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Abstract: As an important ecological barrier and a crucial base for animal husbandry in China,
the forage–livestock balance in the Three-River-Source Region (TRSR) directly impacts both the
degradation and recovery of grassland. This study examines the forage–livestock balance in the TRSR
over the past 13 years (2010–2022) by calculating both the theoretical and actual livestock carrying
capacity, thereby providing a scientific basis for regional animal husbandry policies. Firstly, the
Carnegie–Ames–Stanford Approach (CASA) model was improved to fit the specific characteristics of
alpine grassland ecosystem in the TRSR. This enhanced model was subsequently used to calculate
the net primary productivity (NPP) of the grassland, from which the regional grassland yield and
theoretical livestock carrying capacity were derived. Secondly, the actual livestock carrying capacity
was calculated and spatialized based on the number of regional year-end livestock. Finally, the
livestock carrying pressure index was determined using both the theoretical and actual livestock
carrying capacity. The results revealed several key findings: (1) The average grassland NPP in the
TRSR was 145.44 gC/m2, the average grassland yield was 922.7 kg/hm2, and the average theoretical
livestock carrying capacity was 0.55 SU/hm2 from 2010 to 2022. Notably, all three metrics showed an
increasing trend over the past 13 years, which indicates the rise in grassland vegetation activities.
(2) The average actual livestock carrying capacity over the 13-year period was 0.46 SU/hm2, showing
a decreasing trend on the whole. The spatial distribution displayed a pattern of higher capacity
in the east and lower in the west. (3) Throughout the 13 years, the TRSR generally maintained a
forage–livestock balance, with an average livestock carrying pressure index of 0.96 (insufficient).
However, the trend of livestock carrying pressure is on the rise, with serious overloading observed in
the western part of Qumalai County and the northern part of Tongde County. Slight overloading was
also noted in Zhiduo, Maduo, and Zeku Counties. Notably, Tanggulashan Town, Zhiduo, Qumalai,
and Maduo Counties showed significant increases in livestock carrying pressure, while Zaduo County
and the eastern regions experienced significant decreases. In conclusion, this study not only provides
feasible technical methods for assessing and managing the forage–livestock balance in the TRSR but
also contributes significantly to the sustainable development of the region’s grassland ecosystem and
animal husbandry industry.

Keywords: Three–River–Source Region; forage–livestock balance; CASA model; alpine grassland;
livestock carrying capacity

1. Introduction

Grassland is the largest terrestrial ecosystem in the world, covering about one–fifth
of the land area. It plays a vital role in soil and water conservation, windbreak and sand
fixation, regulating the global climate, and maintaining ecosystem balance [1,2]. Grassland
also acts as a crucial green barrier to prevent soil and water erosion, contributes significantly
to grass and livestock products and to biodiversity conservation [3], and maintains the
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global terrestrial circulation between ecosystems [4,5]. In China, natural grassland spans
approximately 400 million hectares, accounting for 41.7% of the total land area. The
grassland area in the Three–River–Source Region (TRSR) [6,7] studied in this paper is
about 30 million hectares, with 87% being alpine grassland. Consequently, an accurate
assessment of the forage–livestock balance is pivotal for ensuring the sustainable utilization
of grassland resources and fostering ecological restoration and protection.

The TRSR, located in the hinterland of the Qinghai–Tibetan Plateau, serves as a signifi-
cant ecological security barrier for central–eastern China and Southeast Asian countries [8].
As the birthplace of the Yangtze River, Yellow River, and Lantsang River, the TRSR is
known as the “Water Tower of China” [9]. Grassland is the dominant ecosystem in this
region, and animal husbandry is the leading industry. Grassland provides the material
basis for livestock production in the TRSR [10] and offers crucial ecosystem services such
as climate regulation. However, in recent decades, the TRSR has faced severe ecological
challenges due to the combined effects of climate change and human activities, includ-
ing warming, extreme precipitation, and overexploitation [11]. These factors have led to
significant grassland degradation, intensified grass–livestock conflicts, soil erosion, and a
substantial decline in biodiversity [12]. Research found that degraded grassland accounts
for 26% to 46% of the available grassland area [13], severely restricting livestock husbandry
development and threatening the ecological security of the western region.

A forage–livestock balance is the goal of grassland management in China, aiming at
realizing the balance between the amount of available forage in the pasture and the amount
of forage required by livestock by adjusting the number of livestock and increasing the sup-
ply of forage [14], which plays a positive role in preventing the degradation of grassland,
restoring the ecological balance of grassland, and maintaining sustainable development of
the animal husbandry industry. The Three–River–Source Nature Reserve started imple-
menting ecological projects in 2005, including fencing and sealing and returning pasture to
grass [15], in order to restore degraded grassland and protect the health of pastures [16],
but the effects of these projects and the status of regional forage–livestock balance in recent
years are still not clearly estimated. Figuring out the regional forage–livestock balance is of
great significance for promoting the recovery of alpine grassland [17] and reasonable and
sustainable grassland management, as well as maintaining ecological balance, optimizing
the grazing pattern, and promoting the healthy development of animal husbandry [18].
Consequently, by examining the forage–livestock balance in the TRSR, this paper assesses
the impact of ecological engineering implementation and offers a scientific foundation for
the formulation of regional animal husbandry development policies.

In recent years, research on the forage–livestock balance, especially methodological
improvements, has frequently been conducted. Currently, the methods for assessing the
forage–livestock balance are mainly divided into static methods based on the equilibrium
theory and dynamic methods based on the non–equilibrium theory. Specifically, the static
method is assessed by calculating the livestock carrying capacity, while the dynamic method
is assessed directly by net primary productivity (NPP) or biomass. The calculation of
theoretical livestock carrying capacity involves indicators such as livestock intake, grassland
yield and pasture utilization rate, etc. Due to the complexity of grassland ecosystems, the
calculation method of theoretical livestock carrying capacity is controversial, but using
the indicator of grassland yield is widely agreed. Regarding the research on the static
forage–livestock balance, most scholars outside China start from the technical level, and
estimate the grassland yield by establishing models; for example, Lieth (1971) established
the Miami model with annual average temperature and precipitation as variables to predict
the total grassland yield [19]. Studies on the static forage–livestock balance in China are
mainly carried out from two aspects: on the one hand, the research is based on technological
upgrading, which mainly calculates grassland yield and livestock carrying capacity, and
on the other hand, it is based on theoretical research at the socio–economic level [20].
Zhang et al. (2014) used MODIS NPP data to assess the grassland yield in the TRSR,
calculated the suitable livestock carrying capacity of the grassland and compared it with
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the actual livestock carrying capacity, and explored the livestock overloading rate and
spatial distribution characteristics in the TRSR [10]; Fan et al. (2010) used the GLO–PEM
model to calculate and analyze inter–annual spatial and temporal changes in grassland
yield in the TRSR from 1988 to 2005, evaluated the pasture supply function, and also
calculated the livestock carrying pressure to analyze the reasons that caused changes in
grassland yield [21]; Liu et al. (2021) proposed an improved method by calculating the
reasonable livestock carrying capacity of the pasture separately for cold season and warm
season pastures [22]; Qin et al. (2019) simulated the theoretical livestock carrying capacity
of the rotational pasture area under different precipitation scenarios based on the theory of
zoning rotational grazing [14]. Nevertheless, the dynamic approach, on the other hand, is
based on the comparison of the potential productivity of ungrazed areas with the realistic
productivity of grazed areas, so as to assess the status of forage–livestock balance. Studies
have shown that the dynamic method is more suitable for grassland that is more affected
by climate change, and the relatively conservative static method should be preferred for the
forage–livestock balance evaluation in the case of excessive grazing pressure and serious
grassland degradation [23]. Since grassland yield is converted from NPP, the accurate result
of NPP is important. Therefore, it is crucial to identify a method suitable for evaluating the
static forage–livestock balance in the TRSR, as this will facilitate the rational utilization of
grassland resources and the standardized distribution of animal husbandry.

This study utilized remote sensing data, statistical data, and field survey data spanning
from 2010 to 2022 to assess the forage–livestock balance in the TRSR over the past 13 years.
The primary objectives of this study are as follows: (1) Improve the Carnegie–Ames–
Stanford Approach (CASA) model based on the characteristics of regional alpine grassland
to accurately calculate NPP, grassland yield, and theoretical livestock carrying capacity
in the TRSR, utilizing long–term remote sensing and climate data. (2) Calculate and
spatialize the actual livestock carrying capacity by employing county livestock inventory
data. (3) Determine the livestock carrying pressure based on both the theoretical and actual
livestock carrying capacity, while analyzing the interannual variability and spatiotemporal
patterns. The research methods and ideas can be used in other forage–livestock balance
studies, and the results can provide a reference for grassland resource management and
livestock policy formulation in the TRSR.

2. Materials and Methods
2.1. Study Area

The TRSR (31◦39′–36◦12′N, 89◦45′–102◦23′E) is the birthplace of the Yangtze, Yellow,
and Lantsang Rivers, which are located in the southern part of Qinghai Province and
have a total area of 35 × 104 km2, accounting for about 50.3% of the total area of Qinghai
Province (Figure 1a), and an administrative area that includes 16 counties in the four Tibetan
Autonomous Prefectures of Yushu, Golog, Hainan, and Huangnan, and Tanggulashan Town
in Golmud City [10]. Dominated by mountainous terrain, the TRSR features extensive
mountain ranges, a complex topography, and a gradual rise in elevation from southeast
to northwest, with an average altitude exceeding 4000 m above sea level [13]. The region
experiences a typical plateau continental climate with alternating cold and warm seasons,
distinct dry and wet seasons, small annual and large daily temperature differences, long
sunshine hours, and intense radiation [24]. Due to the high altitude, the air is thin in most
areas, leading to a short plant–growing period. Grassland is the main vegetation type in the
region [25], being categorized as alpine meadow, alpine steppe, temperate steppe, alpine
desert, and alpine scrub, with 67.4%, 13%, 13%, 0.05%, and 6.6% of the area, respectively
(Figure 1b). The regional soils are primarily alpine meadow soils, followed by swampy
meadow soils, with a well–developed permafrost layer [26].
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Figure 1. The Three–River–Source Region: (a) digital elevation model and location; (b) grassland
vegetation types.

2.2. Data Collection and Processing

In this study, we primarily utilized Moderate Resolution Imaging Spectroradiometer
(MODIS) data, temperature, precipitation, sunshine hours, grassland vegetation types,
the number of year–end livestock, population density, and field survey data. Among
them, MODIS data, along with temperature, precipitation, sunshine hours, and grassland
vegetation types, were used to calculate regional NPP, grassland yield, and theoretical
livestock carrying capacity. Data on livestock year–end stock and population density were
employed for calculating and spatializing actual livestock carrying capacity, while field
survey data were used to verify the accuracy of grassland yield.

(1) MODIS Data. Normalized Difference Vegetation Index (NDVI) and Land Surface
Water Index (LSWI) data were obtained from the MODIS vegetation index product
(MOD13Q1) for 2010–2022 (16–day composite, spatial resolution of 250 m) down-
loaded from Google Earth Engine (https://earthengine.google.com, accessed on
5 December 2023). This tertiary product of MODIS, developed by the National Aero-
nautics and Space Administration (NASA) and the MODIS team of America, which
has undergone preprocessing such as radiometric calibration and image correction,
was processed through scale reduction, band extraction, stitching, mosaicking, and
reprojection. Using the MOD13Q1 products, we generated monthly NDVI data based
on Maximum Value Composites (MVCs) to minimize the influence of noise (e.g.,
clouds, water bodies, snow and ice, atmosphere). Additionally, annual LSWI data
were synthesized based on median values.

(2) Temperature and precipitation data. These data were sourced from National Tibetan
Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn, accessed on
15 December 2023). Temperature data were obtained from the month–by–month mean
temperature dataset at a 1 km resolution in China [27], averaged over the 12 months
of the year, and resampled to 250 m resolution using the nearest neighbor method
(NNM). Precipitation data were derived from the Chinese 1 km resolution month–
by–month precipitation dataset [28], summed over the 12 months of the year, and
resampled to 250 m resolution. Both datasets were generated from the global 0.5◦

climate dataset published by CRU and the global high–resolution climate dataset
published by WorldClim, using the Delta spatial downscaling scheme for the Chinese
region. These datasets were validated using data from 496 independent meteorological
observation sites and were credible [29].

(3) Sunshine hours data. These data were sourced from the Geographic Data Sharing Infras-
tructure, global resources data cloud (www.gis5g.com, accessed on 18 December 2023).
Based on annual sunshine hours data from 824 meteorological stations across China,
the dataset was strictly quality–controlled and screened. Spatial interpolation was per-

https://earthengine.google.com
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formed using the spline method of the ANUSPLIN software (version 4.3), achieving a
spatial resolution of 1 km, which was then resampled to 250 m using the NNM. Digital
elevation model (DEM) data were obtained from the Resource and Environmental
Science Data Platform (https://www.resdc.cn, accessed on 25 October 2023), calcu-
lated based on the SRTM 90 m data measured by NASA and NIMA, and resampled
to generate 250 m spatial resolution data using the latest SRTM V4.1. Due to the
coarse spatial resolution of existing solar radiation data, we downloaded ERA5–Land
10 km resolution solar radiation data from Google Earth Engine and used the random
forest downscaling method to generate solar radiation data with a spatial resolution
of 250 m, based on the resampled sunshine hours and DEM data [30].

(4) Grassland vegetation types data. These data were sourced from the national 1:1,000,000
vegetation type map provided by the National Cryosphere Desert Data Center
(http://www.ncdc.ac.cn, accessed on 11 December 2023). It was resampled to a
resolution of 250 m and reclassified according to the scheme proposed by Ge et al. [31],
based on the vegetation map of Qinghai Province. The spatial distributions of grass-
land types were then extracted and further analyzed.

(5) Actual livestock carrying capacity data. The data were derived and spatialized from
the number of livestock at the end of the year, combined with population density,
DEM, and NPP. The year–end livestock numbers for each county from 2010 to 2019
were obtained from the National Tibetan Plateau/Third Pole Environment Data Center
(https://data.tpdc.ac.cn, accessed on 24 April 2024) [32], while those from 2020 to
2022 were sourced from TRSR state and county statistical yearbooks and bulletins.
Population density data for spatialization were retrieved from the LandScan global
population density spatial distribution dataset (https://landscan.ornl.gov, accessed
on 22 June 2024), originally at a 1 km resolution and resampled to 250 m.

(6) Field survey data. In order to verify the calculation results of the CASA model, the
field investigated grassland yield, sourced from the National Forestry and Grassland
Administration of China (http://www.forestry.gov.cn/, accessed on 24 November
2023) [33], were utilized in this study. The field survey was conducted during the peak
growth period of pasture grasses (July–August). Two to three 1 m × 1 m quadrats
were set up within each sampling plot. In each quadrat, all above–ground components
of the grassland vegetation, along with the litter, were collected using scissors and
subsequently placed in labeled envelopes. The longitude, latitude, altitude, fresh
weight of grassland yield, and major plant species of each quadrat were meticulously
recorded. The fresh grass was then dried in an oven at 65 ◦C for 2 d and weighed to
obtain the dry weight data of alpine grassland yield.

2.3. Calculation of Forage–Livestock Balance
2.3.1. Calculation of NPP by Improved CASA Model

The CASA model is a widely used model for calculating NPP of vegetation, which
is a light energy utilization model based on remote sensing parameters, meteorological
conditions, vegetation types, and soil types. The model requires fewer parameters and
allows for extensive and long–term NPP estimates with high accuracy based on remote
sensing data [24]. Originally developed for the vegetation of North America, the CASA
model has been improved to meet various needs [34–36]. Notably, Zhu et al. (2007) [37]
incorporated vegetation types into the model, determining the maximum NDVI and
maximum light energy utilization for different vegetation types. This improvement made
the model more suitable for estimating the NPP of Chinese vegetation. Therefore, in this
study, the NPP in the TRSR was estimated using Zhu’s (2007) CASA model, with the
following equations:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

https://www.resdc.cn
http://www.ncdc.ac.cn
https://data.tpdc.ac.cn
https://landscan.ornl.gov
http://www.forestry.gov.cn/
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ε(x, t) = Tε1(x, t)× Tε2(x, t)× Wε(x, t)× εmax (3)

Tε1(x, t) = 0.8 + 0.02 × Topt(x)− 0.0005 ×
[
Topt(x)

]2 (4)

Tε2(x, t) = 1.184/
{

1 + exp
[
0.2 ×

(
Topt(x)− 10 − T(x, t))

]}
×1/

{
1 + exp

[
0.3×(−Topt(x)− 10 + T(x, t))

]}
(5)

Wε(x, t) = 0.5 + 0.5 × EET(x, t)
PET(x, t)

(6)

where APAR(x,t) represents the photosynthetically active radiation absorbed by pixel x in
month t (gC·m−2·month−1); ε(x, t) denotes the actual light energy utilization rate of pixel
x in month t (gC·MJ−1); SOL(x,t) signifies the total solar radiation of pixel x in month t
(MJ·m−2·month−1); the constant 0.5 represents the ratio of solar photosynthetically active
radiation to total solar radiation; FPAR(x,t) represents the fraction of photosynthetically ac-
tive radiation absorbed by vegetation, which has a good linear relationship with NDVI and
SR; Tε1(x, t) and Tε2(x, t) represent the stress effects of low temperature and high tempera-
ture on light energy utilization, respectively, while Wε(x, t) is the water stress coefficient;
εmax denotes the maximum light energy utilization rate (gC·MJ−1) under ideal conditions,
which varies for different vegetation types based on previous research [38–40]; Topt(x)
indicates the optimum temperature for plant growth, defined by Zhu et al. (2007) [37] as
the average temperature (◦C) of the month when NDVI reaches its annual peak in a given
region; and EET(x,t) and PET(x,t) denote the regional actual evapotranspiration (mm) and
potential evapotranspiration (mm), respectively.

However, the calculation of the water stress coefficient, a key parameter in the model,
involves many soil parameters and is primarily based on empirical formulas, which will
omit differences in surface vegetation and lead to poor simulation results in arid and
semi–arid ecosystems. Traditionally, the water stress coefficient in the CASA model is
calculated using spatially interpolated precipitation and temperature data, which can be
limited by spatial precipitation constraints. LSWI is a representative parameter of leaf
and canopy water content as well as soil moisture, which is calculated from near–infrared
and short–wave infrared bands [41]. Higher LSWI values indicate greater canopy water
content, while lower values indicate more severe canopy water stress. Previous studies
have successfully used LSWI to improve the CASA model, accurately estimating the water
stress coefficients. This method has been validated across various ecosystems, including
evergreen coniferous forests, temperate deciduous forests, tropical evergreen forests, and
(semi–)arid grassland ecosystems.

Xiao et al. (2004) [42] were the first to apply LSWI to calculate water stress in the VPM
model. Further, Bao et al. (2016) [43] proposed a modified algorithm to control the range
of water stress coefficients from 0.5 to 1. However, the water stress values obtained per
pixel by this algorithm did not align with the range of Wε(x, t) derived from Equation (6),
which is from 0.5 (under extreme drought conditions) to 1 (under very wet conditions).
This range was effectively reversed compared to the original range, where 0.5 indicated
very wet conditions and 1 indicated very dry conditions. Therefore, this study proposes
an improved CASA model algorithm to calculate the water stress coefficients based on
LSWI, ensuring that the result values range from 0.5 in extreme drought conditions to 1
in very wet conditions, consistently with the original model’s implications. Additionally,
most existing studies use the NIR and SWIR1 bands to calculate the surface water index
LSWI. However, the spatial resolution of the SWIR1 band in MODIS is only 500 m, and
downscaling to 250 m can cause accuracy loss and introduce small errors between different
data products. To address this, we use the MOD13Q1 data with 250 m resolution for both
the NIR and SWIR2 (i.e., MIR) bands to calculate LSWI. The improved equations for this
study are as follows:

LSWI =
ρNIR − ρMIR

ρNIR + ρMIR
(7)
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Wε_improved(x, t) = 0.5 + 0.5 × LSWI − LSWImin

LSWImax − LSWImin
(8)

where LSWI is the land surface water index, with ρNIR and ρMIR representing the near–
infrared and mid–infrared bands of the MOD13Q1 data, respectively. The improved water
stress coefficient in this study, Wε_improved(x, t), is calculated with LSWImax and LSWImin
denoting the maximum and minimum LSWI values during the growth period of a single
image. The theoretical basis for the improvement in Equation (8) lies in the calculation of
the standardized index.

2.3.2. Calculation of Grassland Yield

The grassland NPP is the material basis for sustaining grassland ecosystems and a
crucial indicator for evaluating their sustainable development. Its accumulation primarily
manifests as the grassland yield, which is a vital supply function of grasslands and un-
derpins the development of grassland livestock husbandry. This yield is essential for the
rational utilization of grassland resources and for achieving a balance in livestock carrying
capacity [44]. Moreover, it serves as a critical parameter for calculating the theoretical live-
stock carrying capacity. Since the NPP encompasses both aboveground and belowground
components, this study estimates the grassland yield based on the NPP calculated using
the improved CASA model, applying the belowground–to–aboveground ratio for various
grassland types as proposed by Gill et al. [45]:

Ym =
NPP

t × (1 + BNPP
ANPP )

(9)

where Ym represents the unit area grassland yield; t is the biomass conversion coefficient
to productivity, set at 0.45 [46]; BNPP is the net primary productivity of the belowground
part of the grassland; and ANPP is the net primary productivity of the aboveground part.
The ratios of belowground to aboveground productivity for different grassland vegetation
types are referenced from studies by Piao et al. [47] and Fan et al. [21].

Given the challenges in collecting NPP data, measured grassland yield is generally
converted to NPP to verify accuracy. In this study, as we used the grassland yield to carry
out the calculation of livestock carrying capacity, we then directly used the measured
grassland yield dry weight and NPP–converted grassland yield to verify the accuracy of
the results.

2.3.3. Spatialization of Actual Livestock Carrying Capacity and Evaluation of
Forage–Livestock Balance

After calculating the grassland yield based on NPP, the theoretical livestock carrying
capacity was further calculated, while the actual livestock carrying capacity was calculated
based on the year–end livestock number in each county:

CS =
(1 − Cb)[Cn × (1 + Ch)× Gt]

Ar × 365
(10)

Cl =
Ym × Co × Ut × Ha

Sf × Df × Gt
(11)

In Equation (10), CS represents the grassland actual livestock carrying capacity, Cb
denotes the supplemental feeding rate, which accounts for 34.24% of the total forage
including artificial grassland, silage and straw as indicated in the literature [44]; Cn refers
to the livestock number at the end of the year, converted into standard sheep units, with a
large livestock equating to four sheep units; Ch signifies the livestock turnout rate, set at
15% in Qinghai Province [46]; and Gt represents the grazing period, calculated as 365 days.
The grassland area (Ar) is obtained from the national 1:1,000,000 vegetation type map.
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In Equation (11), Cl stands for the theoretical livestock carrying capacity, while Co is
the grass availability; the utilization rate of pasture (Ut) is set at 70%, and the ratio of edible
pasture (Ha) is set at 80% [15,48]; Sf represents the amount of food per goat unit per day,
calculated as 4 kg of fresh grass per day; and Df is the ratio of dry weight to fresh weight.
The values for Co and Df vary for different grassland vegetation types and are determined
according to the agricultural industry standard of China [49].

Since the year–end livestock numbers are only accurate to the county level, the cal-
culated actual livestock carrying capacity results in tabular data based on administrative
divisions. This lack of spatial accuracy complicates the analysis of the distribution pattern
of the actual livestock carrying capacity on a finer spatial scale. To address this, it is essential
to spatialize the actual livestock carrying capacity in the TRSR. In this study, we followed
the method for spatializing livestock carrying capacity as outlined by the National Tibetan
Plateau/Third Pole Environment Data Center [50]. Based on the actual livestock carrying
capacity obtained from Equation (11), we performed a multiple linear regression using
the population density, NPP, and DEM to establish a spatial model of the actual livestock
carrying capacity. However, the model’s calculation results did not completely align with
the actual field observations. Therefore, following the studies by Liao et al. [51] and Liu
et al. [52], we corrected the model’s calculation results. The method of correction was to
interpolate the residuals by Kriging and add them with the results of the model, which
was based on the fact that the predicted value of the regression equation and the residuals
added together equaled to the actual observed value of the samples.

In this study, the grassland livestock carrying pressure index was employed to evaluate
the forage–livestock balance condition in the TRSR:

IP =
CS

Cl
(12)

In Formula (12), IP represents the livestock carrying pressure index of the grassland,
CS denotes the actual livestock carrying capacity, and Cl is the theoretical livestock carrying
capacity. When IP= 1, it indicates that the actual and theoretical livestock carrying capacity
are equivalent, suggesting that the grassland carrying capacity is optimal and suitable for
the livestock. When IP> 1, the actual livestock carrying capacity exceeds the theoretical
capacity, indicating an overload state for the grassland. Conversely, when IP< 1, it suggests
that the actual livestock carrying capacity is lower than the theoretical capacity, implying
that the grassland still has potential for additional livestock carrying [21]. Based on previous
studies [46,53], the livestock carrying pressure index is categorized as follows: insufficient
(IP< 1), balanced (1 < IP< 1.5), slightly overloaded (1.5 < IP < 3), moderately overloaded
(3 < IP< 5), and severely overloaded (IP> 5).

2.3.4. Trend Analysis of Time Series

A trend analysis of time series data are often conducted using the linear regression
method [54] and Theil–Sen Median method [55,56]. In this study, Theil–Sen Median trend
analysis and the Mann–Kendall test were employed to analyze NPP, grassland yield,
theoretical livestock carrying capacity, actual livestock carrying capacity and livestock
carrying pressure in the TRSR. The Theil–Sen Median method is a robust nonparametric
statistical approach, which, compared to the linear regression method, is more resilient to
data errors and does not depend on the data distribution. This robustness makes it well–
suited for long–term vegetation time series analysis. The method calculates the median of
the slopes of lines formed by pairs of data points [57], calculated as follows [58,59]:

β = Median(
xj − xi

j − i
), ∀j > i (13)

where i is the year when the phase starts, j is the year when the phase ends, xj and xi repre-
sent the NPP, grassland yield, theoretical livestock carrying capacity, actual livestock carrying
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capacity and livestock carrying pressure for the corresponding years (2010 ≤ I < j ≤ 2022).
β > 0 indicates that the time series is increasing and vice versa.

The Mann–Kendall test, a nonparametric statistical test, was used to determine the
significance of these trends with the following formula:

Z =


S−1√
Var(S)

(S > 0)

0 (S = 0)

S+1√
Var(S)

(S < 0)

(14)

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (15)

where S denotes the Mann–Kendall statistic, positive (or negative) values of Z show an
upward (or downward) trend, n represents the length of the time series, and in this
study, n = 13, 2010 ≤ i < j ≤ 2022. At a given significant level α, the original hypothesis
is rejected and the time series is considered to have a significant change in the α level
when

∣∣Z|> u 1−α/2 [60]. For this paper, we take α = 0.05, and then the critical value
u1−α/2 = ±1.96; when |Z|> 1.96 , it means that the trend passes the significance test with
95% confidence level.

Since there is basically no region with β = 0, this paper refers to the studies of Yuan
et al. [60] and Wang et al. [57], and according to the results of Theil–Sen estimation for each
time series, we take the threshold β0 =|β|max × 0.5%. The region of β between −β0 and
β0 is regarded as basically stable, β > β0 indicates that the time series has an increasing
tendency, β < −β0 signifies a decreasing tendency, and the values of β0 are different for
different time series. The criteria for evaluating the change in the trend of the time series
were constructed based on the Theil–Sen Median estimation and the Mann–Kendall test, as
shown in Table 1.

Table 1. Classification criteria for the change trend.

Trendβ Z–Value Trend Grading

β < −β0 Z <− 1.96 Significantly decreased
β < −β0 −1.96 ≤ Z < 1.96 Slightly decreased

−β0 ≤ β < β0 −1.96 ≤ Z < 1.96 Basically unchanged
β ≥ β0 −1.96 ≤ Z < 1.96 Slightly increased
β ≥ β0 Z ≥ 1.96 Significantly increased

3. Results
3.1. Spatiotemporal Patterns of NPP, Grassland Yield, and Theoretical Livestock Carrying Capacity
from 2010 to 2022

In this study, the grassland NPP in the TRSR from 2010 to 2022 was calculated using
the improved CASA model. The trend of regional grassland NPP over this 13-year period
was analyzed according to the classification criteria in Table 1, with the results presented
in Figure 2a,b. The grassland NPP in the TRSR during this period displayed a spatial
pattern of gradual decrease from southeast to northwest. The average annual NPP was
145.44 gC/m2, with the highest value recorded in 2018 (162.65 gC/m2) and the lowest
in 2022 (127.96 gC/m2). Overall, the annual average NPP showed an increasing trend.
However, in April 2022, some areas in the TRSR experienced mild to severe drought, with
precipitation decreasing by more than 80% compared to the same period in previous years,
this resulted in a decrease in NDVI and a significant drop in the NPP. During the 13-year
period, grassland NPP in the TRSR increased at a rate of approximately 0.34 gC/m2/year.
Of the total area, 46.8% showed an increase in grassland NPP, 36.73% exhibited degradation,
and 16.47% remained essentially unchanged. The western part of the TRSR showed little
change, while degraded areas were primarily located at the joint areas of Qumalai and
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Zhiduo Counties, as well as Henan, Gande, Jiuzhi, and Banma Counties. Conversely, the
NPP increased in other areas, indicating that the eco–construction projects in the Three–
River–Source Nature Reserve have been effective.

Among different grassland vegetation types, alpine meadow had the highest NPP,
while alpine desert had the lowest, in counterclockwise order from 2010 to 2022 (Figure 2c).
Significant changes in each grassland type were minimal, with the proportion of grassland
in a growing state being higher than the proportion experiencing degradation. However, in
most areas of the alpine desert, the NPP remained unchanged (Table 2).

Table 2. Mean of NPP in different grassland vegetation types in the TRSR and the percentage of
change trend from 2010 to 2022.

Grassland
Vegetation Types

Mean of NPP
(gC/m2)

Change Trend of NPP from 2010 to 2022 (%)

Significantly
Decreased

Slightly
Decreased

Basically
Unchanged

Slightly
Increased

Significantly
Increased

Alpine meadow 181.67 2.30 37.40 10.82 46.60 2.88
Alpine steppe 36.71 2.35 21.99 39.18 31.27 5.22

Temperate steppe 80.45 2.24 28.97 25.71 39.16 3.90
Alpine desert 14.51 1.11 7.17 78.44 11.61 1.67
Alpine scrub 116.36 2.41 38.43 12.67 43.88 2.60

Total 145.44 2.31 34.43 16.47 43.51 3.29

According to the method proposed by Gill et al., the NPP was converted to grassland
yield using Equation (9) (Figure 3a,b). Subsequently, the theoretical livestock carrying
capacity was calculated according to Equation (11) (Figure 3c,d). Similarly to the NPP, both
the grassland yield and theoretical livestock carrying capacity in the TRSR exhibited a
spatial pattern of gradual decrease from southeast to northwest, while showing a general
upward trend from 2010 to 2022. The average grassland yield was 922.7 kg/hm2 and the
average theoretical livestock carrying capacity was 0.55 SU/hm2, with the highest and
lowest values occurring in 2018 and 2022, respectively, mirroring the trend observed for
the NPP.
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Figure 2. The spatiotemporal patterns of grassland NPP in the TRSR from 2010 to 2022: (a) mean
annual NPP: the inset chart shows the interannual dynamics of NPP from 2010 to 2022, where the red
dashed line shows the overall trend of NPP; (b) change trend of NPP: the inset chart shows the area
proportion of each; (c) radial accumulation bar chart of NPP in different grassland vegetation types
from 2010 to 2022.

In order to validate the effectiveness of the CASA model improvements proposed
in this paper, we used the MOD17A3HGF product with 500 m spatial resolution as the
NPP validation dataset. We fitted the NPP calculated in this study to the NPP bands
of MOD17A3 (Figure 4a). Additionally, we validated the NPP conversion to grassland
yield using field–measured grassland yield data (Figure 4b), taking 2012 as an example.
The results show that the improved CASA model in this paper simulated the NPP with
high accuracy (R2 = 0.84, p < 0.001). Furthermore, there was a high correlation (R2 = 0.73,
p < 0.001) between measured and simulated grassland yield. The validation results from
both datasets indicate that the findings of this study are highly reliable.
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Figure 3. The spatiotemporal patterns of grassland yield and theoretical livestock carrying capacity
in the TRSR from 2010 to 2022: (a) mean annual grassland yield: the inset chart shows the interannual
dynamics of grassland yield from 2010 to 2022, where the red dashed line shows the overall trend
of grassland yield; (b) change trend of grassland yield: the inset chart shows the area proportion of
each; (c) mean annual theoretical livestock carrying capacity: the inset chart shows the interannual
dynamics of theoretical livestock carrying capacity from 2010 to 2022, where the red dashed line
shows the overall trend of theoretical livestock carrying capacity; (d) change trend of theoretical
livestock carrying capacity: the inset chart shows the area proportion of each.
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line represents the fitting curve of simulated NPP and MOD17A3 NPP; (b) the correlation of simulated
grassland yield by improved CASA model and observed grassland yield, where the solid black line
represents the fitting curve of simulated grassland yield and observed grassland yield.

3.2. Spatiotemporal Patterns of Actual Livestock Carrying Capacity from 2010 to 2022

The actual livestock carrying capacity of counties in the TRSR from 2010 to 2022 was
calculated based on Equation (10), using the year–end livestock numbers from the statistical
yearbook (Table 3). For Tanggulashan Town, where data were missing, we substituted
the data for Golmud City, its administrative location. The results indicated that the actual
livestock carrying capacity was higher in the eastern and southern regions of the TRSR.
Notably, Tongde and Henan Counties in the northeast exhibited significantly higher actual
livestock carrying capacity compared to other regions.

Table 3. Actual livestock carrying capacity of counties in the TRSR from 2010 to 2022.

County
Actual Livestock Carrying Capacity in Different Years (SU/hm2)

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Banma 1.47 1.42 1.33 1.27 1.29 1.33 1.35 1.36 1.47 1.47 0.92 0.81 0.80
Dari 0.38 0.36 0.33 0.30 0.28 0.28 0.28 0.28 0.30 0.30 0.35 0.33 0.31

Gande 1.09 0.94 0.59 0.65 0.73 0.82 0.89 0.91 0.96 0.93 0.98 0.95 0.91
Jiuzhi 1.00 1.03 1.11 1.13 1.07 1.00 1.07 1.10 1.23 1.25 1.25 1.22 1.18

Maduo 0.10 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.11 0.10 0.15 0.11 0.09
Maqin 0.87 0.81 0.72 0.69 0.68 0.67 0.63 0.62 0.66 0.65 0.90 0.85 0.82

Chengduo 0.37 0.38 0.36 0.34 0.53 0.58 0.58 0.63 0.64 0.66 0.53 0.50 0.53
Tanggulashan 0.08 0.08 0.09 0.08 0.08 0.08 0.09 0.09 0.11 0.10 0.13 0.11 0.12

Nangqian 1.12 1.16 1.16 1.14 1.18 1.32 1.37 1.35 1.01 0.86 0.75 0.70 0.90
Qumalai 0.24 0.24 0.21 0.22 0.31 0.44 0.48 0.41 0.39 0.35 0.30 0.30 0.27

Yushu 1.19 1.21 1.13 1.18 1.23 1.17 1.16 1.18 1.16 1.07 1.01 0.95 0.77
Zaduo 0.36 0.37 0.36 0.36 0.38 0.45 0.46 0.53 0.54 0.45 0.42 0.39 0.42
Zhiduo 0.37 0.39 0.38 0.33 0.36 0.42 0.48 0.48 0.42 0.43 0.39 0.48 0.51
Tongde 2.30 2.42 2.43 2.44 2.39 2.36 2.33 2.30 2.27 2.23 3.03 3.35 3.24
Xinghai 1.35 1.41 1.41 1.40 1.37 1.34 1.33 1.32 1.32 1.21 1.67 1.45 1.44
Henan 2.02 1.96 1.87 1.91 1.88 2.09 1.93 1.84 1.66 1.76 1.87 1.89 1.92
Zeku 1.80 1.77 1.71 1.79 1.62 1.43 1.46 1.48 1.50 1.38 1.40 2.07 2.08

Since the statistical data of year–end livestock counts are only accurate to the county
scale, this study spatialized the actual livestock carrying capacity in Table 3 based on the
population density, DEM, and NPP calculated by the improved CASA model to analyze
changes in spatial patterns. The mean absolute error (MAE) of the spatialization was
0.26 SU/hm2, and the mean square error (MSE) was 0.11 SU/hm2.

The spatialized mean and trend of actual livestock carrying capacity from 2010 to 2022
are shown in Figure 5. The TRSR exhibits distinct spatial distribution characteristics, with a
higher livestock carrying capacity in the east and lower in the west. The northeast region,
in particular, shows a significantly higher livestock carrying capacity (Figure 5a). This
disparity is mainly due to the northeast’s denser population of people engaged in animal
husbandry, more abundant pastures, and better grassland growth, allowing it to support
more livestock. During the 13–year period, the actual livestock carrying capacity decreased
at an average rate of 0.0015 SU/hm2/year. The annual average livestock carrying capacity
was 0.46 SU/hm2, peaking in 2020 at 0.51 SU/hm2, before sharply declining to a minimum
of 0.42 SU/hm2 in 2021. This fluctuation was influenced by the global epidemic in 2020,
which caused a significant decrease in livestock turnout rates in some areas, resulting in
higher year–end livestock values and increased actual livestock carrying capacity. In 2021,
coordinated efforts in the TRSR to promote economic recovery and development led to an
increase in livestock turnout rates and agricultural and animal husbandry output, reducing
year–end livestock numbers and decreasing actual livestock carrying capacity. From 2010
to 2022, the actual livestock carrying capacity significantly increased in Tanggulashan
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Town, Zhiduo, Qumalai, and Maduo Counties, while Zaduo County and the eastern part
of the TRSR saw significant decreases (Figure 5b). As shown in Table 3, Tanggulashan
Town and Maduo County experienced a notable increase in 2020 due to the small base of
livestock carrying capacity, but it remained stable in other years. Qumalai County saw a
significant increase in livestock carrying capacity from 2014 to 2016, followed by a gradual
decrease. Zhiduo County experienced a gradual increase in livestock carrying capacity
starting in 2015, which later stabilized. Overall, the eastern region saw a significant effect
from livestock reduction, with 36.01% of the area experiencing a decrease in actual livestock
carrying capacity, including 12.07% with a significant decrease.
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3.3. Evaluation of Forage–Livestock Balance in the TRSR from 2010 to 2022

The livestock carrying pressure index was divided into five categories, and the spatial
distribution and trend of changes were obtained, as shown in Figure 6. Over the past
13 years, the TRSR as a whole has maintained a forage–livestock balance, with an average
livestock carrying pressure index of 0.96. However, serious overloading was observed
in the western part of Qumalai County and the northern part of Tongde County, while
Zhiduo, Maduo, and Zeku Counties experienced slight overloading (Figure 6a). An analysis
revealed that the causes of overloading varied across different areas in the TRSR. In Qumalai,
Zhiduo, and Maduo Counties, the theoretical livestock carrying capacity was low due to
poor grassland growth, but even though the actual livestock carrying capacity was low,
there were overgrazing problems. Tongde and Zeku Counties had a high actual livestock
carrying capacity and were densely populated, so there was severe overloading. From 2010
to 2022, the livestock carrying pressure increased at a rate of about 0.03 per year, with the
lowest pressure observed in 2019 (0.78) and a steep increase in 2020, reaching a peak in 2022
(1.4). The increase in 2020 was attributed to the global pandemic, which led to an increase
in the actual livestock carrying capacity and, consequently, a higher livestock carrying
pressure index. In 2022, extreme drought significantly decreased the NPP and theoretical
livestock carrying capacity, further increasing the livestock carrying pressure index. The
trend of the livestock carrying pressure index mirrored that of the actual livestock carrying
capacity, with significant increases in Tanggulashan Town, Zhiduo, Qumalai, and Maduo
Counties, and significant decreases in Zaduo County and the eastern region. The livestock–
carrying pressure decreased in 34.76% of the areas and remained basically unchanged
in 19.43% of the areas (Figure 6b). Overall, the ecological protection and construction
projects in the TRSR have had positive impacts. In the future, it is essential to continue
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strengthening the rotational grazing system and forage–livestock balance management.
Implementing a comprehensive grazing ban policy for seriously degraded grassland and
continuing the policy of returning pasture to grassland and reducing livestock in areas
with higher livestock carrying pressure are crucial, so as to promote ecosystem restoration
and achieve ecological balance and harmonious coexistence between humans and nature.
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livestock carrying pressure; (b) change trend of livestock carrying pressure: the inset chart shows the
area proportion of each.
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4. Discussion
4.1. Improvement of the CASA Model

Based on the improvements made by Bao et al. [43], we further improved the CASA
model to obtain a more suitable NPP calculation model for grassland ecosystems in the
plateau region. We specifically improved the water stress coefficient and compared the
results with the CASA model from Zhu (2007) [37] (Figure 7). The MOD17A3HGF NPP
product (version 6.1) from NASA, based on the Terra satellite platform and derived from
the light energy utilization model and Biome-BGC model, has been widely used and tested
in carbon cycle and biomass estimation studies, effectively reflecting global ecosystem NPP
changes [61]. This product corrects issues related to response and scanning angle methods
affecting the reflectivity bands of Aqua and Terra MODIS and addresses optical crosstalk in
the infrared band of Terra MODIS, ensuring high recognition accuracy [62]. Consequently,
we selected the MOD17A3 product as a verification reference to assess the improvements
in our CASA model.
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Figure 7. Simulated NPP by improved CASA model and unimproved CASA model compared to
MOD17A3 NPP product: (a) scatter plot with MOD17A3 NPP; (b) change curve of NPP from 2010
to 2022; (c) histogram of NPP in different grassland vegetation types; (d) radar map of NPP with
different elevation grades.

Figure 7a illustrates the fitted scatter plots of NPP compared with the MOD17A3
product before and after model improvements, using 1739 random points for verification.
The proposed model’s random point distribution aligns with that of the Zhu (2007) model.
The regression fitting R2 of the improved CASA model with the added land surface water
index is slightly better than that of the Zhu (2007) model, with the fitting curve closer to the
MOD17A3 product reference values, with the overall result of the Zhu (2007) model being
higher than the reference values. Figure 7b compares the NPP change curves of MOD17A3
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product from 2010 to 2022 before and after the model improvement. The overall trend and
value of the improved model’s NPP curve closely match those of MOD17A3. The average
NPP calculated by our improved CASA model over 13 years is 145.44 gC/m2, close to
the MOD17A3 average (149.55 gC/m2), with a significant difference only in 2022. The
trend of the CASA model remains consistent before and after improvement, suggesting
that the differences in individual years between our model and MOD17A3 are due to
different calculation models, data sources, and parameters. Figure 7c compares the CASA
model and MOD17A3 product across different grassland vegetation types before and after
improvement. It can be observed from the map of grassland vegetation types that alpine
meadow and alpine steppe constitute about 80% of the total grassland area in the TRSR,
with alpine meadow alone accounting for about 67.4%. So, the results of the improved
model align closely with MOD17A3 for alpine meadow, alpine steppe, and the overall
grassland ecosystem, with differences observed only in alpine scrub, which accounts
for only 6.6% of the total grassland area in the TRSR. This has a minimal impact on the
overall results, indicating that the improved model is suitable for grassland ecosystem in
the TRSR. The unimproved model shows greater similarity to MOD17A3 for temperate
steppe and alpine desert, while both models significantly differ from MOD17A3 for alpine
scrub, necessitating further model parameter improvements in the future. To evaluate NPP
variations at different elevations and the model’s accuracy, we divided the research area into
six elevation levels: Level 1 (2587–3200 m), Level 2 (3200–3900 m), Level 3 (3900–4600 m),
Level 4 (4600–5300 m), Level 5 (5300–6000 m), and Level 6 (6000–6779 m). Since there is
no grassland in Level 6, the grassland NPP in the first five grades is analyzed (Figure 7d).
As elevation increases, NPP initially rises and then falls, peaking at Level 2 and reaching
its lowest value at Level 5. Additionally, our improved CASA model closely aligns with
MOD17A3 at Levels 3, 4, and 5, but showing significant discrepancies at Level 1. In contrast,
the unimproved model closely matches MOD17A3 at Level 5 but differs significantly at
other elevation levels. Thus, the improved CASA model demonstrates a strong performance
for the grassland ecosystem in the plateau area.

4.2. Changes in Livestock Carrying Pressure by Counties

The livestock carrying pressure in each county of the TRSR from 2010 to 2022 is shown
in Figure 8a, in which areas with a lower livestock carrying pressure are depicted in deeper
blue, while areas with a higher pressure are shown in deeper red. As illustrated, Zeku,
Xinghai, and Tongde Counties face significant overloading issues. Although there was some
relief in 2018 and 2019, overloading began to escalate again from 2020 onwards in Zeku,
Xinghai, Tongde, Zhido, and Qumalai Counties. Apart from these five counties and Maduo
County in 2020, the other areas maintained a forage–livestock balance over the 13 years
(IP< 1.5). Since the implementation of ecological engineering and grazing ban policies in
the TRSR, the central and western counties have consistently maintained a forage–livestock
balance, while the eastern region suffers severe overloading. This discrepancy is linked
to ecological migration in the central region and livestock fattening projects in the eastern
region [44]. In the northeastern counties of Zeku, Xinghai, and Tongde, with less natural
pasture area, a relatively dense population and increasing demand for livestock due to
population growth have resulted in more livestock being raised [53]. These areas were in a
perpetual state of overloading. In 2020, the global pandemic led to a significant reduction
in the livestock outbreeding rate in some areas, causing an increase in year–end livestock
numbers and actual livestock carrying capacity. Consequently, the livestock carrying
pressure index rose sharply compared to 2019. Additionally, decreased temperature and
solar radiation in the western and northeastern parts of Zhido County and the western part
of Qumalai County led to a reduction in NPP and theoretical livestock carrying capacity,
further increasing the livestock carrying pressure index in these areas. Despite a decrease
in actual livestock carrying capacity in Xinghai, Tongde, and Qumalai Counties in 2022,
livestock carrying pressure remained high due to a significant reduction in NPP. Figure 8b
presents a column chart where pink columns indicate an increase in livestock carrying
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pressure, and green columns indicate a decrease. The trend line represents the average
livestock carrying pressure index in each county for 13 years. It is evident that more than
half of the administrative areas have experienced increased livestock carrying pressure,
predominantly in the eastern, densely populated regions of the TRSR. Zhido and Qumalai
Counties have also seen a significant rise in livestock carrying pressure due to reduced
NPP, with Tongde County having the highest average livestock carrying pressure and
Tanggulashan Town the lowest.
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4.3. Analysis of Forage–Livestock Balance in the Three–River–Source Nature Reserve

Since 2005, ecological protection and construction projects have been carried out in the
TRSR, encompassing 18 nature reserves divided into a core zone, buffer zone, and experi-
mental zone. Among them, the core zone is strictly protected, with the restoration of forest
and grass vegetation achieved through measures such as grazing and cutting bans. The
buffer zone is designated as a key protected area, where grassland degradation should be
controlled, restricted grazing and rotational grazing practiced based on forage availability.
The experimental zone, serving as a general protection area, focuses on the restoration and
reconstruction of degraded ecosystems while developing characteristic industries such
as eco–tourism and the regional economy. Figure 9 illustrates the superimposition of the
distribution of actual livestock carrying capacity, livestock carrying pressure, NDVI, and
the Three–River–Source Nature Reserve. It was observed that the actual livestock carrying
capacity in the core zone was low (Figure 9a), indicating that the implementation of the
ecological project has yielded remarkable outcomes. Consequently, the grazing prohibi-
tion policy in the core zone of the protected area should be strictly enforced in the future.
However, Figure 9b reveals that the core protected areas in Zhiduo and Qumalai Counties
experience relatively severe overload, despite the actual livestock carrying capacity not
being high. This issue is primarily attributed to the low theoretical livestock carrying
capacity caused by the low NDVI value in this region (Figure 9c), which results in high
livestock carrying pressure in the core zone of the protected area. In this area, it is necessary
to control livestock based on forage availability, strengthen the policy of returning grazing
land to grassland in the nature reserve, promote grassland restoration and reduce livestock
carrying pressure based on the actual productivity of the grassland.
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4.4. Limitations and Uncertainties

Regarding the improvement of the CASA model and the spatialization of actual
livestock carrying capacity at the county scale, this study has some limitations: (1) The
improved CASA model in this paper is applicable to grassland ecosystem in the TRSR;
however, its accuracy needs to be improved in low–altitude areas and smaller temperate
steppe and alpine scrub within the region. (2) In this paper, the situation of regional
NPP is referenced when spatializing the actual livestock carrying capacity, meaning the
accuracy of the CASA model significantly impacts the actual livestock carrying capacity.
With only 17 administrative units in the research area, fewer variables were included
in the model construction for actual livestock carrying capacity. Therefore, the spatial
results needed optimization, and we revised the results by including residuals. In future
studies, the research scope will be further expanded, and the regression model will be
optimized to improve the precision of livestock carrying capacity spatialization. (3) This
study only considers the forage supply and the state of forage–livestock balance during the
year, without covering the stocking conditions of forage pastures in the “cold season” and
“warm season.” Therefore, it is difficult to address the widespread seasonal overloading
problem in grazing areas [63]. Future research could be conducted considering grazing
during the cold and warm seasons.

5. Conclusions

In this study, an improved CASA model was proposed for the grassland ecosystem
in the TRSR, and the actual livestock carrying capacity was spatialized to analyze the
forage–livestock balance. The enhanced CASA model presented in this paper is adeptly
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suited for grassland ecosystems within alpine regions, which are not readily constrained by
spatial precipitation. It demonstrates a commendable fitting accuracy in expansive areas of
alpine meadow and alpine steppe. Nevertheless, the model exhibits certain deficiencies;
specifically, its accuracy in lower elevation zones and smaller expanses of temperate steppe
and alpine scrub requires enhancement. Additionally, there is a pressing need for further
refinement of the model parameters, enabling its broader applicability across diverse
grassland vegetation types in the future.

The results revealed the following: (1) From 2010 to 2022, 46.8% of the total grass-
land area in the TRSR was in a state of increasing NPP, whereas 36.73% was in a state of
decrease. The degraded areas were primarily distributed at the joint areas of Qumalai
and Zhiduo Counties, as well as in Henan, Gande, Jiuzhi, and Banma Counties. Notably,
among all grassland vegetation types, alpine meadow had the highest NPP. (2) Moreover,
the actual livestock carrying capacity exhibited a spatial pattern of high in the east and low
in the west. Specifically, 48.55% of the TRSR area showed an increase in actual livestock
carrying capacity, while 36.01% showed a decrease. The areas with an increased actual
livestock carrying capacity were predominantly distributed in Tanggulashan Town, Zhiduo,
Qumalai, and Maduo Counties. (3) Overall, the study area maintained a forage–livestock
balance. However, there were serious overloads in western Qumalai County and northern
Tongde County, with slight overloads in Zhiduo, Maduo, and Zeku Counties. Livestock
carrying pressure increased in 45.81% of the regions, whereas it decreased in 34.76%. No-
tably, Tanggulashan Town, Zhiduo, Qumalai, and Maduo Counties experienced significant
increases, while Zaduo County and the eastern regions experienced significant decreases.
These findings from 2010 to 2022 stress the need for the TRSR to further strengthen the
management of the forage–livestock balance, particularly in Qumalai and Tongde Coun-
ties, where livestock numbers need to be reduced. The approach of improving the CASA
model in this paper can be applied to forage–livestock balance research in other regions.
Consequently, these research results hold positive significance for maintaining the regional
forage–livestock balance and achieving the sustainable management of alpine grassland.
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