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Abstract: The black soil region experiences complex erosion due to natural processes and intense hu-
man activities, leading to soil degradation and adverse ecological and agricultural impacts. However,
the complexities involved in quantifying regional erosion poses remarkable challenges in accurately
assessing the current status of regional soil erosion for effective soil conservation. To solve this issue,
we proposed a new method for monitoring soil erosion using Interferometric synthetic aperture
radar (InSAR) technology and machine learning algorithms within the Google Earth Engine plat-
form. The new method not only enables regional-scale monitoring, but also ensures high accuracy
in measurement (millimeter-level). The erosion susceptibility of the study area (Yanshou County,
Heilongjiang Province, Northeastern China) was also classified using random forest algorithms to
refine the monitored and predicted soil erosion. The results indicate that the five-year (2016–2021)
deformation in Yanshou County was −11.08 mm, with a significant mean cumulative deformation of
−8.08 mm yr−1 occurring in 2017. The driving factor analysis shows that the region was subject to
the compound effect of water and freeze–thaw erosion, closely related to crop phenological stages.
The susceptibility analysis indicates that 73.3% of the region was susceptible to erosion, with a higher
probability in river areas, at high altitudes, and on steep slopes. However, good vegetation cover
can reduce the risk of soil erosion to some extent. This study offers a new perspective on monitoring
regional soil erosion in the black soil region of China. The proposed method holds potential for future
expansion to monitor soil erosion in a larger areas, thereby guiding the strategies development for
protection of the agriculturally important black soil.

Keywords: erosion susceptibility; SBAS-InSAR; D-InSAR; deformation velocity; soil and water
conservation

1. Introduction

Black soils or prairie soils are endowed with exceptional physical properties and
nutrient contents, being ideal for plant/crop growth. They possess abundant fertility,
superior water and nutrient retention capacities, optimal aeration, and a favorable soil
structure that promotes extensive root growth and extension [1,2]. The primary black soil
regions, which constitute approximately 916 million ha or 7% of the Earth’s ice-free land
area, are located in mid-latitudes of North America (e.g., United States, Canada and Mexico),
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South America (e.g., Argentina and Uruguay), Eurasia (e.g., southern Russia and Ukraine)
and northeastern China [3]. These regions are crucial food-producing areas within their
respective countries and play an indispensable role in global food security [4–6]. However,
black soils worldwide are currently under a severe threat of degradation. According to the
Global Black Soil Report published by the Food and Agriculture Organization [7], most
black soils have experienced a substantial depletion of around half of their organic carbon
stocks, along with moderate to severe soil erosion. They also face the risks of nutrient
imbalance, acidification, soil compaction, and loss of biodiversity [8]. More than four
decades of overexploitation and unsustainable land use in the Black Soil Region (BSR) of
northeastern China have further exacerbated soil erosion, leading to significant degradation
of both soil quality and productivity.

Given the current critical situation, there is a need to assess the status of the black soils
in a timely and accurate manner and to formulate effective protection measures. There-
fore, the imperative to safeguard black soils necessitates rapid and precise monitoring of
soil erosion across extensive areas. Research on black soil erosion is categorized into five
spatial scales: sample points and slopes [9,10], sub-watersheds, watersheds, and regions.
LiDAR (Light Detection And Ranging) and fixed-point monitoring techniques based on
root exposure [11], which have been widely employed at the sample-point scale to monitor
the local factors influencing erosion dynamics, such as microtopography, climate, and
soil properties. Previous studies on the monitoring of slope erosion and sub-watershed
erosion using methods such as isotope tracing or runoff plots aimed to investigate various
factors, including soil erodibility, erosive sediment sources and gully erosion development
processes [12]. For watershed and regional-scale studies, the main methods encompass the
construction of process-based models, such as the Revised Universal Soil Loss Equation
(RUSLE) [13–15], the Chinese Soil Loss Equation (CSLE) [16], the Soil and Water Assessment
Tool (SWAT) [17,18], APEX [19,20], the Water and Tillage Erosion Model and Sediment De-
livery Model (WATEM/SEDEM) [21,22], the Limburg Soil Erosion Model (LISEM) [23–25],
and the Morgan–Morgan–Finney model (MMF) [26,27]. These are complemented by remote
sensing monitoring and hydrological monitoring [28]. While a large number of studies
on the erosion of black soils have been conducted so far, the primary focus has been on
gully erosion [29,30], slope erosion, and small watershed erosion [31–33]. Studies focusing
on large-scale regional erosion have mainly employed process models such as RUSLE or
hydrological remote sensing monitoring [34,35]. Although these methods meet the needs
of large-scale studies, they are affected by the resolution of images or related data, leading
to low accuracy. Consequently, there is an urgent need to identify a regional-scale moni-
toring technique that can meet the requirement of large-scale monitoring while ensuring
millimeter-level vertical accuracy [36,37].

Interferometric synthetic aperture radar (InSAR) is a technique for monitoring sur-
face deformation [36,38] that has been widely used in research fields such as geological
hazards [39–41], groundwater storage monitoring [42,43], construction monitoring [44,45],
and mine deformation [46,47]. Several studies have utilized Small Baseline Subsets In-
terferometric Synthetic Aperture Radar (SBAS-InSAR) to effectively monitor landslide
activity in northern California and southern Oregon, revealing a strong association between
landslides and precipitation [48–50]. Time-series InSAR has been employed in multiple
studies to investigate the long-term land subsidence patterns at Hong Kong Airport and
Kochi airport [51] over the past two decades, establishing a significant correlation be-
tween subsidence and factors such as landfill materials, underlying alluvial sediments,
and reclamation project stages [52]. Furthermore, time-series InSAR techniques have been
successfully applied to monitor glacier displacements and tropical forest disturbances in
northern Alaska, demonstrating their wide applicability with high accuracy [53,54]. These
findings collectively highlight the extensive potential of InSAR technology for large-scale
deformation monitoring, particularly in soil erosion assessment [55,56]. Satellite-borne
InSAR offers the advantage of acquiring extensive regional data, thereby overcoming limita-
tions associated with conventional monitoring methods such as subjective field distribution,
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limited spatial resolution, and high costs. Additionally, since soil erosion involves soil
relocation and deposition, it essentially represents a form of surface deformation. Hence,
InSAR technology can be employed to effectively assess large-scale changes in the thickness
of the surface soil layer at high spatiotemporal resolutions, providing valuable insights
into regional soil erosion levels. Moreover, this approach eliminates the need for expensive
long-term field monitoring stations, while ensuring continuous regional monitoring at
12-day intervals, thus making it highly advantageous for large-scale, continuous, regional
soil erosion assessment.

Currently, the black soil region of northeastern China faces multiple forms of com-
pound erosion, including water, wind, freeze–thaw, and gravity [57]. According to the
Black Soil Conservation and Utilization Report [58], the black soil zone experienced a total
of 221,600 km2 of soil erosion in 2018. Mild erosion was found to be dominant, accounting
for 73.8% of the affected area, with approximately 70% of this type of erosion being on
arable land. The average annual erosion rate in the BSR is about 2.2 mm yr−1 [59]. This
is further exacerbated by unsustainable human land-use practices that are accelerating
the erosion of this valuable land [60]. These factors have had a significant impact on the
ecological environment and agricultural production in the region [61,62]. In order to cope
with this serious situation, accurate monitoring of soil erosion status on a regional scale
and effective assessment of susceptibility are necessary. Susceptibility analyses and early
warnings for regional erosion are urgently needed to reduce black soil erosion. Through
the utilization of advanced radar remote sensing monitoring technology and Google Earth
Engine (GEE), it is possible to achieve precise monitoring and prediction of soil erosion,
providing a scientific basis for the formulation of targeted prevention and control measures.
In addition, these monitoring and prediction results can also serve as valuable reference
points for the modeling of regional soil erosion disasters. By conducting a comparative
analysis on soil erosion at different time intervals, potential disaster risks can be identified
in a timely manner, enabling the implementation of effective preventive measures and
minimizing disastrous losses.

Yanshou County is situated in a typical black soil region of northeastern China, char-
acterized by an intricate network of rivers and abundant water resources, rendering it a
prominent hub for grain production. Simultaneously, this area exhibits diverse geomorpho-
logical structures and complex topography, particularly marked by numerous ditches along
the periphery of low mountainous terrain, leading to severe soil erosion. This study focuses
on Yanshou County as a representative sampling site in the BSR to conduct comprehensive
monitoring and address regional soil erosion issues.

The objectives of this study were to (1) investigate and validate the deformation and
velocity of soil erosion in the Yanshou County through a long-term time series analysis
using InSAR technology, (2) analyze the dynamic alterations and primary driving factors
influencing soil erosion in the Yanshou County, and (3) integrate the existing RUSLE
model’s relevant datasets, soil data, and cultivation information on the GEE platform to
accurately and comprehensively assess the susceptibility to soil erosion.

2. Materials and Methods
2.1. Study Area

This study was conducted in Yanshou County (3149 km2) in the southeastern part
of Heilongjiang Province, Northeast of China. Yanshou County has a cold-temperate
continental monsoon climate, characterized by cold and dry conditions and a long freezing
period in winter, and concentrated precipitation in the warm, humid summer. This region
has an average annual temperature of 2.3 ◦C and an average annual precipitation of
571.7 mm. The general terrain slopes from the south and north toward the middle, and
the middle slopes from the southwest toward the northeast, with the lowest elevation
point 110 m above mean sea level. The area is characterized by four types of terrain: low
mountains, hills, terraces, and plains. The low mountain and hilly areas are affected by
erosion and are mostly composed of granite and some Paleozoic metamorphic rock series.
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There are many ditches and forks on the edge of low mountainous areas, with complex
terrain and severe soil erosion. The plateau and plain areas are distributed on both sides
of the Maqian River valley and are affected by erosion from rivers such as the Maqian
River. The area is rich in water sources, flat terrain, and fertile land, making it the main
grain-producing area in Yanshou County (Figure 1).
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Figure 1. Geographic location of Yanshou County, Heilogjiang Province, China, (a) in the northeast
black soil region and (b) in Heilongjiang Province.

2.2. Data
2.2.1. InSAR Data

Sentinel-1 consists of two polar-orbiting satellites. Its C-band synthetic aperture radar
imager can obtain images without being affected by clouds and water vapor. The data
obtained by radar has certain penetration, which can reduce the influence of high-density
vegetation on monitoring [63]. The D-InSAR analysis images were divided into two pairs,
which were acquired from 2 October 2016 to 11 December 2021 and from 6 January 2017 to
20 December 2017, respectively. The SBAS-InSAR analysis obtained 25 Sentinel-1 C-band
IW VV SLC images with a spatial resolution of ~15 m through the descending orbit from
6 January 2017 to 20 December 2017. The specific parameters of Sentinel-1 image data and
the temporal and spatial baseline connection graph of the time series interferogram pairs
are presented in Table 1 and Figure S5, respectively.
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Table 1. Basic parameters of synthetic aperture radar (SAR) image data and their specific data
acquisition time.

SAR Data Parameter Sentinel-1 B

Satellite (path) Descending
Polarization VV
Beam mode IW
Wave band C
Orbit Path 32
Pixel spacing (Rg × Az) (m) 2.3 × 14.1
Wave length 5.6 cm
Time interval for image acquisition/(days) ~12
Image time range (D-InSAR) 2016–2021 (multi-year)/2017 (single)
Image time range (SBAS) 6 January 2017 to 20 December 2017
Quantity of images 25

SBAS-InSAR data
Specific time

6 January, 18 January, 30 January, 11 February,
7 March, 19 March, 31March, 12April, 24 April,
6 May, 18 May, 30 May, 11 June, 23 June, 5 July,
29 July, 10 August, 22 August, 3 September,
15 September, 9 October, 14 November,
8 December, 20 December

2.2.2. Other Datasets

(1) Generic Atmospheric Correction Online Service (GACOS) for InSAR data: GACOS
makes comprehensive use of high-resolution ECMWF data, GNSS tropospheric delay data,
and high-precision DEM data to achieve the separation and estimation of water vapor
components related to the terrain and those not related to the terrain, thus effectively
improving the accuracy of atmospheric correction [64]. GACOS is globally applicable and
has been widely used in the atmospheric and terrain correction of InSAR, significantly
improving the accuracy of the InSAR results [65]. The time period related to GACOS data
corresponds to the time node of InSAR data one by one, which provides a strong support
for obtaining accurate geophysical information in time.

(2) Data sources for susceptibility analyses
The data selected for calculating the 15 characteristics of the susceptibility analyses

are listed in Table 2, along with the data sets used for the acquisition of climatic char-
acteristics, the calculation of the RUSLE model, and the single-band calculation. The
resolution varied from 10 m to 5566 m, and the resolution of the data was unified to 1000
m by raster resampling through the GEE cloud platform, which was used for the erosion
susceptibility analysis.

Table 2. The main datasets used in this study and their sources.

Datasets Bands Spatial
Resolution (m) Reference

CHIRPS Pentad: Climate Hazards
Group InfraRed Precipitation with
Station Data (Version 2.0 Final)

precipitation 5566 https://doi.org/10.1038/sdata.2015.66,
accessed on 5 September 2024

NASA SRTM Digital Elevation 30 m elevation 30 https://doi.org/10.1029/2005RG000183,
accessed on 5 September 2024

OpenLandMap Soil Bulk Density b0 (soil bulk density at 0 cm depth) 250 https://doi.org/10.5281/zenodo.1475970,
accessed on 5 September 2024

OpenLandMap Sand Content b0 (sand content at 0 cm depth) 250 https://doi.org/10.5281/zenodo.1476851,
accessed on 5 September 2024

OpenLandMap Clay Content b0 (clay content at 0 cm depth) 250 https://doi.org/10.5281/zenodo.1476854,
accessed on 5 September 2024

https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1029/2005RG000183
https://doi.org/10.5281/zenodo.1475970
https://doi.org/10.5281/zenodo.1476851
https://doi.org/10.5281/zenodo.1476854
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Table 2. Cont.

Datasets Bands Spatial
Resolution (m) Reference

OpenLandMap Soil Water
Content at 33 kPa (Field Capacity)

b0 (soil water content at 33 kPa
(field capacity) at 0 cm depth) 250 https://doi.org/10.5281/zenodo.2629589,

accessed on 5 September 2024

MCD12Q1.006 MODIS Land Cover
Type Yearly Global 500 m LC_Type1 500 https://doi.org/10.5067/MODIS/MCD1

2Q1.006, accessed on 5 September 2024

Sentinel-2 MSI: Multi-Spectral
Instrument, Level-1C B8, B4 10 Copernicus Sentinel Data Terms and

Conditions.

OpenLandMap Soil
Texture Class (USDA System)

b0 (Soil texture class
(USDA system) at 0 cm depth) 250 https://doi.org/10.5281/zenodo.1475451

accessed on 5 September 2024

MYD13Q1.006 Aqua Vegetation
Indices 16-day Global 250 m EVI (Enhanced Vegetation Index) 250 https://doi.org/10.5067/MODIS/MYD1

3Q1.006, accessed on 5 September 2024

2.3. Study Framework and Methods

InSAR technology was applied to monitor the changes and deformation rates of soil
layer thickness in BSR, with the change rate of regional soil layer thickness used as the
training sample. The GEE platform was used to classify the susceptibility to regional
erosion using machine learning (Random Forest) algorithm (Figure S2).

2.3.1. Acquisition of Long-Term Surface Deformation and Velocity with Interferometry
Synthetic Aperture Radar (InSAR) Technique
Acquisition of Surface Deformation Change with D-InSAR

D-InSAR is a common technique used to obtain surface deformation information in an
area by using SAR images of different phases through differential interferometry [66]. The
Sentinel images from 2016 and 2021 were used to detect the changes in surface deformation
over long time series using ENVI Sarscape 5.6.2 software in which the monitoring process
was divided into several steps (Figure S3): (1) data pre-processing (Sentinel-1 C-band raw
images were used to obtain Sentinel-1 SLC images of the target area through cropping
and geo-pairing); (2) applying the two-orbit method using SAR images and DEM data for
interferometric processing to obtain the corresponding intensity data; and (3) filtering the
intensity data using a self-suitable filter, de-entangling, and performing orbit refinement to
obtain the surface deformation results (Equation (1)):

∆R =
λ

4π

(
ϕtop+dem − ϕtop,sim

)
(1)

where ∆R denotes the ground deformation values (m), ϕtop+dem denotes the interferometric
results of the terrain phase, where the mathematical simulation process involves DEM
data acquisition, and ϕtop,sim denotes the interferometric results of the terrain and defor-
mation phases, whose simulation process is acquired by the two views used for D-InSAR
interferometric images.

Acquisition of Deformation Velocity with SBAS-InSAR

SBAS-InSAR is a differential interferometric technique based on multiple SAR images
for generating surface deformation maps and the corresponding deformation rate changes.
It can effectively overcome the incoherence of time and space by selecting multiple main
images using appropriate spatiotemporal baseline thresholds to continuously monitor
surface deformation in time series [67]. In this study, we selected 25 images for the whole
year, from 6 January 2017 to 20 December 2017, for time-series InSAR monitoring to explore
the reasons for the different trends of multi-year deformation and single-year deformation,
via InSAR monitoring. This method entails a series of sequential steps encompassing data
acquisition, interference, interference post-processing, deformation estimation, and the
final deformation solution (Figure S4) [48]. The deformation monitoring results can be
affected by noise, so in order to improve the accuracy of monitoring, the PSI points above a

https://doi.org/10.5281/zenodo.2629589
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://doi.org/10.5281/zenodo.1475451
https://doi.org/10.5067/MODIS/MYD13Q1.006
https://doi.org/10.5067/MODIS/MYD13Q1.006
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coherence value threshold limit of <0.40 (which were non-ideal for deformation monitoring)
were filtered [51].

2.3.2. Erosion Susceptibility Analysis with Machine Learning in Google Earth Engine (GEE)

This study aimed to use the machine learning classification algorithm to solve the
problem of regional soil erosion susceptibility assessment in Yanshou County. The workflow
diagram is given in Figure 2. Susceptibility was divided into the following steps: (1) Pre-
processing: the RUSLE model and Double Logistic algorithms [68] were used to extract
feature variables. This process yielded features such as the rainfall erosivity factor (R),
the topographic factor (LS), the end of a growth season (EOS, Figure S1), etc. (Table 3).
Specific algorithms are listed in the Supplementary Material. (2) Feature construction: the
divided variables were categorized into three groups, including RUSLE erosion impact
factors, natural factors, and cultivation (climatic). All selected feature bands were then
fused to construct feature data collections using the GEE cloud platform. (3) Training
sample generation: in the generation of training samples, a random sampling method was
implemented to select 5000 deformation rate points from the 106,635 deformation points
generated by the InSAR technique (Figure S6). Interpretive markers were generated based
on the distribution of specific values of deformation points. The erosion susceptibility was
classified into 16 categories, including 8 increasing (thickening) and 8 decreasing (erosion)
categories. (4) Susceptibility classification: the random forest model was implemented
to complete the delineation of erosion susceptibility. The number of random trees was
set to 50, a decision based on an assessment of the data volume and the stability of the
classification within the GEE cloud platform.
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Table 3. Main sources of characteristic band used in susceptibility analysis and their corresponding
calculation method.

Modules Feature Description Calculation Method

RUSLE
Figure 3

R Precipitation erosion [69]
K Soil erosion [70]
LS Topographic [71]
C Vegetation cover and management [72]
P Soil and water conservation measures [73]

Double Logistic
Growth

SOS Start of growth season (day)
[74–76]LOS Lasting of growth season (days)

EOS End of growth season (day)
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2.3.3. Software and Google Earth Engine Cloud Platform

In this study, we opted to utilize SARscape 5.6.2 software for processing the D-INSAR
and SBAS-INSAR procedures, simultaneously employing the Generic Atmospheric Cor-
rection Online Service (GACOS) data for atmospheric correction and interference result
filtering [77]. The Google Earth Engine (GEE) cloud platform serves as a remote sensing big
data platform that integrates data storage, online access, analysis, and processing [78]. In
recent years, it has found extensive application in diverse research domains, such as forest
degradation and climate monitoring [79], along with disaster early warning systems [80].
Moreover, the GEE cloud platform incorporates numerous machine learning algorithms;
among them, random forest is widely favored due to its efficiency, speed, and robustness
against overfitting issues [81,82]. In this study, we propose a comprehensive solution to ad-
dress erosion susceptibility by leveraging the GEE cloud platform along with its embedded
random forest algorithm.
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3. Results
3.1. Calculation of Multi-Year and Single-Year Shape Variables in Yanshou County
Using D-InSAR

The statistics indicate that the regional cumulative deformation ranged from −149.3 to
140.6 mm between 2016 and 2021, with a mean value of −11.09 mm in regional deformation,
demonstrating a clear subsidence trend (Figure 4a). Based on the spatial distribution of
residential areas, agricultural areas, and associated land use, it can be inferred that there
might exist a reduction in the thickness of the soil layer in the region. The cumulative
deformation distribution ranged from −171.8 to 152.9 mm in 2017, with a mean value
of 5.6 mm (Figure 4b). The result contradicts the multi-year cumulative deformation,
indicating an accumulation trend in the region, along with the thickening of the soil layer.
Spatial analysis of the long-term regional deformation time series revealed that the built-up
and planted areas exhibited minor settling ranging from 0.2 mm to 5 mm, whereas more
pronounced settling (~20 mm) was observed along river banks in the central region. Some
mountainous regions displayed noticeable accretion; however, within these areas, soil
relocation resulted in subsidence on slopes and accretion in the adjacent lower areas. The
single-year deformation analysis further indicated soil stacking in the eastern mountains
and rivers, while slight subsidence (~10 mm) was observed in northeastern and southern
hilly areas with more significant local erosion (>34 mm). Despite a similar overall trend to
multi-year subsidence, distinct differences were apparent in local riverbanks and higher
elevation regions.

 
 
 
 

 

Figure 4. Long-term time series surface deformation results obtained by D-InSAR for Yanshou
County: (a) average annual deformation from 2016 to 2021; (b) average deformation in 2017.

3.2. Calculation of Cumulative Deformation Rate Changes in Yanshou County Using
SBAS-InSAR

Based on the 106,635 sample points gathered from SBAS-InSAR monitoring, the annual
cumulative deformation rate was between −424.63 mm yr−1 and 521.96 mm yr−1, with a
spatial mean value of −8.08 mm yr−1 (RMSE: 3.442 mm). The distribution of cumulative
velocity exhibited a higher degree of concentration, with 96,689 out of 106,635 significant
deformation rate points falling within the velocity range of −50 to 30 mm yr−1, accounting
for a substantial proportion (90.7%) of the total (Figure 5). The distribution of the significant
points was widest in the range from −10 mm yr−1 to 5 mm yr−1 (Figure 5B). Based on the
spatial distribution information depicted in Figure 5A, it was evident that the central urban
area and the river banks exhibited a higher density of significant points, indicating changes
in deformation velocity. Conversely, the southern hilly area and northeastern hilly area
displayed a lower number of such significant points; however, extreme points (deformation
rate > 100 mm yr−1 or <−100 mm yr−1) were more widely distributed. The deformation
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rate distribution near the center of the city and the plantation area was more stable, with
rates concentrated in the range of −10 to 5 mm yr−1, and the overall tendency was for a
slight subsidence.
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Figure 5. Distribution of the mean cumulative deformation rate in 2017, obtained using SBAS-InSAR
monitoring: (A) spatial distribution of the mean cumulative deformation rate; (B) statistical distri-
bution of the mean cumulative deformation rate. (C–L) Changes in cumulative deformation rate
(mm yr−1) in Yanshou County by season and node; (C,E,I,K) represent the spatial distribution of
cumulative deformation rate on 31 March, 29 July, 15 September, and 20 December 2017, respectively;
(D,F,J,L) represent the statistical distribution of cumulative deformation rate on 31 March, 29 July,
15 September, and 20 December 2017, respectively; (G) cumulative deformation rate versus tempera-
ture and precipitation; and (H) temporal variation of cumulative deformation rate with temperature,
precipitation, and snow thickness.

In order to further reveal the changes in each season in Yanshou County, the annual-
scale cumulative deformation rate was divided according to the time nodes of 31 March,
29 July, 15 September, and 20 December, 2017 and analyzed and processed in each of these
time nodes. The mean cumulative deformation rate was −2.838 mm yr−1 on 31 March,
−4.752 mm yr−1 on 29 July, −5.603 mm yr−1 in mid-September, and −6.142 mm yr−1 on
20 December (Figure 5), which was the lowest cumulative deformation rate across the four
time nodes. The minimum mean cumulative deformation rate (−7.38 mm yr−1) occurred
on 8 December.
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3.3. Statistical Analysis of Deformation Rate in Residential and Planting Regions

After the filtering and selection of SBAS-InSAR monitoring results with the criteria
of coherence > 0.4, 31,151 monitoring sites were retained. From the spatial distribution
analysis of the monitoring sites (Figure 6), the sites were mainly distributed in residential
areas and agricultural cultivated land near rivers. The statistical analysis showed that the
deformation rate of residential areas and agricultural cultivated areas was relatively gentle,
with an annual mean value of −5.054 mm yr−1 (RMSE: 1.335 mm) and a standard deviation
of 2.867 mm yr−1, and the deformation velocity was mainly scattered in the range of −20
to 10 mm yr−1 (Figure 6c). The time series results revealed that the soil layer thickness of
residential areas and agricultural land had a gradually thinning trend, whereas the soil
layer subsidence rate in other months was ~ −5 mm yr−1 to −4 mm yr−1, except in March
(Table 4). Residential areas and agricultural cultivated land began to experience the rainy
season in April, and the settlement rate increased significantly, reaching a peak value at the
end of the rainy season in September (Figure 7).

 
 
 
 

 
Figure 6. Changes in cumulative deformation rate (mm yr−1) in residential and cultivated regions
(coherence > 0.4): (a,b) spatial distribution of the mean cumulative deformation rate, (c) statistical
distribution of the mean cumulative deformation in residential and planting regions.

Table 4. Descriptive statistics of cumulative deformation in residential and planting regions
(unit: mm).

Deformation
(mm)

Date

18
January

11
February

31
March

24
April

30
May

23
June

29
July

22
August

15
Septem-

ber

9
October

14
November

20
December

Velocity
mm
yr−1

Max 18.1 41.6 9.8 12.4 19.7 21.4 14.4 17.5 15.4 16.6 19.8 35.9 21.909
Min −12.2 −22.9 −17.9 −36.2 −45.3 −31.3 −45.1 −45.9 −47.2 −48.5 −51.7 −52 −57.173

Mean −0.156 3.959 −2.339 −4.864 −4.513 −4.202 −4.043 −3.848 −3.886 −4.916 −4.375 −2.433 −5.054
Standard
deviation 1.04 3.468 2.142 2.913 2.754 3.089 3.124 3.171 2.981 2.905 2.869 2.886 2.867
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3.4. Analysis of the Drivers of Deformation in Yanshou County

In order to further elucidate the drivers of regional deformation and the correlation
between deformation and erosion, the four correlation factors of the RUSLE model, surface
temperature, plant phenology information, and LOS, which all represent agronomic activi-
ties, were correlated with cumulative deformation rates in regions exhibiting significant
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deformation. There was a moderate negative correlation between the changes in cumulative
deformation rate and the precipitation erosion factor R (Figure 8a). As the erosion factor
increased, the rate of subsidence in the region increased. The changes in deformation rate
exhibited a weak correlation with surface temperature. An increase in ground temperature
led to a tendency for the sedimentation rates to increase, but at a slower pace. Due to the
complexity of land use types in the region and the mix of various factors, we employed the
random forest method to assess feature importance rankings for potential factors affecting
regional deformation. The feature importance ranking diagram (Figure 8b) revealed that
cultivation had the most significant effect on regional deformation, followed by topographic
factors (slope and aspect) and precipitation. Compared with cultivation and topography,
the basic properties of soil had relatively little effect on regional deformation. Among the
soil characteristics, bulk density, sand content, and soil moisture content were relatively
more important.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 22 
 

 

3.4. Analysis of the Drivers of Deformation in Yanshou County 
In order to further elucidate the drivers of regional deformation and the correlation 

between deformation and erosion, the four correlation factors of the RUSLE model, 
surface temperature, plant phenology information, and LOS, which all represent 
agronomic activities, were correlated with cumulative deformation rates in regions 
exhibiting significant deformation. There was a moderate negative correlation between 
the changes in cumulative deformation rate and the precipitation erosion factor R (Figure 
8a). As the erosion factor increased, the rate of subsidence in the region increased. The 
changes in deformation rate exhibited a weak correlation with surface temperature. An 
increase in ground temperature led to a tendency for the sedimentation rates to increase, 
but at a slower pace. Due to the complexity of land use types in the region and the mix of 
various factors, we employed the random forest method to assess feature importance 
rankings for potential factors affecting regional deformation. The feature importance 
ranking diagram (Figure 8b) revealed that cultivation had the most significant effect on 
regional deformation, followed by topographic factors (slope and aspect) and 
precipitation. Compared with cultivation and topography, the basic properties of soil had 
relatively little effect on regional deformation. Among the soil characteristics, bulk 
density, sand content, and soil moisture content were relatively more important. 

 
Figure 8. Correlation between cumulative deformation velocity and erosion-related factors. (a) Heat 
map of correlation between cumulative deformation rate and RUSLE factors. LOS: length of the 
season, ST: surface temperature. (b) Importance ranking of features affecting the change in 
deformation rate using the random forest algorithm. WC: water content, BD: bulk density. 

3.5. Erosion Susceptibility Analysis for Yanshou County 
The deformation in Yanshou County does not fully represent the current erosion 

status of the region, but the deformation rate of the surface in the BSR can indicate regional 
erosion and subsidence trends, as well as areas with severe deformation. To monitor soil 
erosion susceptibility in the BSR using regional deformation changes, we utilized actual 
deformation rates as training samples and selected relevant factors influencing black soil 
erosion as features for classifying regional susceptibility. Because a single deformation 
rate cannot reflect the erosion status of the whole region, the deformation rates distributed 
in the BSR were classified into eight classes of erosion and eight classes of accumulation 
for a total of 16 classes, according to the pattern of their distribution, and the regional 
erosion susceptibility was classified with the aid of the machine learning (random forest) 
algorithm. The distribution of erosion susceptibility gradually decreased from high 
altitude to low altitude (Figure 9a), while the erosion areas were adjacent to the 

Figure 8. Correlation between cumulative deformation velocity and erosion-related factors. (a) Heat
map of correlation between cumulative deformation rate and RUSLE factors. LOS: length of the sea-
son, ST: surface temperature. (b) Importance ranking of features affecting the change in deformation
rate using the random forest algorithm. WC: water content, BD: bulk density.

3.5. Erosion Susceptibility Analysis for Yanshou County

The deformation in Yanshou County does not fully represent the current erosion status
of the region, but the deformation rate of the surface in the BSR can indicate regional
erosion and subsidence trends, as well as areas with severe deformation. To monitor soil
erosion susceptibility in the BSR using regional deformation changes, we utilized actual
deformation rates as training samples and selected relevant factors influencing black soil
erosion as features for classifying regional susceptibility. Because a single deformation
rate cannot reflect the erosion status of the whole region, the deformation rates distributed
in the BSR were classified into eight classes of erosion and eight classes of accumulation
for a total of 16 classes, according to the pattern of their distribution, and the regional
erosion susceptibility was classified with the aid of the machine learning (random forest)
algorithm. The distribution of erosion susceptibility gradually decreased from high altitude
to low altitude (Figure 9a), while the erosion areas were adjacent to the depositional areas
(blue areas are adjacent to red areas in the figure), which may be susceptible to scouring
or gully erosion. At the same time, the residential areas and cultivated areas were prone
to slight erosion, and some forested areas showed obvious sedimentation. The erosion
susceptibility analysis revealed a significant risk of erosion activity in Yanshou County’s
BSR, accounting for approximately 73.3% of its total land cover. A proportion of 24.1% of the
area (mountainous or hilly terrain, relatively high altitude) was prone to moderate erosion
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(sedimentation rate between −50 mm yr−1 and −30 mm yr−1), necessitating effective
protection measures during precipitation events (Figure 9b).
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Figure 9. Spatial and statistical distribution of erosion susceptibility: (a) spatial distribution pattern
of erosion susceptibility obtained using the random forest algorithm; (b) statistical distribution map
of erosion area delineation; (c) cumulative deformation rate inversion results.

4. Discussion
4.1. Multi-Year and Single-Year Deformation Attribution Analysis in Yanshou County

The deformation monitoring results showed that the spatial mean values of single-
year (2017) and multi-year (2016–2021) cumulative deformation in Yanshou County were
5.6 mm and −11.1 mm, respectively. There was a clear difference in the values and the
direction of these two, with the overall deformation of the five-year period showing a
tendency for the region to subside, whereas the single-year deformation showed a tendency
to uplift. Previous studies showed that changes in groundwater resources may cause
either subsidence or uplift in their study region, which was mainly related to the local
geological and hydrological conditions [83]. According to a news report [84], July–August
2017 experienced heavy rainfall in many areas of Heilongjiang Province. This led to a
substantial increase in the water levels of some rivers by up to 2 m, and heavy rainfall in a
short period of time will cause the groundwater level to rise sharply [85]. Yanshou County
is rich in hydrological resources and has many rivers. Among them, the Maqian River
has a total length of 96.7 km in Yanshou, with a watershed area of up to 2818.8 km2. The
2017 single-year deformation results showed more obvious sedimentation in the hilly area,
while the mainstem of the Maqian River showed more pronounced subsidence (Figure 4b).
Based on climatic elements and DEM, we hypothesize that the positive abrupt change
in single-year shape change in 2017 may be related to the subsidence of the subsurface
due to groundwater and rivers. Changes in groundwater due to extreme precipitation
cause the regional subsurface to bulge [86], leading to a single-year bulge in the monitored
deformation results, while heavy precipitation will cause a significant increase in river sand
transport, leading to significant erosion along the banks of the river.

The multi-year deformation analysis showed that the central plain and hilly area had
obvious subsidence. The general terrain of Yanshou County slopes from south toward
north in the middle, and from southwest to northeast in the middle, where plains and hills
are distributed in the central and peripheral areas, and the valley bottom is an alluvial plain
among the mountains, most of the plain being cultivated. Sloping cultivated land is the
main source of soil and water loss in the BSR, which is closely related to the thinning of
the black soil layer [87]. Compared with the anomalous uplift monitored in the single-year
results, the five-year deformation trend was basically consistent with the current erosion
status of the black soil zone. Wang et al. [88] reported an erosion rate of the black soil zone
of −2.22 mm yr−1, based on a 137CS tracer study of 12 black soil profiles. A total erosion
of −11 mm over a 5-year period was reported in the BSR, with Yanshou County situated
within its sub-region. Notably, our multi-year deformation monitoring using D-InSAR
yielded a similar trend, with a mean value of −11.1 mm. This indicates that the use of
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InSAR technology to investigate the current situation of long-term soil erosion in the black
soil zone has great potential.

4.2. Mechanisms and Drivers of Regional Deformation Rate Changes

The average value of deformation rate of the time nodes was negative for the whole
of 2017, except for January and February, showing the state of overall subsidence of the
region. With increasing time, the cumulative deformation rate continued to increase in the
negative direction, and the phenomenon of subsidence became increasingly significant.
Cumulative deformation rate counting by time nodes and the relationship between tem-
perature, precipitation, snow thickness, and other related variables showed that the BSR
in Yanshou County may be affected by multi-camp force composite erosion. Freeze–thaw
erosion is a phenomenon in which the water in the soil expands when it freezes, leading to
an increase in the number of fissures, the fragmentation of the whole soil body, a decrease
in the erosion resistance stability after ablation, and deformation and displacement under
the action of gravity, which usually occur in the spring, when the snow and the ice melt [89].
The SBAS-InSAR results showed that, as the temperature increased in the spring (March),
the snow accumulated during the winter melted in the spring to form snowmelt runoff,
and the cumulative deformation rate of the sub-nodes changed significantly from 3.279 to
−2.805 mm yr−1, which indicated that the soil erosion in the region was intensifying. The
wavelet analysis of the deformation rate and temperature revealed that when the tempera-
ture increases at the onset of spring, the change in surface rate is closely correlated to the
surface temperature (relevance > 0.9). By comparison, the erosion rate area flattens out in
the winter season (after September) with the gradual decrease in temperature (Figure 10a).
Therefore, the deformation of the BSR in Yanshou County appears to be closely related to
the freezing and thawing erosion [60,90–92].
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Figure 10. Wavelet analysis [93] between velocity and temperature (a) and precipitation (b) The
arrows denote the relative phase relationship (in-phase, arrows point right; anti-phase, arrows point
left), and the color denotes the strength of coherence.

The deformation rate decreased with increasing precipitation in April. At the end of
August, with the peak of precipitation, the sedimentation rate also reached the quarterly
peak, from ~−3 to ~−6 mm yr−1. With the end of precipitation on 8 December, the
sedimentation rate reached a peak of −7.318 mm yr−1, which revealed that the deformation
of the BSR was closely related to precipitation. The effect of precipitation on regional
erosion and sedimentation was longer lasting than the effect of temperature on deformation
rate and showed an obvious correlation between summer and winter, with erosion velocity
increasing negatively with increasing precipitation intensity. Meanwhile, the effect of
precipitation (snowfall) on erosion velocity was smoother and more weakly correlated
in winter than in summer (Figure 10b). The increase in water content is a significant
contributing factor that diminishes surface friction between stacked materials, leading to
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additional surface deformation [89]. Moreover, the observed rate of deformation exhibits a
weak correlation with soil water content, indicating the relative importance of these features,
potentially influenced by data resolution. The deformation of the region cannot fully
represent the current erosion status. However, it partially reflected the trend of regional
erosion. Our findings indicate a strong correlation between regional deformation and freeze–
thaw cycles, as well as precipitation factors. The BSR of Yanshou County was therefore
subjected to the composite effect of freeze–thaw erosion [94,95] and precipitation erosion.

Constraints remain in the study of deformation drivers in Yanshou County. The types
of erosion in the northeastern black soil zone mainly included hydraulic erosion, wind
erosion, freeze–thaw erosion, and gravity erosion. Due to the limitations of data resolution,
it was difficult to quantify the effect of wind erosion on the deformation of the black
soil zone. The surface deformation can also be associated with natural disasters, such as
landslides and avalanches. However, both landslides and avalanches can be considered as
displacements of soil under external stresses, resulting in changes in the thickness of the
soil layer. Therefore, they can be regarded as erosion phenomena caused by the intense
scouring of the soil body. There are few published studies related to gravity erosion, the
mechanism of which is still unclear, so we were unable to find the relevant variables needed
to explore in-depth the effect of gravity erosion on the deformation of the region.

4.3. Implications of Erosion Susceptibility Analyses for Regional Black Soil Conservation

There is a significant risk of erosion in the region, with more than 70% of the area being
susceptible to soil erosion. The region is subjected to the compound influence of hydraulic
erosion and freeze–thaw erosion, leading to severe scouring during the summer months,
which poses threats to agricultural production and human safety. The erosion susceptibility
analysis revealed that altitude and slope exert a substantial influence on erosion within
the area. Erosion gradually weakens from high-altitude areas to low-altitude regions,
consistent with previous research findings that emphasize the need for regular monitoring
in the high-altitude hilly areas of Yanshou County to prevent disasters. However, some
high-elevation locations exhibit an opposite trend, where soil deposition occurs, potentially
due to interactions between elevation, slope, vegetation cover, and other factors. Adequate
vegetation cover plays a crucial role in reducing erosion risk within the region while also
contributing towards wind prevention and soil stabilization, albeit to a limited extent.

The susceptibility analysis revealed that the region is prone to gully erosion and scour-
ing, which may be attributed to monocropping practices. In Yanshou County, although the
vegetation cover is relatively high at 69.2%, conventional perceptions would not anticipate
severe soil erosion. However, it should be noted that barren mountains and wastelands
account for 11.5% of the total area, which is predominantly characterized by swampy
pastures as the main vegetation type. Additionally, extensive farmland and sloping arable
land within the region are subjected to more severe gully erosion due to the topographic
structure and multiple river basins [96]. To mitigate the cropland erosion caused by culti-
vation practices, it is recommended to prioritize straw incorporation and integrate crop
rotation, deep plowing, reduced tillage or no-tillage methods with erosion-prevention
measures. For large areas of sloping arable land, protective plowing should be adopted,
along with improved farmland runoff drainage measures and the management of erosion
gullies on farmland and roads. Additionally, contour plowing and horizontal terraces can
be established to reduce soil erosion on sloping arable land. Additionally, effective planting
structures, along with on-farm water storage and irrigation facilities, are imperative to
mitigate diffuse, irrigation-induced secondary soil erosion.

The erosion susceptibility analysis demonstrated the potential for sedimentation on
both riverbanks, with the sediment subsequently migrating to adjacent areas due to summer
river scouring effects. To safeguard these riparian zones, it is recommended to implement
an integrated management strategy for small watersheds, aimed at preserving vegetation
on both sides of the river. Furthermore, in specific regions, consideration should be given to
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constructing ditch storage projects and implementing flash flood and debris flow drainage
systems as measures to mitigate watershed damage during the flood season.

4.4. Shortcomings and Prospects of Using InSAR Technology to Monitor Soil Erosion in the BSR

Although the use of InSAR technology for monitoring soil erosion changes in the black
soil area (BSR) meets large-scale monitoring requirements and ensures high accuracy, it has
several limitations. These include the following: (1) the susceptibility of InSAR technology
to errors caused by vegetation and topography, particularly in areas with dense vegetation
cover and gullies; (2) the number of training samples for machine learning is limited to 10%
of the total due to restrictions on the GEE platform; and (3) for multi-year erosion research,
it is essential to consider that deformation may result from variations in the water table or
crustal movement, and not solely from erosion. Therefore, the impact of multiple factors
on monitoring results must be considered.

To address the limitations of InSAR in monitoring soil erosion, future studies should
consider the following measures to mitigate errors caused by multiple factors, so as to
further enhance the accuracy of regional erosion monitoring: (1) utilizing measured data
or Unmanned Aerial Vehicle (UAV) data to reconstruct the regional deformation and
rectify InSAR inaccuracies [97,98]; (2) quantifying the changes in regional groundwater
and settlement of built-up areas by employing Gravity Recovery and Climate Experiment
(GRACE) data and building information mode (BIM) technology, for example, to eliminate
the influence of groundwater table fluctuations and earth movement; and (3) conducting
research on a large watershed scale with comprehensive monitoring data on river discharge
and sediment yield.

5. Conclusions

The black soil region in Northeast China currently faces challenges such as thinning,
compaction, and degradation. This study aimed to efficiently and accurately capture and
analyze the spatial and temporal distribution characteristics of soil erosion at medium and
large scales. The ultimate goal was to comprehensively map the current state of erosion
in Northeast China’s BSR, providing essential data and scientific references for effective
conservation measures and the sustainable development of this valuable resource. In
this study, we employed diverse InSAR techniques to monitor and assess the regional
deformation variables and rates in Yanshou County, Heilongjiang Province. Furthermore,
machine learning algorithms were applied to analyze the susceptibility to erosion based
on the obtained rates as training samples. The proposed InSAR-based regional-scale
black soil erosion monitoring technique provides an effective means of investigating and
assessing black soil erosion. Despite the influence of external factors such as vegetation,
groundwater, and crustal movement on current InSAR techniques, the results closely align
with measured data, demonstrating their practical significance. The region was subject to
the compound influence of hydraulic and freeze–thaw erosion, which was closely related
to crop phenology. The susceptibility analysis indicated that good vegetation cover reduces
the risk of soil erosion to a certain extent. Therefore, the application of machine learning in
erosion susceptibility analysis offers a valuable framework for developing soil and water
conservation measures in Yanshou County. Its potential extension to a broader black soil
region promises to enhance the monitoring and protection of this invaluable resource. To
mitigate potential loss in the river basin during the flood season, it is recommended to
implement comprehensive small watershed management strategies, safeguard riparian
vegetation, and construct gully water storage facilities, as well as mountain flood and
debris flow drainage systems in select areas.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16203842/s1, Captions: RUSLE and phenological information
calculation method and erosion susceptibility analysis code Figure S1: Results of the calculation of
phenological information: (a) timing of the beginning of the growing season (b) timing of the end of
the growing season (c) duration of the growing season. Figure S2. The overall logic frame diagram.
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Figure S3. Flowchart of D-InSAR technique to acquire surface morphology variables. Figure S4.
Flowchart of SBAS-InSAR technique to acquire surface deformation rate. Figure S5. Temporal
(left) and spatial (right) baseline connection graph of interferogram pairs. Figure S6. Sample data
sampling distribution for sensitivity analysis. Sample data for machine learning model training with
5000 points sampled from 106,635 SBAS-InSAR cumulative deformation rate points, where black
represents the spatial distribution of the sample d data.
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