction

Tropical cyclones (TCs) are intense weather systems capable of causing natural dis-
asters, such as strong winds, heavy rainfall, and storm surges, which significantly impact
human safety, lives, and property. In recent years, observation and monitoring of TCs have
increased, and Synthetic Aperture Radar (SAR), with its high spatiotemporal resolution,
all-weather capability, and ability to penetrate clouds and fog, has become increasingly
popular as a means to observe TCs, playing a crucial role [1–3]. Before the landfall of
TCs, SAR can provide an early assessment of potential impacts. By analyzing wind fields
offshore, we can estimate the maximum sustained winds and the TC’s movement, which
are critical for forecasting potential land impacts and guiding timely evacuation and pre-
paredness efforts. SAR measures radar backscatter signals from the sea surface by actively
emitting electromagnetic waves, thereby generating intensity images of radar backscat-
ter. The roughness of the sea surface, primarily induced by surface tension waves and
short gravity waves with wavelengths ranging from a few centimeters to several tens
of centimeters, significantly affects the backscatter of the SAR beam. This roughness is
influenced by interactions between the sea and the atmosphere, including the effects of
unstable boundary layers. In SAR imagery, this is reflected as variations in pixel brightness,
which are predominantly caused by wind fields and precipitation over the ocean surface.
Unstable atmospheric boundary layers can induce convergence or divergence in the sea
surface, altering its roughness and resulting in the formation of linear stripes with a scale
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of several kilometers in Synthetic Aperture Radar (SAR) imagery. These stripes, charac-
terized by alternating light and dark bands, are referred to as wind streaks (WSs). In SAR
imaging, the modulation of radar backscatter by sea surface wind fields provides a precise
characterization of the wind field’s inherent properties [4]. Gerling [5], as early as 1986,
confirmed that the linear streak features on SeaSat satellite SAR imagery, with scales of the
order of several kilometers, are induced by sea surface winds. Later, several scholars have
identified a significant correlation between the Normalized Radar Cross-Section (NRCS)
and wind vectors, and leveraging this relationship, they have developed several empir-
ical models [6,7]. Moreover, an increasing body of research and observational evidence
indicates a strong consistency between sea surface wind direction and directional patterns
of WSs observed in SAR imagery [8]. Therefore, one of the methods for extracting wind
direction information is to utilize SAR images that contain WSs.

Due to the strong correlation between sea surface wind direction and SAR image
features on a large scale [9], and because the co-polarized backscatter signals (VV) are highly
sensitive to motion occurring on the ocean surface, the primary method for extracting wind
direction from SAR images is to utilize co-polarized backscatter cross-sections. Traditional
methods for wind direction retrieval from SAR images mainly include the following
approaches: Firstly, the Fast Fourier Transform (FFT) method. Furevik et al. [10] employed
FFT to extract wind direction information from SAR images. Additionally, others have
also utilized Fourier transform algorithms [11]. Secondly, wavelet analysis is another
traditional method for wind direction retrieval. Zhang et al. [12] utilized the Gabor wavelet
transform for secondary wavelet decomposition of SAR images, extracting wind direction
using the FFT method. Stefano et al. [13] proposed a wind direction extraction method
based on two-dimensional continuous wavelet transform (2D-CWT) of SAR images, which
was applied for wind field retrieval in coastal areas. Corazza et al. [14] assessed various
methods for estimating wave direction from SAR images and proposed an improvement
to spectral methods using the Radon transform for wind direction retrieval. Thirdly, the
local gradient method (LG). Koch [15] leveraged standard image processing algorithms for
LG computation, demonstrating that the LG method accurately determines wind direction
under high wind speed conditions. Zhu et al. [16] proposed a method for sea surface
wind direction retrieval using LG in SAR images based on digital image processing theory.
Upon this foundation, Rana et al. [17] introduced an improved local gradient (LG-Mod)
method by substituting directional statistics for histogram analysis results. Xie et al. [18]
combined SAR image smoothing with spectral domain LG computation and acquiring LG
direction in the spatial domain, and proposed a modified local gradient (ILG-Mod) method,
which exhibits superior performance compared to previous local gradient methods. Fan
et al. [19] employed the LG method to estimate the wind direction of TCs using dual-
polarization (VV + VH) SAR images from the C-band Radersat-2 and Sentinel-1A and
the results indicated that dual-polarization SAR is more suitable for TC wind direction
estimation compared to single-polarization SAR. The wind direction retrieval algorithms
for SAR images mentioned above have been widely applied, yet the retrieval results still
exhibit considerable errors. The FFT algorithm achieves an accuracy range of 23–37° with
an average root mean square deviation (RMSD) of 28.96°, while the LG algorithm performs
within a range of 21–38° with an average RMSD of 32.52° [20]. Moreover, the LG method is
susceptible to speckle noise, which introduces errors in the accuracy of wind direction. The
wind direction results obtained from the aforementioned methods exhibit a 180° ambiguity
issue, necessitating reliance on external data for disambiguation. This represents a crucial
challenge, and to date, several methods have been proposed and applied to resolve this
ambiguity [21].

However, both the FFT and LG wind direction retrieval methods are limited when
SAR images lack WSs [4]. Moreover, the use of VH polarization in radar backscatter
reduces sensitivity to radar incidence angles and wind directions, particularly near the
eye of TCs. Wang et al. [22] applied an improved LG method (ILG) to extract wind
directions from SAR images of TCs, revealing that rain bands could potentially disrupt
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gradient directions, thereby reducing the accuracy of retrieved results. Gao et al. [23]
extracted rain band streaks from SAR images that do not include the hurricane eye, and
proposed a hurricane wind direction retrieval method based on the hurricane inflow angle.
Notably, this method does not rely on the hurricane eye or external data. In addition to the
aforementioned methods, several new image processing techniques have been shown to
have great potential in extracting wind direction information from SAR images. Ni et al. [20]
based on the histogram of oriented gradient descriptor and the Hann window function,
considered neighboring WSs information, and proposed a new method for extracting
TCs wind direction from SAR images using VV and VH signals. Additionally, machine
learning methods have been proven to hold significant potential in marine information
extraction, particularly in remote sensing image information. Shao et al. [9] utilizing quad-
polarization SAR images, discovered that the Polarimetric Coherence Coefficient (PCC)
exhibits asymmetric wind direction characteristics in four polarization combinations. They
proposed an intelligent method for wind direction retrieval from Gaofen-3 (GF-3) SAR
images, combining spectral transformation techniques with machine learning. This method
utilized peak intensity spectrum wind direction coefficients, wind direction, azimuth, and
slope as inputs. Guo et al. [24] employed deep learning techniques by integrating the
Inception V3 convolutional neural network architecture into the recognition of WSs on
the ocean surface and achieved wind direction retrieval by identifying SAR sub-images
containing WSs using wavelet transformation methods.

Under TC conditions, wind streaks become more pronounced. However, using meth-
ods based on WSs to retrieve wind direction in TCs can be compromised by the interference
of rain bands, which disrupts the accuracy of the results. Additionally, deep learning-based
methods have so far been applied only in non-extreme weather conditions. There are
relatively few studies utilizing deep learning tools for wind direction retrieval in TCs.
Therefore, leveraging the characteristics of TC imaging in SAR images, such as the lack of
wind or rain in the center of TCs in the SAR images and the spiral rain bands surrounding
the cyclone center, can enable extraction of wind field information.

This study employs a transfer learning-based Inception V3 neural network to identify
WSs and rain bands in SAR imagery under TC conditions. Different methods are applied
to retrieve wind direction from sub-images containing WSs and spiral rain bands. For sub-
images with WSs, wavelet transform is used to retrieve wind direction, while for sub-images
with rain bands, edge detection methods are employed to locate the TC eye center and the
tangent to the spiral rain band is then used to determine the wind direction associated with
the rain band. This approach mitigates errors introduced by rain bands in SAR images,
thereby enhancing the accuracy of wind direction inference. The retrieved results are
compared with reanalysis data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) and wind direction data from the HRD observation productions to
validate the effectiveness of the method. The organization of this paper is as follows:
Section 2 provides a brief overview of the datasets used in the study. Section 3 details the
sub-image recognition method based on transfer learning with the Inception V3 neural
network and the wind direction retrieval techniques. Section 4 presents the wind direction
retrieval and validation results for TCs Douglas and Larry, as well as the results for 10 TCs.
Finally, Section 5 concludes the study.

2. Materials and Dataset
2.1. Sentinel-1 SAR Images

The Sentinel-1 mission is one of five missions launched by the European Space Agency
(ESA) as part of the Copernicus Earth observation initiative. It consists of two C-band SAR
satellites (Sentinel-1 A and Sentinel-1 B), equipped with C-band SAR sensors operating at a
central frequency of 5.404 GHz. These satellites operate in four imaging modes: Strip-map
(SM), Interferometric Wide Swath (IW), Extra Wide Swath (EW), and Wave (WV). Sentinel-1
can provide dual-polarization images (VV + VH), where backscattered signals are received
in vertical and horizontal polarizations. Sentinel-1 is utilized to provide observational
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data for research and development across various domains, such as terrestrial monitoring,
atmospheric environment, ocean monitoring, and climate [25]. The Satellite Hurricane
Observation Campaign (SHOC) is an initiative launched by the European Space Agency
(ESA) following the peak of hurricane activity in 2016. Its objective is to collect observational
data on hurricanes, primarily focusing on obtaining maximum Sentinel-1 products from
within the hurricane eye or its periphery. These data are integrated with other sources
to facilitate research into hurricane development and evolution. The Sentinel-1 mission
serves as the primary means for SHOC to acquire essential resources. Therefore, SHOC
is significant for accurately estimating TC parameters under extreme weather conditions
using SAR in TC scenarios. This study utilizes TC SAR images from the SHOC period as
research data, with all SAR images resampled.

This study utilizes the SAR image dataset established by Wang et al. [26], which
comprises a subset of over 37,000 Sentinel-1 SAR images in WV mode over the ocean surface.
This annotated dataset summarizes the geophysical properties and imaging characteristics
of ten defined phenomena observed in spaceborne SAR images. It is applicable to scientific
and engineering applications across various fields, such as deep learning, remote sensing,
oceanography, and meteorology. Since the focus of this study is on TCs, we specifically
selected WSs, rain bands, and other geophysical phenomena as our objects of study, as
illustrated in Figure 1. The chosen features primarily include WSs and rain bands, while
other geophysical phenomena in SAR images are classified as a third category.

Wind Streaks(G)

Rain bands(I)

Other Geophysical 

Phenomena(A)

Figure 1. Example of geophysical phenomena in SAR images. The first row represents wind
streaks (G), the second row depicts rain bands (I), and the third row illustrates other geophysical
phenomena (A).

The Sentinel Application Platform (SNAP) provided by the ESA is used for prepro-
cessing SAR images, including thermal noise removal, radiometric calibration, and speckle
noise filtering. Land masking is applied to avoid attempting to estimate wind direction
over land areas. The next step involves data calibration to achieve NRCS values that are
independent of the incidence angle. The third processing step involves employing an
enhanced Lee filter to suppress speckle noise, utilizing local statistical properties to smooth
homogeneous regions while preserving edge information.

In this study, SAR image information from 10 Sentinel-1 images with well-defined TC
eyes worldwide during the SHOC period from 2016 to 2021 was collected. Table 1 presents
detailed information on the SAR images of TCs. This paper utilizes dual-polarization SAR
images at Level-1 Ground Range Detected (L1GRD), with images in IW mode having a
bandwidth of 250 km, an incidence angle range of 29° to 31°, and a pixel size of 10 m × 10 m.
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This study employs dual-polarization SAR images for TCs wind direction retrieval, as
the use of VH polarization images yields superior results [19]. Ni et al. [20] found that
combining VH and VV polarization images for wind direction retrieval provides better
outcomes compared to using single-polarization methods.

Table 1. TCs SAR images captured by Sentinel-1 for wind direction retrieval and validation.

TC Name Acquisition
Time Satellite Acquisition

Mode Polarization Category ATCF
(Vmax (m/s)) Ocean

Irma 7 September
2017 10:29:51 S1-A IW VV + VH 5 75 Atlantic

Maria 21 September
2017 22:46:26 S1-A IW VV + VH 3 56 Atlantic

Maria 23 September
2017 10:43:49 S1-B IW VV + VH 3 51 Atlantic

Hector 7 August
2018 15:45:02 S1-A EW VV + VH 4 59 Pacific

Michael 9 October
2018 23:43:05 S1-A EW VV + VH 3 56 Atlantic

Michael 10 October
2018 11:49:07 S1-A EW VV + VH 4 64 Atlantic

Dorian 30 August
2019 22:45:48 S1-A IW VV + VH 4 58 Atlantic

Douglas 25 July 2020
03:47:55 S1-A EW VV + VH 3 50 Pacific

Delta 8 October
2020 00:07:02 S1-B IW VV + VH 1 41 Atlantic

Larry 7 September
2021 21:46:30 S1-B EW VV + VH 3 51 Atlantic

2.2. HRD Observation Wind Products

The Hurricane Research Division (HRD) is a research department within the National
Oceanic and Atmospheric Administration (NOAA). Each year, HRD conducts field obser-
vation missions on NOAA’s research aircraft, focusing on the study of tropical cyclones
and associated weather phenomena. During reconnaissance missions of tropical cyclones,
the United States Air Force records flight level parameters, including wind direction, with
a time resolution of 1 Hz [27]. This study utilizes HRD’s TCs observational data to supple-
ment the ECMWF reanalysis data and uses the processed and calculated wind direction
at a height of 10 m above ground level as the reference wind direction for this research.
This study utilizes a time window of 2 h, aligning SAR image acquisition time with HRD
observation time to ensure accuracy.

2.3. ECMWF Reanalysis Products

This study employs the ERA5 reanalysis wind dataset from the European Centre for
Medium-Range Weather Forecasts (ECMWF). This dataset, derived from the Integrated
Forecasting System (IFS) of ECMWF, provides 10-m equivalent stress wind data and offers
global wind field information dating back to 1979. It is widely utilized for research into
atmospheric and oceanic processes. In this study, the ERA5 data are used for comparative
analysis with wind directions retrieved from SAR observations. The dataset has spatial
and temporal resolutions of 0.25° and 1 h, respectively [28]. It is important to note that the
ERA5 reanalysis data need to be spatially shifted to align with the center of the TCs in the
SAR images.

3. Methodology

The methods for retrieving sea surface wind direction from SAR images primarily
include wavelet transform methods, LG, FFT, texture feature-based analysis, image pro-
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cessing techniques, and deep learning approaches. However, the presence of significant
rain bands around tropical cyclones (TCs) introduces substantial errors in wind direction
retrieval. To address this issue, this study proposes a transfer learning-based Inception V3
neural network for identifying wind streaks (WSs) and rain bands in SAR images under TC
conditions. Different methods are employed to retrieve wind direction from sub-images
containing WSs and spiral rain bands. The overall workflow is illustrated in Figure 2.

Figure 2. Flowchart of retrain recognition model based on transfer learning and wind direction
retrieval from TCs SAR images.

3.1. The Inception V3 Convolutional Neural Network

This paper employs a Convolutional Neural Network (CNN) as the training model
for identifying phenomena in TC SAR sub-images. The rationale for choosing a CNN lies
in its capability as a deep learning model to automatically extract features from image data,
thereby avoiding manual feature engineering. Through convolutional layers, CNNs achieve
local perception, effectively recognizing local features within images. Parameter sharing
reduces model complexity and the number of training parameters, thus enhancing training
efficiency and generalization ability [29,30]. Additionally, CNNs excel in extracting features
such as texture, color, and shape from images, providing significant advantages in image
processing [31]. Inception Net is one of the typical models within CNNs, initially developed
and used by Google in 2014 [32]. Based on deep CNNs architecture, it has been applied to
tasks such as image classification and computer vision. The Inception Net includes various
versions from V1 to V4. This paper utilizes the Inception V3 model. Inception V3 improves
upon its predecessors by optimizing network structure and computational methods. It
maintains accuracy while enhancing operational speed and computational efficiency. This
model introduces multiple asymmetrically sized convolutional kernels and pooling layers,
employing parallel operations to handle features of various scales simultaneously. This
enhancement boosts the network’s capability to recognize objects of different sizes, thereby
demonstrating superior performance in image classification with higher accuracy rates.

Due to the depth of the Inception V3 network architecture reaching 48 layers and the
complexity of training parameters, retraining the model poses significant challenges. To
circumvent these difficulties, this paper employs transfer learning. Transfer learning is
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a machine learning technique where a model developed for task A serves as the starting
point and is reused or adapted for task B, as depicted in Figure 3. The primary method
involves training a model on a large dataset to learn weights. During retraining, these
weights are transferred to a new network for further training. In this study, we retain the
convolutional and pooling layers of the pre-trained Inception V3 model to extract features
from SAR images and fine-tune the model to recognize geophysical phenomena in these
images. Notably, transfer learning is particularly useful when there is a lack of sample data,
allowing effective utilization of smaller training image datasets [32].

Figure 3. The architecture of transfer learning.

3.2. Edge Detection Algorithm

Edge detection technology is an image processing technique used to identify and
locate edges or contours within an image. Edges typically represent regions where there are
significant changes in brightness or color, which are often related to boundaries or shapes
within the image. Due to the substantial gradient changes in the intensity of the dark rain
band stripes in SAR images, edge detection operators can be employed to detect rain bands
in SAR TC images [18]. TCs are powerful storm systems in the atmosphere, characterized
by heavy precipitation. In SAR images, these areas of heavy precipitation often appear as
spiral band structures extending from the center of the tropical cyclone outward. This study
utilizes edge detection operators to compute the pixel intensity gradients near the rain
band stripes in SAR images, thereby revealing spiral-like patterns. For this purpose, dual-
polarization (VV + VH) SAR images are employed for the aforementioned edge detection.
Common edge detection algorithms include the Sobel operator, Canny operator, Prewitt
edge detection algorithm, and wavelet-based edge detection methods. However, the Canny
operator, which employs a double-threshold technique to detect and connect edge points,
provides more accurate detection of rain band stripes. Therefore, this study uses the Canny
operator. Additionally, the Canny operator applies the first derivative of a two-dimensional
Gaussian function for image smoothing, calculates the magnitude and direction of the
gray scale gradient using a first-order differential operator, and performs non-maximum
suppression, thereby enhancing the clarity of rain band stripes in SAR images.

The gradient intensities in the horizontal and vertical directions of the first-order
differential operator are computed using Gx and Gy, respectively

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

 and Gy =

 +1 +2 +1
0 0 0
−1 −2 −1

 (1)
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G =
√

G2
x + G2

y (2)

θ = tan−1
(

Gx

Gy

)
(3)

where G represents the magnitude of the gradient and θ denotes the direction of the gradient.

3.3. Wind Direction Retrieval

In this study, we initially utilized the SNAP for the preprocessing of SAR images, which
includes thermal noise removal, orbital correction, GRD boundary noise removal, speckle
noise filtering, and terrain correction. After preprocessing, we performed resampling on
the EW and IW mode SAR images, resulting in a final SAR image resolution of 40 m × 40 m.
Subsequently, we divided the SAR images into sub-images of size 250 × 250 pixels, with
each sub-image having an actual size of approximately 10 km × 10 km, to facilitate the use
of deep learning methods for identifying whether a sub-image contains WSs or rain bands.

Wavelet analysis is a mathematical method that finds applications across various fields,
including signal processing, image processing, computer classification and recognition,
medical imaging and diagnosis, as well as engineering fault diagnosis [33]. When wavelet
transform is employed for SAR image processing, it enables multi-scale decomposition of
SAR images, allowing for the characterization of wind direction information at different
spatial scales. Consequently, the striped information in SAR images can be utilized to
retrieve wind direction. The wavelet transform method is based on the two-dimensional
(2-D) Fourier transform, which transfers the image from the spatial domain to the fre-
quency domain. Two frequency components can be clearly identified through two pairs
of maxima [14] . For each sub-image containing WSs, the 2-D wavelet transform method
is employed to retrieve wind direction. Wavelet analysis provides both time-domain and
frequency-domain localization capabilities and can automatically adjust the time-frequency
window to meet actual analysis needs.

Assume f (t) and ψ(t) are square-integrable functions, both belonging to the space of
square-integrable functions. Then, the continuous wavelet transform of the signal f (t) is
given by

W f (a, b) =
∫

R
f (t) · ψ̄ab(t) dt (4)

where ψab(t) represents the wavelet basis, which results from translating and scaling the
mother wavelet ψ(t). The wavelet basis is expressed as

ψab(t) = |a|1/2ψ

(
t − b

a

)
(5)

where a and b are the scale and translation parameters, respectively, representing the
frequency and time parameters in ψab(t). Among the common wavelet mother functions,
the Mexican-hat wavelet is known for its excellent local capabilities in both the time and
frequency domains, making it particularly useful for extracting WSs information from SAR
images. The 2-D Mexican-hat wavelet transform is represented as

ψh(k) = (k · k) exp
(

1
2(k · k)

)
(6)

where k represents the variables in the 2-D space-frequency domain. The wavenumber spec-
trum of the WSs in the SAR images is then computed using the 2-D FFT transform method

Sm,n =
N

∑
a=1

N

∑
b=1

Ga,b exp
(
−2πi · m · a + n · b

N

)
(7)

where Sm,n represents the wavenumber spectrum of the WSs in the SAR images, and G
denotes the grayscale values of the SAR images, with m, n ∈ N+. By drawing vertical lines
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through the peaks of the 2-D wavenumber spectrum, the sea surface wind direction can
be retrieved.

For each sub-image containing wind streaks, we use the Canny edge detection operator
to perform feature detection on the rain bands in the TCs SAR images.

In this study, more than three clear rain bands from each SAR image for both polar-
ization modes were selected, and this paper utilizes the arcuate distribution pattern of
rain band streaks around the TCs center to calculate the geographical location of the TC’s
eye. Selecting more than three rain band streaks aims to reduce errors from the random
distribution of rain bands. Additionally, results from both polarization modes are combined
to determine the TC’s eye position, and the spiral pattern of rain bands around the TC’s eye
is utilized to establish the wind direction at this location. The procedure for determining
wind direction is as follows:

(1) Utilize the Canny edge detector to identify rain band streaks in SAR images with VV
and VH polarization.

(2) Select more than three clear rain band streaks with an arcuate distribution.
(3) Using the characteristic of the arcuate rain band streaks spiraling towards the TC’s

eye, this study defines the perpendicular bisector of the spiral rain band, deviating
inward by 20°, as the center of the spiral rain band and the TC’s eye. The tangent to
the spiral rain band at this point represents the wind direction.

(4) Compute the average position of the TC’s eye from multiple spiral calculations in VV
and VH polarizations as the final result.

(5) Determine the wind direction based on the tangent direction of the spiral centered at
the TC’s eye.

In this study, the wind direction is taken as 20° inward deviation from the tangent
direction of the rain band to the TC eye position, as illustrated in Figure 4.

TC eye

Angle compensation

TD: Tangential direction

WD: Wind direction

Figure 4. The wind direction of rain band locations existing in Northern Hemisphere TCs.

4. Results and Validation
4.1. Recognition of SAR Sub-Images

This paper employs transfer learning-based deep learning methods for SAR sub-image
recognition. Initially, suitable feature datasets for TCs were selected from the atmospheric
ocean phenomenon dataset [26]. The deep learning dataset comprises 4797 SAR sub-images
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with WSs, 4740 SAR sub-images with rain bands, and 5000 SAR sub-images with other
geophysical phenomena. This dataset is divided into three subsets: training, validation,
and test data, with a ratio of 7:2:1. Figure 5 shows the retraining and validation results
based on the transfer learning model. Figure 5a depicts the accuracy curves for the training
and validation sets over epochs, while Figure 5b shows the loss curves over thes epochs.
The results indicate that the accuracy for both the training and validation sets increases
rapidly at the beginning of the epochs, while the loss decreases quickly until stabilizing
around the 40th epoch. The accuracy of the training set is slightly higher than that of the
validation set.

From the variation in accuracy and loss, it can be observed that the accuracy of the
validation set starts below 50% and eventually reaches 97.5%, while the loss decreases
from greater than 1 to 0.0907. This preliminary analysis suggests that the transfer learning-
based Inception V3 model is capable of identifying WSs and rain bands in SAR images.
Consequently, we proceeded to use this model to recognize rain bands and WSs in SAR
images containing TCs and employed different methods to retrieve wind direction based
on the recognition results.

(a) Accuracy variation curve. (b) Loss variation curve.

Figure 5. Accuracy and loss of training set (blue lines) and validation set (orange lines).

In this study, SAR images under TC conditions are segmented into 10 km × 10 km
sub-images. The sub-images are then identified using a transfer learning-based Inception
V3 convolutional neural network. Figure 6a presents the sub-image identification results
for SAR images of TC Douglas captured by Sentinel-1 on 25 July 2020, while Figure 6b
shows the sub-image identification results for TC Larry on 7 September 2021.

4.2. Wavelet Transform-Based Wind Direction Retrieval for SAR WSs Sub-Images

In this study, a wind direction retrieval method based on wavelet analysis is employed
for SAR sub-images identified by the model as WSs geophysical phenomena. Accordingly,
sub-images labeled as G are input into a 2-D Mexico-hat wavelet transform model to
determine their wind direction. Figure 7 presents the results of wind direction retrieval
for a sub-image using this method. Specifically, Figure 7a shows the preprocessed SAR
sub-image. Figure 7b,c display the results after FFT transformation and Mexico-hat wavelet
transformation, respectively. In Figure 7d, the red solid line indicates the direction of the
power spectrum variation, while the white dashed line denotes the wind direction.



Remote Sens. 2024, 16, 3837 11 of 20

(a) Case TC Douglas. (b) Case TC Larry.

Figure 6. Sub-image recognition results of SAR TC images. “G” represents WSs, “I” represents rain
bands and “A” denotes other geophysical phenomena.

Figure 7. Wind direction retrieval from SAR TC sub-images using 2-D Mexican-hat wavelet transform.
(a) SAR sub-image; (b) The result of FFT; (c) The result of Mexico-hat wavelet transformation; (d) The
wind direction of the sub-image.
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4.3. Wind Direction Retrieval Method for SAR Rain Bands Sub-Images

In this study, edge detection methods from image processing are employed to identify
rain bands in SAR images, where WSs appear as dark, stripe-like features. The Canny edge
detector is used due to its capability to set two thresholds, which enhances the detection
of WSs. Figure 8 presents the results of edge detection for rain bands in the SAR image of
TC Douglas. Processing SAR images is conducted in both VV and VH polarization modes.
Figure 8b,e show rain band stripes obtained under VV and VH polarizations, respectively.
The thresholds of the Canny operator were (0.054, 0.056) for VV polarization and (0.010,
0.013) for VH polarization. It was observed that edge detection methods are more effective
for detecting rain bands in VV-polarized SAR images, whereas VH polarization is more
susceptible to strip noise and wind sensitivity, which can impact detection results. The
rain band stripes were selected, and the average position of the TC eye was determined, as
shown in Figure 8c,f, where the rain band stripes are indicated within the boxes and the TC
eye position is marked by red dots. Figure 9 illustrates the corresponding results for TC
Larry, which were acquired on 7 September 2021. The thresholds of the Canny operator for
TC Larry were (0.008, 0.020) for VV polarization and (0.230, 0.250) for VH polarization.

(a) (b) (c)

(d) (e) (f)

Figure 8. The Canny edge detection results for TC Douglas. The NRCS for VV and VH polarizations
are presented in (a,d), respectively; the rain band distributions for VV and VH polarizations are
shown in (b,e), respectively; the TC eye positions for VV and VH polarizations are depicted in
(c,f), respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 9. The Canny edge detection results for TC Larry. The NRCS for VV and VH polarizations are
presented in (a,d), respectively; the rain band distributions for VV and VH polarizations are shown in
(b,e), respectively; the TC eye positions for VV and VH polarizations are depicted in (c,f), respectively.

4.4. Wind Direction Ambiguity Removal and Results Validation

When performing wind direction retrieval from SAR images, the issue of 180° wind
direction ambiguity is typically encountered. Therefore, it is necessary to resolve this
ambiguity in the wind direction retrieval results. In general sea area, the wind ambiguity
removal method often relies on external data. However, for tropical cyclones, due to
their unique rotational patterns, it is possible to resolve the ambiguity without external
wind direction information. This uncertainty can be addressed by utilizing the distinct
rotational modes of tropical cyclones in the Northern and Southern Hemispheres. For
each sub-image’s wind direction, there are two possibilities (resulting in 180° ambiguity),
represented in the diagram as θpi1 and θpi2 , as shown in Figure 10. The process of removing
wind direction ambiguity in this study consists of the following steps:

(1) Determine the TC’s eye position using an edge detection algorithm.
(2) Account for the TC’s rotational direction: counterclockwise in the Northern Hemi-

sphere and clockwise in the Southern Hemisphere.
(3) Taking the Northern Hemisphere as an example, the distribution of the counterclock-

wise rotating wind field is illustrated in Figure 4, serving as a rough reference for the
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counterclockwise wind direction; note that in the Southern Hemisphere, the rotation
is clockwise.

(4) Determine the position of the sub-image in relation to the center of the tropical cyclone.
(5) Select the wind direction solution that is closest to the estimate provided in (3) as the

final result: As shown in Figure 10, the retrieved wind direction of the sub-image (with
a 180° ambiguity) is denoted as θp, and the reference wind direction value is denoted
as θt and ∆θ = |θpi − θt|, when ∆θ is minimized, θpi represents the de-ambiguous
wind direction.

Figure 11a illustrates the rotational pattern of TCs in the Northern Hemisphere, while
Figure 11b shows the rotational pattern in the Southern Hemisphere. Note that in this
study, wind direction is defined as 0° for north.

By employing the aforementioned wind direction de-ambiguation method, combined
with wavelet analysis for SAR sub-images exhibiting WSs and edge detection for SAR
sub-images with rain bands, the wind direction of TCs from SAR images was retrieved.
Additionally, nonlinear interpolation was used to estimate wind direction for SAR sub-
images identified as other geophysical phenomena, enabling retrieval of the wind direction
of TCs throughout the entire SAR image.

Figure 12b illustrates the wind direction retrieval results for TC Douglas, with the black
arrows indicating the retrieved wind direction, and Figure 12c presents the corresponding
wind direction from ECMWF, demonstrating satisfactory consistency between the SAR
retrieval results and the reference wind estimates. Figure 12d shows a scatter plot of the
wind direction retrieval results from SAR images against the ECMWF and HRD observation
wind direction, with a correlation coefficient of 0.96, a bias of 2.15°, and the RMSD is 20.80°.

𝜃𝑡𝜃𝑡

𝜃𝑝1 𝜃𝑝1

𝜃𝑝2 𝜃𝑝2

Δ𝜃1

Δ𝜃2

Figure 10. Schematic diagram of wind directions with 180° ambiguity and reference wind direction.
For the two predicted wind directions θp1 and θp2 that are aligned but point in opposite directions,
the smaller the ∆θ calculated relative to the reference wind direction θt, the closer it is to the true
wind direction.

Figure 13 displays the sea surface wind direction retrieved of TC Larry. Specifically,
Figure 13d presents a scatter plot comparing the retrieved wind direction from SAR with the
estimated direction from the configured wind reference, yielding a correlation coefficient
of 0.96, a bias of 0.47°, and the RMSD is 19.66°. These results indicate a strong agreement
between the SAR retrieved wind direction and the ECMWF and HRD observation wind
direction, demonstrating the feasibility and robustness of the proposed method.
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(a) (b)

Figure 11. The wind field rotational pattern of TCs. (a) TCs in the Northern Hemisphere. (b) TCs in
the Southern Hemisphere.

(d)

(b)

(c)

(a)

Figure 12. The wind direction retrieval results for TC Douglas, acquired on 25 July 2020. (a) Quick-
look from the VV polarized SAR image over TC Douglas; (b) The wind direction retrieval results;
(c) The ECMWF wind direction; (d) Comparison of the retrieved wind direction with ECMWF and
HRD observation wind direction.
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(a)

(c)

(b)

(d)

Figure 13. The wind direction retrieval results for TC Larry, acquired on 7 September 2021. (a) Quick-
look from the VV polarized SAR image over TC Larry; (b) The wind direction retrieval results; (c) The
ECMWF wind direction; (d) Comparison of the retrieved wind direction with ECMWF and HRD
observation wind direction.

Beyond the individual case studies mentioned earlier, this paper extends the validation
of the proposed method to all SAR images containing TCs listed in Table 1. Since ECMWF
wind field forecast data provide global coverage, they were used as the reference for
validating the wind direction retrieval results. A statistical comparison was conducted
between the wind directions retrieved from SAR images and the ECMWF wind direction
data, as illustrated in Figure 14. A total of 7723 comparisons were made. The results show
that the wind direction retrievals from SAR images under most TC conditions are consistent
with the ECMWF and HRD reference wind direction, with a bias of 0.31°, and RMSD is
19.52°, and a correlation coefficient of 0.96.

However, some retrieval results differed by more than 20°, which is attributed to
the higher smoothness of the ECMWF reanalysis data, causing discrepancies in a small
number of wind direction retrievals. Despite these discrepancies, the overall statistical
results indicate that the wind direction retrieval accuracy from SAR images of TCs using
the proposed method is high, thus validating the reliability of this technique.
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Figure 14. Comparison of wind directions retrieved from 10 SAR TCs images with ECMWF reanalysis
and HRD observation wind directions.

In addition, Table 2 summarizes the performance of traditional FFT and LG methods
used for SAR wind direction retrieval in published studies. The method employed in this
paper is referred to as the “WSs and RBs method” to emphasize its implementation of wind
direction retrieval based on wind streaks and rain bands, respectively, while summarizing
its performance. Furthermore, due to the differences in the SAR TC data and wind field
reference values used in various methods, these discrepancies inevitably affect the accuracy
of each approach, therefore this study conducted only a relative comparison.

Table 2. Summary of the performance of FFT and LG wind direction methods and the performance
of this study.

Source Method Reference Wind
Direction RMSD

Zhou et al. 2017 [34]
FFT ECMWF 30.22°

CCMP * 25.41°

LG ECMWF 36.10°
CCMP 36.65°

Zheng et al. 2018 [35]
FFT ECMWF 23.00°

CCMP 23.43°

LG ECMWF 30.96°
CCMP 30.43°

This Study WSs and RBs method ECMWF and HRD 19.52°
* Cross-Calibrated Multi-Platform (CCMP) wind vector product.

5. Discussion

TCs are often accompanied by extreme weather events, such as strong winds and
heavy rainfall, which have significant impacts and hazards for human activities. The wind
field of TCs exhibits considerable variability, making accurate retrieval of the wind field
crucial for TC monitoring. Traditional TC monitoring methods, which rely on ground-based
meteorological observations, have notable limitations, while remote sensing has emerged
as a means for large-scale observation of the ocean surface. SAR, with its high resolution,
provides more detailed information for TC observation. Additionally, during the SHOC
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period, a wealth of TC SAR images was acquired, providing valuable data for the study of
extreme wind fields at the sea surface.

In recent decades, research on retrieving wind fields from SAR images has been
continuously advancing. Currently, the calculation of sea surface wind speed relies on
geophysical model functions (GMFs), most of which require wind direction as a priori
information. Therefore, retrieving wind direction is critical for constructing the wind vector
field of TCs. This paper proposes a novel method for retrieving the wind direction of
TCs from Sentinel-1 SAR images by classifying sub-images within TC conditions. The
approach utilizes 10 SAR images acquired under TC conditions. Firstly, SAR images
are classified using the Inception V3 model based on transfer learning, distinguishing
between sub-images with WSs and those with rain bands. After accurately identifying
the WSs in the SAR sub-images, wind direction retrieval is performed using the Mexican-
hat wavelet transform method. For sub-images containing rain bands, the vortex model
is applied to retrieve the wind direction, which is then aggregated to obtain the wind
direction for the TC SAR images. Case studies of TCs Douglas and Larry demonstrate
that the proposed method achieves RMSD of 20.80° and 19.66°, compared to ECMWF
reanalysis and HRD observation wind direction, validating the accuracy of the retrieved
wind direction. Additionally, a quantitative validation across a total of 10 TCs indicates
that this method consistently provides the most accurate TC wind directions. The statistical
results indicate an RMSD of 19.52°, and a correlation coefficient of 0.96. These results
affirm the potential application of the proposed method for TC wind direction retrieval.
Several factors can be considered to improve accuracy in wind direction retrieval. Notably,
significant precipitation creates distinct rain bands in TC SAR images; the wind direction
retrieval from sub-images containing these rain bands relies on their detection. However,
heavy rainfall can lead to signal attenuation in SAR images, potentially introducing errors
in wind direction retrieval. Future research should address the impact of precipitation on
NRCS attenuation as a crucial factor in wind field retrieval. Additionally, the rapid changes
in wind direction near the TC eye can contribute to errors in the final results. These factors
should be considered in future work to further enhance the accuracy of TC wind direction
retrieval from SAR images.
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