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Abstract: Raindrop size distribution (DSD) has an essential effect on rainfall kinetic energy estimation
(RKEE) and dual-polarization radar quantitative precipitation estimation (QPE); DSD is a key factor
for establishing a dual-polarization radar QPE scheme and RKEE scheme, particularly in mountainous
areas. To improve the understanding of seasonal DSD-based RKEE, dual-polarization radar QPE,
and the impact of rainfall types and classification methods, we investigated RKEE schemes and
dual-polarimetric radar QPE algorithms across seasons and rainfall types based on two classic
classification methods (BR09 and BR03) and DSD data from a disdrometer in the Tianshan Mountains
during 2020–2022. Two RKEE schemes were established: the rainfall kinetic energy flux–rain rate
(KEtime–R) and the rainfall kinetic energy content–mass-weighted mean diameter (KEmm–Dm). Both
showed seasonal variation, whether it was stratiform rainfall or convective rainfall, under BR03
and BR09. Both schemes had excellent performance, especially the KEmm–Dm relationship across
seasons and rainfall types. In addition, four QPE schemes for dual-polarimetric radar—R(Kdp), R(Zh),
R(Kdp,Zdr), and R(Zh,Zdr)—were established, and exhibited characteristics that varied with season
and rainfall type. Overall, the performance of the single-parameter algorithms was inferior to that of
the double-parameter algorithms, and the performance of the R(Zh) algorithm was inferior to that of
the R(Kdp) algorithm. The results of this study show that it is necessary to consider different rainfall
types and seasons, as well as classification methods of rainfall types, when applying RKEE and
dual-polarization radar QPE. In this process, choosing a suitable estimator—KEtime(R), KEmm(Dm),
R(Kdp), R(Zh), R(Kdp,Zdr), or R(Zh,Zdr)—is key to improving the accuracy of estimating the rainfall KE
and R.

Keywords: seasonal variation; rainfall kinetic energy estimation; dual-polarization radar quantitative
precipitation estimation; rainfall type; Tianshan mountains

1. Introduction

Raindrop size distribution (DSD) is important and fundamental for enriching our
knowledge of the microphysical characteristics and processes of rainfall [1–3]. Moreover,
DSD plays a key role in rainfall kinetic energy estimation (RKEE), which can significantly
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improve its accuracy [4–9]. More importantly, DSD has significant implications for enhanc-
ing the quantitative precipitation estimation (QPE) capabilities of both space-borne and
ground-based radars [10–15].

DSD exhibits diverse characteristics worldwide owing to the influence of many factors,
including the climate region, geographical location, terrain, season, rainfall type, and the
weather system [16–23]. Researchers have conducted in-depth studies on DSD in many re-
gions of China, revealing that the particularities of DSD in southern China, northern China,
eastern China, and the Qinghai–Tibet Plateau are directly affected by monsoons [24–34].
The diversity of DSD directly leads to differences in the RKEE schemes derived from DSD
in different climatic regions, geographical locations, terrains, seasons, rainfall types, and
weather systems [9,28,35,36]. Seela et al. [9] established RKEE schemes for 14 tropical cy-
clones observed in Palau. Wen et al. [28] analyzed the seasonal variation in RKEE schemes
in eastern China and concluded that the variability of DSD is an important reason for the
diversity of RKEE schemes. Janapati [35] analyzed in detail and provided RKEE schemes
for three locations in northern Taiwan during different seasons and concluded that the
diversity of RKEE is caused by the variation in DSD with the location and season. Wu
et al. [36] constructed RKEE schemes in southwestern China and showed that the diversity
in RKEEs among different rainfall types was caused by DSD variation. In summary, various
conditions that determine the diversity of DSD cause RKEE schemes to exhibit diverse
characteristics. Therefore, it is necessary to construct separate RKEE schemes for different
seasons and rainfall types in certain regions.

Similarly, the diversity of DSD directly leads to differences in QPE algorithms derived
from DSD in different climate regions, geographical locations, terrains, seasons, rainfall
types, and weather systems [20–27]. QPE algorithms for single-polarization radars have
been structured in many countries based on rain rates (R) and radar reflectivity factors
derived from DSD [37–44]. However, an increasing number of studies have indicated that
the performance of QPE algorithms for single-polarization radars is worse than that for
dual-polarization radars [13–15,45–49]. Zhang et al. [13] established three QPE algorithms
for dual-polarization radars in Beijing based on DSD data and emphasized that the QPE
estimator containing R, the specific differential phase (Kdp), and differential reflectivity (Zdr)
[i.e., R(Kdp,Zdr)] performs the best. Chen et al. [14] constructed QPE algorithms for dual-
polarization radars in eastern China and emphasized that the QPE algorithms exhibit
variability in different convective weather systems. Li et al. [48] established four QPE
algorithms for dual-polarization radars over the northeastern Qinghai–Tibet Plateau and
concluded that double-parameter QPE algorithms were superior to single-parameter
QPE algorithms. You et al. [49] analyzed QPE algorithms in the Halla Mountains on
Jeju Island, South Korea, based on DSD data from 10 particle size velocity (PARSIVEL)
disdrometers, and concluded that terrain plays an important role in the diversity of
QPE algorithms. In short, many factors that affect the characteristics of DSD, including
climate region, geographical location, terrain, season, rainfall type, and weather system,
also affect dual-polarization radars QPE algorithms. Therefore, the establishment of
dual-polarization radar QPE algorithms for various rainfall types and seasons is of great
value in certain regions.

Xinjiang is located in the northwest of China and is a typical arid region [50]. Due
to the strong influence of terrain uplift, the Tianshan Mountains have become the precip-
itation center of Xinjiang [51,52]. Some studies have partially clarified the specificity of
DSD [53,54] and developed RKEE schemes [55–57] and QPE algorithms [55–61] using DSD
information from the Tianshan Mountains. Zeng et al. [54] investigated the features of
DSD during the rainy season (April to October) and emphasized that DSD in the Tianshan
Mountains has unique characteristics compared with that in other regions. Zeng et al. [55]
constructed RKEE schemes for overall rainfall in each season over the Tianshan Mountains
and established RKEE schemes for different types of rainfall in summer [56]. In addition,
QPE algorithms for single-polarization radars were established in the Tianshan Mountains,
demonstrating significant differences compared with those in other regions [58]. Further-
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more, Zeng et al. [60] constructed dual-polarization radar QPE algorithms for the summer
over the Tianshan Mountains and suggested that dual-polarization radar had significantly
better QPE performance compared with single-polarization radar. However, the RKEE
schemes and dual-polarization radar QPE algorithms for different rainfall types in this area
under the two classic rainfall classification methods proposed by Bringi [18] and Bringi [62]
remain unknown, and their differences in different seasons have not been studied.

To reveal DSD-based RKEE schemes and dual-polarization radar QPE algorithms
under different rainfall types and to explore the effects of the seasons on RKEE schemes
and dual-polarization radar QPE algorithms in the Tianshan Mountains, a study based on
the DSD collected from the Tianshan Mountains during 2020–2022 was conducted.

2. Data and Methodology
2.1. Study Area and Dataset

The Tianshan Mountains are located in the north of the Qinghai–Tibet Plateau, with
the main body located in central Xinjiang, China (Figure 1a). Within this region, Zhaosu
(1851 m a.s.l.; 43.14◦N, 81.13◦E) was the focus area for this study (Figure 1b); the DSD
dataset for Zhaosu from 2020 to 2022 was collected based on a second-generation OTT
Particle Size Velocity (PARSIVEL2) disdrometer manufactured by OTT Hydromet (Kempten,
Germany) [59]. The observation area of Zeng et al. [55] was Xinyuan (928 m a.s.l.; 43.45◦N,
83.25◦E); they also used a PARSIVEL2 disdrometer, and its location is also displayed
in Figure 1b. DSD information was obtained by simultaneously recording the particle
sizes and fall speeds within a resolution of 1 min [63,64]. More and more studies have
used PARSIVEL2 disdrometers to conduct research on DSD because of their excellent
performance [9,43,44,49,53–60,65–68]. However, as the high altitude of Zhaosu results in no
rainfall in this region during winter [59], this study only considered data from the spring,
summer, and fall.
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2.2. Quality Control of DSD Data

The quality of the DSD data is affected by many factors, so the quality control process-
ing of the DSD data is crucial. The most critical influencing factors that cannot be ignored
are as follows: low signal-to-noise ratio [12,69], low rain rate or number of raindrops
during the sampling time [70], and splashing effects or strong winds [64,71]. Therefore,
eliminating the impact of these three aspects is important to obtain more accurate DSD data.
Previous studies of DSD over the Tianshan Mountains have implemented strict quality
control [55–59]. After data quality control, 15,318, 20,785, and 5151 DSD samples were used
in the Tianshan Mountains from the spring to fall in Zhaosu, respectively [59].

2.3. RKEE

Rainfall kinetic energy is usually expressed as KEtime (i.e., rainfall kinetic energy flux,
J m−2 h−1) and KEmm (i.e., rainfall kinetic energy content, J m−2 mm−1) [4,9,35,36,72,73],
which can be calculated using Equations (1) and (2), respectively:

KEtime =
( π

12

)
×
(

1
106

)
×
(

3600
∆t

)
×
(

1
Ae f f (Di)

)
32

∑
i=1

ni × Di
3 × (V(Di))

2 (1)

KEmm =
KEtime

R
(2)

where ∆t (s) is the sampling time (60 s); Di (mm) represents the raindrop diameter;
V(Di) [m s−1] is the raindrop velocity; and Aeff (Di) [m2] and R (mm h−1) are the ef-
fective sampling area [63,74,75] and rain rate, respectively, which can be calculated using
Equations (3) and (4):

Ae f f (Di) = 10−6 × 180 ×
(

30 − Di
2

)
(3)

R =
6π

104 ×
32

∑
i=1

N(Di)× Di
3 × V(Di)× ∆Di (4)
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where ∆Di (mm) represents the diameter interval and N(Di) [m−3 mm−1] represents DSD,
which can be calculated using Equation (5):

N(Di) =
32

∑
j=1

nij

Ae f f (Di)× ∆t × V(Di)× ∆Di
(5)

where nij is the number of drops.
The DSD-based RKEE schemes, including KEtime(R) and KEmm(Dm) [5–7,9,35,55–57],

are as follows:
KEtime (R) = a × Rb (6)

KEmm(Dm) = c × D2
m + d × Dm + e (7)

where a, b, c, d, and e are the corresponding coefficients of the RKEE schemes and Dm (mm)
is the mass-weighted mean diameter [76], as follows:

Dm =
∑32

i=1 N(Di)× D4
i × ∆Di

∑32
i=1 N(Di)× D3

i × ∆Di
(8)

2.4. QPE for Dual-Polarization Radar

The DSD-based dual-polarization radar QPE algorithms are particularly valuable in
enhancing the QPE capability [13,26,27,29–31,56,60]. These algorithms are constructed
using the variables of the dual-polarization radar, including (1) Zh/v (i.e., radar reflectivity
at horizontal or vertical polarization, mm6 m−3), (2) Zdr (i.e., differential reflectivity, dB),
and (3) Kdp (i.e., specific differential phase, ◦ km−1), which can be derived based on the
T-matrix scattering method [47,77–79] as follows:

Zh/v =

(
4 × λ4

π4 × |Kw|2

)
×
∫ Dmax

Dmin

| fhh/vv(D)|2 × N(D)× dD (9)

Zdr = 10 × log10

(
Zh
Zv

)
(10)

Kdp = 10−3 × 180
π

× λ × Re
{∫ Dmax

Dmin
[ fh(D)− fv(D)]× N(D)× dD

}
(11)

where Dmax is 8 mm, according to the DSD data in this study; Kw (−) and λ (mm) are the
dielectric constant of water (0.9639) and the dual-polarization radar wavelength (33.3 mm
for the X-band in this study), respectively; and fh/v(D) and fhh/vv(D) represent the forward
scattering and backscattering amplitudes of a raindrop, respectively. In this study, the
axis–ratio relation reported by Brandes [47] constrained the raindrops.

The DSD-based dual-polarization radar QPE algorithms, including (1) R(Zh), (2) R(Kdp),
(3) R(Zh,Zdr), and (4) R(Kdp,Zdr), are as follows:

R(Zh) = f × Zg
h (12)

R
(

Kdp

)
= h × Ki

dp (13)

R(Zh, Zdr) = j × Zk
h × 10l×Zdr (14)

R
(

Kdp, Zdr

)
= m × Kn

dp × 10o×Zdr (15)

where f, g, h, i, j, k, l, m, n, and o are the coefficients of the corresponding dual-polarization
radar QPE algorithms.
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2.5. Assessing RKEE Scheme and Dual-Polarization Radar QPE Algorithm Accuracy

The values of KEtime, KEmm, and R calculated using Equations (1), (2), and (4) were
used to assess the accuracy of the RKEE schemes (Equations (6) and (7)) and the dual-
polarization radar QPE algorithms (Equations (12)–(15)). The correlation coefficient (CC),
normalized mean absolute error (NMAE), and root mean square error (RMSE) were used
to assess the estimators:

CC =
∑n

i=1
(

Mi − M
)
×
(

Me,i − Me
)√

∑n
i=1
(

Mi − M
)2 ×

√
∑n

i=1
(

Me,i − Me
)2

(16)

NMAE =
1
n × ∑n

i=1|Me,i − Mi|
M

(17)

RMSE =

√
1
n
× ∑n

i=1(Me,i − Mi)
2 (18)

where Mi and M represent the individual and average KEtime, KEmm, and R calculated
from the DSD data, respectively; and Me,i and Me are the individual and average KEtime,
KEmm, and R derived from the RKEE schemes and dual-polarization radar QPE algorithms,
respectively.

2.6. Classification of Rainfall Types

Stratiform and convective rainfall are the two basic rainfall types, and many re-
searchers have proposed classification methods for these rainfall types [12,17,18,62,76,80].
Here, we used two classic classification methods of rainfall types to divide DSD data into
stratiform and convective rainfall. Specifically, the first classification method was reported
by Bringi et al. [62], based on the log10Nw (normalized intercept parameter)–D0 (median
volume diameter) space (BR09) [36,59,62,81,82]. The second classification scheme was
reported by Bringi et al. [18], considering R and the standard deviation of R (BR03) [18–25].
The simultaneous application of these two classification schemes (BR09 and BR03) was
based on their widespread recognition and the characteristics of rainfall in arid regions.
BR09 and BR03 are both classic classification schemes for rainfall types, which have been
applied in many regions, especially the BR03 classification. More importantly, the Tianshan
Mountains are located in arid areas with insufficient water vapor supply, and the convective
rainfall in this region has the characteristics of a short duration, a high variability, and a
relatively low R compared to monsoon areas [50–52]. BR03 can be specifically expressed
when there is at least 10 consecutive 1 min rainfall samples; the rainfall is determined
to be stratiform rainfall (convective rainfall) if R is >0.5 (5) mm h−1 and the standard
deviation of R is < (>) 1.5 mm h−1. In previous studies based on the BR03, we found
that even in summer, there were fewer convective rainfall samples in the Tianshan Moun-
tains [53,54,56,58], which were affected by the short duration, high variability, and low R
of convective rainfall in the region. Based on this, the widely recognized BR09 has also
been applied in this study. Specifically, BR09 can be expressed as samples located below
(above) the equation log10Nw = −1.6D0 + 6.3 in the log10Nw − D0 space that are classified as
stratiform rainfall (convective rainfall). It should be noted that we recognize both of these
two classic classification methods, and there is no superiority or inferiority between BR09
and BR03; only the classification principles are different. Furthermore, the simultaneous
application of BR09 and BR03 provided convenience for comparing different classification
schemes of rainfall types in this study and comparing them with previous studies based
only on one classification scheme of rainfall type in other regions. After the classification
of rainfall types for all DSD samples, the number of DSD samples for stratiform rainfall
(convective rainfall) classified by BR09 was 40,380 (871), while the number classified by
BR03 was 10,349 (228). In terms of seasons, for stratiform rainfall under BR09 (BR09_S),
the numbers of the samples were 15,115, 20,148, and 5117 from spring to fall, respectively,
whereas for convective rainfall under BR09 (BR09_C), the numbers of the samples were 202,
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636, and 33 from spring to fall, respectively. For stratiform rainfall under BR03 (BR03_S),
the numbers of the samples were 4523, 4734, and 1092 from spring to fall, respectively,
while for convective rainfall under BR03 (BR03_C), the numbers of the samples were 119
and 109 in spring and summer, respectively. Notably, there were no samples of convective
rainfall in the fall under BR03. For a more detailed explanation of the DSD data and the
process of classifying rainfall types in this study, please refer to Zeng et al. [59].

3. Results
3.1. Seasonal RKEE Variation

As “the water tower of central Asia”, heavy rainfall in the Tianshan Mountains of-
ten causes landslides, mudslides, and floods, owing to the steep terrain; the degree of
damage caused by these secondary disasters can be estimated to some extent by rainfall
kinetic energy (KE), including KEtime and KEmm [57,83]. Obtaining the rainfall KE from
DSD information overcomes the limitations of expensive direct measurement instruments
and is an important method for obtaining rainfall KE [4]. Figure 2 shows seasonal varia-
tions in KEtime and KEmm. For the entire data and spring, the peak distribution of KEtime
was 4.5 J m−2 h−1; for summer and fall, KEtime was mostly distributed around 6.5 and
3.0 J m−2 h−1, respectively; mean KEtime (purple solid line) was the largest (smallest) at
29.418 (14.006) J m−2 h−1 in the summer (fall) (Figure 2a). The peak distribution of KEmm
for the entire data and the three seasons was 7.6, 6.8, 8.0, and 8.2 J m−2 mm−1, respectively,
and mean KEmm (purple solid line) was largest (smallest) at 12.307 (9.826) J m−2 mm−1 in
summer (spring) (Figure 2b).
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Figure 2. Seasonal variations in the distributions of (a) KEtime and (b) KEmm at Zhaosu.

The scatterplots of KEtime vs. R for the entire dataset and the KEtime–R relationship
across the seasons are shown in Figure 3. For ease of comparison, previous results from
Zeng et al. [55], Seela et al. [83], and Wu et al. [36] are also shown. For the entire dataset,
the KEtime–R relation was KEtime = 12.495R1.285. The fitting curves for summer and fall were
similar to those for the entire dataset. For the same R, KEtime was slightly smaller in spring
or fall than in summer. Compared with Zeng et al. [55], regardless of the entire dataset
or different seasons, given the R value, the KEtime of Zhaosu was almost always greater
than that of Xinyuan. The KEtime–R relationship for the entire data at Enshi (a southwestern
mountain area of China), as reported by Wu et al. [36], was higher than that for the entire
data at Zhaosu when R < 35.0 mm h−1, and vice versa when R > 35.0 mm h−1. Compared
with all the above results, for the same R, Seela et al. [83] reported the smallest KEtime for
typhoons in Palau, an island in the Western Pacific. The variation among each curve in
Figure 3 was relevant to their own elevation or climate conditions.
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For RKEE, the KEmm–Dm relationship is also an important RKEE scheme. Figure 4
shows scatterplots of KEmm vs. Dm for the entire dataset and for different seasons at
Zhaosu compared with those for previous results [55,83]. For the entire dataset, the
KEmm–Dm relationship was KEmm = −2.260Dm

2 + 21.953Dm − 8.899. The fitting curves
across the seasons were very close to those for the entire dataset until Dm was >3.6 mm.
When Dm > 3.2 mm, as Dm increased, the difference between KEmm in summer and that
in spring and fall gradually increased. However, the seasonal variation in KEmm was not
as significant as that at Xinyuan [55]. Another difference between Zhaosu and Xinyuan
was that, for a given Dm value, a larger KEmm was observed in Zhaosu than in Xinyuan,
whereas the opposite was true for Dm > 2.8 mm in fall. Compared with all the above
results, for 0.6 mm < Dm < 3.8 mm, Seela et al. [83] reported the smallest KEmm of KEmm–Dm
relationship for a typhoon in Palau, Western Pacific.

To evaluate the accuracy of the derived RKEE schemes, we compared the estimated
rainfall KE for different RKEE schemes, as shown in Figures 3 and 4, with the rainfall KE
directly derived from DSD based on Equations (1) and (2). Figure 5 shows scatterplots
of KEtime and KEmm computed from the derived RKEE schemes and DSD in terms of the
CC, RMSE, and NMAE. The performances of the RKEE schemes of KEmm were superior
to those of KEtime for all seasons and the entire dataset, and were characterized by more
clustered scatterers along the 1:1 line and larger CC (>0.99). For the RKEE schemes of
KEmm across seasons, the performance of KEmm in summer was superior to that in spring
and fall, with a larger CC (0.9965) and smaller RMSE (0.5496 J m−2 mm−1) and NMAE
(0.0334 J m−2 mm−1). Similarly, the performance of KEtime in summer was superior to
that in spring and fall, with a larger CC (0.9698) and smaller NMAE (0.2636 J m−2 h−1),
while a larger RMSE in summer was mainly caused by the larger KEtime, as shown in
Figure 2a. This may be related to the fact that summer has more samples compared to other
seasons. Overall, the RKEE schemes performed well for both the entire dataset and the
different seasons.
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3.2. Seasonal RKEE Variation for Different Rainfall Types

Stratiform and convective rainfall are two basic types of rainfall with significant dif-
ferences in their microphysical characteristics [17–25,62,80–82]. Therefore, it is necessary
to explore the RKEE for different rainfall types. Figure 6 shows the seasonal variations
in the distributions of KEtime and KEmm for stratiform and convective rainfall under BR09
and BR03 at Zhaosu. For stratiform rainfall under BR09 (BR09_S), the peak distribu-
tion of KEtime was 5.0 J m−2 h−1, with a mean KEtime (purple solid line) at its largest
(smallest) at 17.535 (12.489) J m−2 h−1 in the summer (spring) (Figure 6a). For convec-
tive rainfall under BR09 (BR09_C), the KEtime with the highest distribution across the
different seasons was ~260.0 J m−2 h−1, and the mean KEtime was largest (smallest) at
405.907 (249.190) J m−2 h−1 in summer (fall) (Figure 6c). Meanwhile, for stratiform rainfall
under BR03 (BR03_S), the mean KEtime was largest (smallest) at 28.590 (21.558) J m−2 h−1 in
summer (spring) (Figure 6e); for convective rainfall under BR03 (BR03_C), the mean KEtime
was 379.887 (325.083) J m−2 h−1 in summer (spring) (Figure 6g). Furthermore, for BR09_S
(BR09_C), the mean KEmm (purple solid line) was largest at 11.677 (32.209) J m−2 mm−1 in
summer and smallest at 9.566 (29.265) J m−2 mm−1 in spring (Figure 6b,d). For BR03_S
(BR03_C), the mean KEmm was largest at 13.342 (24.920) J m−2 mm−1 in summer, and
smallest at 11.425 (21.172) J m−2 mm−1 in spring (Figure 6f,h). In all seasons, for both
stratiform and convective rainfall under both BR03 and BR09, summer hadthe largest mean
KEtime and KEmm.

The scatterplots of KEtime vs. R for the entire dataset, and the KEtime–R relation-
ship for stratiform and convective rainfall across the seasons under BR09 and BR03 at
Zhaosu, are shown in Figure 7. Under BR09_S, the KEtime–R relation was revealed as
KEtime = 12.837R1.173 for the entire dataset. In terms of seasons, for the same R, KEtime was
slightly smaller in spring or fall than that in summer, and KEtime was slightly larger in
spring than that in fall when R > 4.0 mm h−1 (Figure 7a). Under BR09_C, the KEtime–R
relation was KEtime = 23.418R1.097 for the entire dataset, and the KEtime–R relationships
were KEtime = 14.433R1.229, KEtime = 26.543R1.065, and KEtime = 28.540R1.004 for spring, sum-
mer, and fall, respectively (Figure 7b). Meanwhile, under BR03_S, the KEtime–R relation-
ship was KEtime = 11.110R1.291 for the entire dataset, and the KEtime–R relationships were
KEtime = 10.374R1.327, KEtime = 12.030R1.252, and KEtime = 10.818R1.262 for spring, summer,
and fall, respectively (Figure 7c). Under BR03_C, for the same R, KEtime was slightly larger
in spring than that in summer for R > 37.0 mm h−1, and vice versa when R < 37.0 mm h−1

(Figure 7d). In summary, the RKEE schemes based on the KEtime–R relationships are largely
constrained by different classification methods, rainfall types, and seasons.

To further evaluate the accuracy of the derived RKEE schemes across seasons under
BR09 and BR03, we compared the KEtime estimated by various RKEE schemes with the
KEtime directly derived from the DSD based on Equation (1). Figure 8 shows the scatterplots
of KEtime computed from the derived RKEE schemes and KEtime computed from DSD with
CC, RMSE, and NMAE across seasons under BR09 and BR03. Under BR09_S and BR09_C,
the values of CC for the entire dataset and all seasons were >0.93, except for those in fall
under BR09_C (0.9085), whereas under BR03_S, the values of CC for the entire dataset and
all seasons were <0.90, except for those in summer (0.9101). Furthermore, the performance
of the RKEE schemes of KEtime for the entire data and all seasons under BR03_C was
superior to those under BR03_S, characterized by a larger CC (>0.94) and a smaller NMAE
(<0.24 J m−2 h−1); the larger RMSE under BR03_C was mainly caused by the larger KEtime
across seasons, as shown in Figure 6g. More importantly, from a seasonal perspective,
under BR09_S, BR09_C, and BR03_S, the performance of KEtime in summer was superior
to that in other seasons, characterized by a larger CC and a smaller NMAE, while under
BR03_C, the performance of KEtime in spring was superior to that in summer.
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Figure 6. Violin plots of seasonal variations in KEtime under (a) BR09_S, (c) BR09_C, (e) BR03_S, and
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Scatterplots of KEmm vs. Dm for the entire dataset and seasonal variation in the KEmm–
Dm relationship for different rainfall types under BR09 and BR03 are shown in Figure 9.
Under BR09_S, for the entire data, the KEmm–Dm relationship was KEmm = −1.81Dm

2 +
20.91Dm − 8.35. In terms of seasons, when Dm > 2.2 mm, KEmm was slightly larger in
spring than that in summer and fall (Figure 9a). Under BR09_C, for the entire dataset,
the KEmm–Dm relationship was KEmm = −2.20Dm

2 + 21.49Dm − 8.39, and the seasonal
variation in the KEmm–Dm relationship was insignificant compared to that under BR09_S
(Figure 9b). Meanwhile, under BR03_S, the KEmm–Dm relationship was KEmm = −2.60Dm

2

+ 23.59Dm − 10.15 for the entire data, and the KEmm–Dm relationships across the seasons
were KEmm = −2.57Dm

2 + 23.53Dm − 10.07, KEmm = −2.73Dm
2 + 23.96Dm − 10.44, and

KEmm = −2.48Dm
2 + 23.59Dm − 10.23, respectively (Figure 9c). Under BR03_C, the KEmm–

Dm relationship was KEmm = −2.60Dm
2 + 23.37Dm − 10.38 for the entire dataset, and the

KEmm–Dm relationship across the seasons was insignificant compared to that under BR03_S
(Figure 9d). In summary, RKEE schemes based on KEmm–Dm relationships were largely
constrained by different rainfall types and their classification methods. In addition, the
KEmm–Dm relationship across the seasons during stratiform rainfall was more pronounced
than that during convective rainfall.
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Figure 8. Scatterplot of estimated KEtime from RKEE schemes versus KEtime calculated from DSD for
(a) the entire data, (e) spring, (i) summer, and (m) fall under BR09_S; those for (b) the entire data,
(f) spring, (j) summer, and (n) fall under BR09_C; those for (c) the entire data, (g) spring, (k) summer,
and (o) fall under BR03_S; and those for (d) the entire data, (h) spring, and (l) summer under BR03_C
at Zhaosu. Black dashed lines represent the 1:1 relationship.

To further evaluate the accuracy of the derived RKEE schemes across seasons in BR09
and BR03, we compared the estimated KEmm using various RKEE schemes with the KEmm
directly derived from the DSD based on Equation (2). Figure 10 shows the scatterplots of
KEmm computed from the derived RKEE schemes and KEmm computed from DSD with
CC, RMSE, and NMAE for the different rainfall types under BR09 and BR03. All RKEE
schemes listed in Figure 10 had excellent performance, characterized by large a CC (>0.99)
and a small NMAE (<0.05 J m−2 mm−1) and RMSE (<0.60 J m−2 mm−1), but there were
also some differences between these RKEE schemes. Specifically, the performance of the
RKEE schemes of KEmm for all data and seasons under BR09_C (BR03_C) was superior to
that under BR09_S (BR03_S), which was characterized by more clustered scatterers along
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the 1:1 line, a larger CC, and smaller a NMAE and RMSE. In addition, under BR09_S and
BR03_S, the performance of the RKEE schemes of KEmm in summer was superior to that in
other seasons, with a larger CC and smaller NMAE and RMSE.
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Overall, for both the entire sample and samples of different rainfall types, obtaining
KEmm based on Dm (KEmm–Dm relation) was more accurate than obtaining KEtime based on
R (KEtime–R relation). However, it was worth noting that R is easier to obtain than Dm, as
the former can be obtained through various methods including observations from widely
distributed meteorological stations. In addition, many reanalysis datasets and satellite
products also included R. Therefore, obtaining KEtime through the KEtime–R relation was
easier and more convenient, and had a broader application space in the future.
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Figure 10. Scatterplot of estimated KEmm from RKEE schemes versus KEmm calculated from DSD for
(a) the entire data, (e) spring, (i) summer, and (m) fall under BR09_S; for (b) the entire data, (f) spring,
(j) summer, and (n) fall under BR09_C; for (c) the entire data, (g) spring, (k) summer, and (o) fall
under BR03_S; and for (d) the entire data, (h) spring, and (l) summer under BR03_C at Zhaosu. Black
dashed lines represent the 1:1 relationship.

3.3. Seasonal Variation of Dual-Polarization Radar QPE

Previous studies have revealed that using the method of T-matrix scattering with
DSD information to obtain the dual-polarization radar variables Zh, Zdr, and Kdp according
to Equations (9)–(11) is reliable and accurate [13,26,27,29–32,56,60]. Figure 11 shows the
seasonal variations in the distributions of dual-polarization radar variables Zh, Zdr, and Kdp
at Zhaosu. For the entire data and three seasons (spring, summer, fall), the peak distribution
of Zh was ~19.0 dBZ, with mean values (gray solid line) close to ~21.6, ~20.4, ~22.7, and
~20.9 dBZ, respectively (Figure 11a). Zdr’s highest distributions for the entire dataset and
three seasons were 0.11, 0.09, 0.13, and 0.13 dB, respectively, and the mean value of Zdr (gray
solid line) was largest in summer (0.388 dB) and smallest in spring (0.269 dB) (Figure 11b).
For fall, Kdp was mostly distributed around 0.007 ◦ km−1, while for other seasons, the
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peak distribution of Kdp was 0.011 ◦ km−1; the mean Kdp (gray solid line) was the smallest
(largest) in fall (summer) at 0.029 (0.070) ◦ km−1 (Figure 11c).
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The dual-polarization radar QPE algorithms (single-parameter algorithms R(Zh) and
R(Kdp), and double-parameter algorithms R(Zh,Zdr) and R(Kdp,Zdr)) across the seasons are
listed in Table 1. Discrepancies were observed across the seasons for each of the four types
of QPE algorithms. Specifically, the coefficient f (g) of the R(Zh) algorithm varied from
0.064 (0.491) to 0.072 (0.516) between the seasons. Similarly, for the R(Kdp) algorithm, the
coefficient h (i) varied from 13.097 (0.649) to 14.655 (0.680) between the seasons; for the
R(Zh,Zdr) algorithm, the coefficients j, k, and l varied from 0.016 to 0.018, 0.763 to 0.822, and
−0.593 to −0.311 across the seasons, respectively. In addition, for the R(Kdp,Zdr) algorithm,
the coefficient m varied from 24.184 to 30.789, and the variability of coefficient o (−0.156 to
−0.274) was relatively greater than that of coefficient n (0.816 to 0.831) across the seasons.

Table 1. Seasonal variation in DSD-based QPE algorithms of dual-polarization radar at Zhaosu.

R(Zh) = f × Zh
g R(Kdp) = h × Kdp

i R(Zh,Zdr) = j × Zh
k × 10l×Zdr R(Kdp,Zdr) = m × Kdp

n × 10o×Zdr

f g h i j k l m n o

All 0.067 0.504 13.481 0.669 0.018 0.766 −0.345 25.670 0.822 −0.170
Spring 0.067 0.516 14.655 0.666 0.018 0.800 −0.446 30.275 0.827 −0.218

Summer 0.064 0.506 13.097 0.680 0.016 0.763 −0.311 24.184 0.831 −0.156
Fall 0.072 0.491 13.176 0.649 0.018 0.822 −0.593 30.789 0.816 −0.274

Previous studies have shown that evaluating the performance of various dual-polarization
radar QPE algorithms based on DSD is important and necessary. R calculated according to
Equation (4) was used to evaluate the DSD-based QPE algorithms of the dual-polarization
radar [13,30,31,48,56,60,84]. Figure 12 shows the scatterplots of R estimated according
to the QPE algorithms and R calculated according to Equation (4) with CC, RMSE, and
NMAE across the seasons. For the entire data and all seasons, double-parameter algorithms
performed better than single-parameter algorithms with more clustered scatterers on the
1:1 line, larger CC (>0.96), and smaller RMSE (<0.8 mm h−1) and NMAE (<0.23 mm h−1).
Moreover, for single-parameter algorithms, regardless of the entire dataset or season, the
performance of the R(Kdp) algorithm was superior to that of the R(Zh) algorithm. Similarly,
for the double-parameter schemes, the R(Kdp, Zdr) algorithm performed better than the
R(Zh, Zdr) algorithm. In addition, both single-parameter algorithms performed the worst in
fall, the R(Zh, Zdr) algorithm performed the worst in summer, and the R(Kdp, Zdr) algorithm
showed little difference in performance across seasons.
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Figure 12. Scatterplot of estimated R based on the R(Zh) algorithm for (a) the entire data, (e) spring,
(i) summer, and (m) fall; estimated R based on the R(Kdp) algorithm for (b) the entire data, (f) spring,
(j) summer, and (n) fall; estimated R based on the R(Zh,Zdr) algorithm for (c) the entire data, (g) spring,
(k) summer, and (o) fall; and estimated R based on the R(Kdp,Zdr) algorithm for (d) the entire data,
(h) spring, (l) summer, and (p) fall versus calculated R according to Equation (4) at Zhaosu. Black
dashed lines represent the 1:1 relationship.

3.4. Seasonal Variation of Dual-Polarization Radar QPE for Different Rainfall Types

Figure 13 shows the seasonal variations in the distributions of the dual-polarization
radar variables Zh, Zdr, and Kdp for stratiform and convective rainfall under BR09 and BR03
at Zhaosu. For BR09_S, Zh with the highest distribution across the seasons was ~19.0 dBZ,
and the mean Zh (gray solid line) was largest (smallest) at 22.01 (20.11) J m−2 h−1 in sum-
mer (spring) (Figure 13a). For BR09_C, the peak distribution of Zh was ~42.5 dBZ, and the
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mean Zh was largest at 44.73 dBZ (smallest at 42.05 dBZ) in summer (fall) (Figure 13d).
Meanwhile, for BR03_S, the mean Zh was largest at 27.32 dBZ (smallest at 25.52 dBZ) in
summer (spring) (Figure 13g), and for BR03_C, the mean Zh was 41.96 dBZ (40.23 dBZ) in
summer (spring) (Figure 13j). Furthermore, for BR09_S (BR09_C), Zdr with the highest dis-
tribution across the seasons was ~0.1 (1.4) dB and the mean Zdr (gray solid line) was largest
at 0.34 (1.81) dB in summer (fall), and smallest at 0.25 (1.56) dB in spring (Figure 13b,e). For
BR03_S (BR03_C), the mean Zdr was largest at 0.45 (1.22) dB in summer, and the smallest at
0.35 (0.93) dB in spring (Figure 13h,k). In addition, for BR09_S (BR09_C), the peak distribu-
tion of Kdp was ~0.006 (0.65) ◦ km−1, and the mean value of Kdp (gray solid line) was close
to ~0.031 (1.085), ~0.025 (1.034), ~0.037 (1.123), and ~0.025 (0.677) ◦ km−1 for the entire data,
spring, summer and fall, respectively (Figure 13c,f). For BR03_S (BR03_C), the mean Kdp

was the largest at 0.058 (1.003) ◦ km−1 in summer and the smallest at 0.042 (0.798) ◦ km−1

in spring (Figure 13i,l).
The dual-polarization radar QPE algorithms for stratiform and convective rainfall

under BR09 across seasons based on the DSD information at Zhaosu are listed in Table 2.
The coefficient f (g) of the R(Zh) algorithm varied from 0.054 (0.524) to 0.063 (0.535) between
different seasons for BR09_S, while the coefficient f (g) of the R(Zh) algorithm varied from
0.054 (0.451) to 0.102 (0.521) between different seasons for BR09_C. Similarly, for the R(Kdp)
algorithm, the coefficient h(i) varied from 14.318 (0.688) to 15.828 (0.711) across seasons for
BR09_S, while the coefficient h(i) varied from 12.098 (0.692) to 14.194 (0.786) across seasons
for BR09_C. Furthermore, for the R(Zh,Zdr) algorithm, the coefficients j, k, and l varied from
0.013 to 0.016, 0.852 to 0.877, and −0.653 to −0.680 across seasons for BR09_S, respectively,
while the coefficients j, k, and l varied from 0.006 to 0.048, 0.615 to 0.837, and −0.225 to
−0.367 across seasons for BR09_C, respectively. In addition, for the R(Kdp,Zdr) algorithm,
the differences in the coefficients m, n, and o across seasons during convective rainfall were
greater than those during stratiform rainfall.

Table 2. Seasonal variation of the DSD-based QPE algorithms of a dual-polarization radar for different
rainfall types under BR09 at Zhaosu.

R(Zh) = f × Zh
g R(Kdp) = h × Kdp

i R(Zh,Zdr) = j × Zh
k × 10l×Zdr R(Kdp,Zdr) = m × Kdp

n × 10o×Zdr

BR09_S f g h i j k l m n o

All 0.060 0.521 14.640 0.690 0.014 0.867 −0.675 38.775 0.864 −0.370
Spring 0.063 0.524 15.717 0.688 0.015 0.858 −0.653 38.710 0.853 −0.352

Summer 0.056 0.525 14.318 0.699 0.013 0.877 −0.680 38.794 0.876 −0.370
Fall 0.054 0.535 15.828 0.711 0.016 0.852 −0.669 37.766 0.849 −0.372

BR09_C f g h i j k l m n o

All 0.067 0.504 12.591 0.762 0.009 0.808 −0.291 22.139 0.894 −0.144
Spring 0.097 0.482 14.194 0.703 0.018 0.772 −0.367 26.876 0.849 −0.186

Summer 0.054 0.521 12.098 0.786 0.006 0.837 −0.277 20.926 0.919 −0.135
Fall 0.102 0.451 12.127 0.692 0.048 0.615 −0.225 17.978 0.763 −0.102

Figures 14 and 15 show scatterplots of estimated R based on QPE algorithms and
calculated R according to Equation (4) with respect to CC, RMSE, and NMAE for BR09_S
and BR09_C across the seasons. For both stratiform and convective rainfall, and for both the
entire data and all seasons, double-parameter algorithms were superior to single-parameter
algorithms, with more clustered scatterers along the 1:1 line, a larger CC, and a smaller
RMSE and NMAE, except for the R(Kdp, Zdr) algorithm in the fall under BR09_C. Moreover,
the R(Kdp) algorithm was superior to the R(Zh) algorithm for both BR09_S and BR09_C
across seasons. Meanwhile, the performance of the R(Zh, Zdr) algorithm was better than that
of the R(Kdp, Zdr) algorithm for BR09_S in spring and fall, whereas the opposite was true
for the BR09_C in all seasons. Similarly, seasonal variations in the various QPE algorithms
cannot be ignored. For example, for BR09_C, the single-parameter algorithms performed
the best (worst) in summer (fall) and the R(Zh, Zdr) algorithm performed the best (worst) in
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spring (fall), whereas for BR09_S, the R(Kdp, Zdr) algorithm performed the best (worst) in
summer (spring).
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Figure 13. Seasonal variations in the distributions of Zh under (a) BR09_S, (d) BR09_C, (g) BR03_S,
and (j) BR03_C; those of Zdr under (b) BR09_S, (e) BR09_C, (h) BR03_S, and (k) BR03_C; and those of
Kdp under (c) BR09_S, (f) BR09_C, (i) BR03_S, and (l) BR03_C at Zhaosu.
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the entire data, (f) spring, (j) summer, and (n) fall; that based on the R(Zh,Zdr) algorithm during 
BR09_S for (c) the entire data, (g) spring, (k) summer, and (o) fall; and that based on the R(Kdp,Zdr) 
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Figure 14. Scatterplot of estimated R based on the R(Zh) algorithm during BR09_S for (a) the entire
data, (e) spring, (i) summer, and (m) fall; that based on the R(Kdp) algorithm during BR09_S for
(b) the entire data, (f) spring, (j) summer, and (n) fall; that based on the R(Zh,Zdr) algorithm during
BR09_S for (c) the entire data, (g) spring, (k) summer, and (o) fall; and that based on the R(Kdp,Zdr)
algorithm during BR09_S for (d) the entire data, (h) spring, (l) summer, and (p) fall versus calculated
R according to Equation (4) at Zhaosu. Black dashed lines represent the 1:1 relationship.
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Figure 15. Scatterplot of estimated R based on the R(Zh) algorithm during BR09_C for (a) the entire
data, (e) spring, (i) summer, and (m) fall; that based on the R(Kdp) algorithm during BR09_C for
(b) the entire data, (f) spring, (j) summer, and (n) fall; that based on the R(Zh,Zdr) algorithm during
BR09_C for (c) the entire data, (g) spring, (k) summer, and (o) fall; and that based on the R(Kdp,Zdr)
algorithm during BR09_C for (d) the entire data, (h) spring, (l) summer, and (p) fall versus calculated
R according to Equation (4) at Zhaosu. Black dashed lines represent the 1:1 relationship.

Similar to Table 2, the dual-polarization radar QPE algorithms for stratiform and
convective rainfall under BR03 across seasons based on the DSD information at Zhaosu
are listed in Table 3. The coefficient f (g) of the R(Zh) algorithm varied from 0.126 (0.391) to
0.158 (0.418) between different seasons for BR03_S, while the coefficient f (g) of the R(Zh)
algorithm varied from 0.417 (0.346) to 0.506 (0.350) between different seasons for BR03_C.
Similarly, for the R(Kdp) algorithm, the coefficient h(i) varied from 10.830 (0.558) to 11.653
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(0.597) across seasons for BR03_S, while the coefficient h(i) varied from 14.936 (0.530) to
16.909 (0.571) across seasons for BR03_C. Furthermore, for the R(Zh,Zdr) algorithm, the
coefficients j, k, and l varied from 0.015 to 0.019, 0.824 to 0.859, and −0.622 to −0.655 across
the seasons for BR03_S, respectively, while the coefficients j, k, and l varied from 0.032 to
0.066, 0.627 to 0.696, and −0.273 to −0.280 across the seasons for BR03_C, respectively.
Similarly, for the R(Kdp,Zdr) algorithm, differences were observed for the different seasons
and rainfall types.

Table 3. Seasonal variation of QPE algorithms of DSD-based dual-polarization radar for different
rainfall types under BR03 at Zhaosu.

R(Zh) = f × Zh
g R(Kdp) = h × Kdp

i R(Zh,Zdr) = j × Zh
k × 10l×Zdr R(Kdp,Zdr) = m × Kdp

n × 10o×Zdr

BR03_S f g h i j k l m n o

All 0.142 0.403 11.178 0.575 0.017 0.842 −0.641 36.243 0.837 −0.345
Spring 0.154 0.391 10.830 0.558 0.017 0.835 −0.622 35.616 0.829 −0.329

Summer 0.126 0.418 11.580 0.597 0.015 0.859 −0.655 37.503 0.855 −0.353
Fall 0.158 0.394 11.653 0.577 0.019 0.824 −0.644 35.790 0.820 −0.357

BR03_C f g h i j k l m n o

All 0.526 0.335 15.942 0.539 0.046 0.662 −0.281 25.984 0.776 −0.155
Spring 0.506 0.346 16.909 0.530 0.066 0.627 −0.273 25.102 0.714 −0.137

Summer 0.417 0.350 14.936 0.571 0.032 0.696 −0.280 26.054 0.831 −0.164

Similar to Figures 14 and 15, the scatterplots of R estimated R based on QPE algorithms
and calculated R according to Equation (4) with respect to CC, RMSE, and NMAE for
BR03_S and BR03_C across seasons; these scatterplots are shown in Figures 16 and 17.
For the entire data and all seasons, the performance of the double-parameter algorithms
was superior to that of the single-parameter algorithms for both BR03_S and BR03_C.
Moreover, for both BR03_S and BR03_C in all seasons, the R(Kdp) algorithm was superior
to the R(Zh) algorithm. In addition, the performance of the R(Kdp, Zdr) algorithm was
superior to that of the R(Zh, Zdr) algorithm for BR03_C, whereas the difference between the
two algorithms was very small for BR03_S. Seasonal variations in the performance of each
QPE algorithm are shown in Figures 16 and 17. For BR03_C, both the double-parameter
and single-parameter algorithms performed better in spring than in summer. For BR03_S,
double-parameter algorithms performed the best in summer with larger CC (>0.96) and
smaller NMAE (<0.11 mm h−1).

Overall, for both the entire sample and samples of different rainfall types, obtaining R
based on R(Kdp) [R(Kdp, Zdr)] relation with Kdp was more accurate than obtaining R based
on R(Zh) [R(Zh, Zdr)] without Kdp, and this feature was more pronounced at higher R in
convective rainfall (BR03_C and BR09_C). Meanwhile, in most cases, the double-parameter
relations [R(Kdp, Zdr) and R(Zh, Zdr)] were more accurate than the single-parameter relations
[R(Kdp) and R(Zh)]. However, it is worth noting that for the actual dual-polarization radar,
Kdp was less susceptible to the effects of DSD, partial obstruction, and radar calibration
errors compared to Zh and Zdr. Therefore, in future practical applications, the R(Kdp)
relation may be the best choice, followed by the R(Kdp, Zdr) relation. In addition, we also
emphasized the impact of seasons, rainfall types, and classification methods of rainfall
types on the estimation accuracy of R in the Tianshan Mountains.
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Figure 16. Scatterplot of estimated R based on the R(Zh) algorithm during BR03_S for (a) the entire
data, (e) spring, (i) summer, and (m) fall; that based on the R(Kdp) algorithm during BR03_S for
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algorithm during BR03_S for (d) the entire data, (h) spring, (l) summer, and (p) fall versus calculated
R according to Equation (4) at Zhaosu. Black dashed lines represent the 1:1 relationship.
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Zhaosu. Black dashed lines represent the 1:1 relationship.

4. Discussion

Affected by various factors such as climate, geographical location, terrain, season,
rainfall type, and weather system, DSD exhibits diverse characteristics worldwide [16–23].
The diversity of DSD directly leads to differences in RKEE schemes [9,28,35,36] and QPE
algorithms [20–27] derived from DSD, which are also affected by the various factors men-
tioned above. Secondary disasters such as floods, landslides, and mudslides caused by
precipitation are prone to occur near the steep terrain of the Tianshan Mountains [56,57].
However, insufficient attention has been paid to RKEE and QPE in this region. Therefore,
this study conducted an in-depth study of the RKEE and dual-polarization radar QPE
in the Tianshan Mountains, including seasonal variations and the impacts of different
rainfall types (stratiform rainfall and convective rainfall) based on two classic classification
methods for rainfall types (BR09 and BR03), as reported by Bringi et al. [62] and Bringi
et al. [18], respectively. This study has important theoretical and application value for
expanding and deepening our understanding of RKEE and dual-polarization radar QPE
in arid areas near mountains. RKEE schemes based on KEtime–R relationships are largely
constrained by different classification methods, rainfall types, and seasons.
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The results of this study demonstrate that RKEE schemes and QPE algorithms of dual-
polarization radar are largely constrained by rainfall types, their classification methods,
and the seasons in the Tianshan Mountains. Therefore, establishing corresponding REKK
schemes and QPE algorithms for a dual-polarization radar according to different rainfall
types, their classification methods, and seasons are of great significance to further improve
the accuracy of the RKEE and QPE of dual-polarization radar.

However, DSD is highly variable in mountainous areas, and RKEE schemes and
dual-polarization radar QPE algorithms derived from DSD also exhibit strong variability,
which was partially confirmed in our previous research [57]. Therefore, in the future, it
will be necessary to establish a denser DSD observation network to further obtain RKEE
schemes and dual-polarization radar QPE algorithms over the Tianshan Mountains at a
larger spatial scale. In addition, in steep terrain areas such as the Tianshan Mountains,
various satellite observations have important application value for revealing RKEE schemes
and dual-polarization radar QPE algorithms over the Tianshan Mountains on a larger scale.

5. Conclusions

To reveal the seasonal variations of the rainfall kinetic energy estimation (RKEE) and
the dual-polarization radar quantitative precipitation estimation (QPE) under different
rainfall types based on two classic classification methods for rainfall types, defined by
Bringi et al. [62] (BR09) and Bringi et al. [18] (BR03) in the Tianshan Mountains, China,
the raindrop size distribution (DSD) data from a disdrometer at Zhaosu in the Tianshan
Mountains during 2020–2022 were used to derive rainfall kinetic energy (KEtime and KEmm)
and dual-polarization radar parameters (Zh, Zdr, and Kdp) and establish DSD-based RKEE
schemes and QPE algorithms for a dual-polarization radar. The major conclusions are
summarized as follows:

(1) Mean KEtime was the largest (smallest) at 29.418 (14.006) J m−2 h−1 in summer (fall),
and mean KEmm was the largest (smallest) at 12.307 (9.826) J m−2 mm−1 in sum-
mer (spring). Two RKEE schemes, KEtime–R and KEmm–Dm, were established as
KEtime = 12.495R1.285 and KEmm = −2.260Dm

2 + 21.953Dm − 8.899 for the entire data,
respectively, and both showed seasonal variations. By comparing the estimated KEtime
and KEmm of the established RKEE schemes with the KEtime and KEmm obtained di-
rectly from DSD based on the CC, RMSE, and NMAE, it was confirmed that the RKEE
schemes performed well for the entire dataset and different seasons.

(2) For both stratiform and convective rainfall under both BR03 and BR09 (i.e., BR09_S,
BR09_C, BR03_S, and BR03_C), mean KEtime (17.535, 405.907, 28.590, and 379.887 J m−2 h−1,
respectively), and KEmm (11.677, 32.209, 13.342, and 24.920 J m−2 mm−1, respectively)
in summer were larger than those in other seasons. The KEtime–R and KEmm–Dm rela-
tionships for stratiform and convective rainfall under BR09 and BR03 were established
and showed seasonal variations. The evaluation results showed that both types of
RKEE schemes had excellent estimation performances for rainfall KE under BR09_S,
BR09_C, BR03_S, and BR03_C, particularly the KEmm–Dm relationship.

(3) For the entire dataset and three seasons, the mean Zh was close to 21.6, 20.4, 22.7, and
20.9 dBZ, respectively. The mean Zdr was largest (smallest) at 0.388 (0.269) dB in sum-
mer (spring), and the mean Kdp was largest (smallest) at 0.070 (0.029) ◦ km−1 in sum-
mer (fall). Dual-polarization radar QPE algorithms differed seasonally. The coefficient
f (g) of the R(Zh) algorithm varied from 0.064 (0.491) to 0.072 (0.516), and the coefficient
h(i) of the R(Kdp) algorithm varied from 13.097 (0.649) to 14.655 (0.680) between differ-
ent seasons. For the entire dataset and all seasons, the double-parameter algorithms
were better than the single-parameter algorithms. Moreover, the R(Kdp, Zdr) [R(Kdp)]
algorithm was superior to the R(Zh, Zdr) [R(Zh)] algorithm.

(4) Differences were found in different seasons and types of rainfall under BR03 and BR09
for the four types of dual-polarization radar QPE algorithms. For different seasons
and rainfall types in BR03 and BR09, the double-parameter algorithms were better
than the single-parameter algorithms, and the R(Kdp) algorithm was superior to the
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R(Zh) algorithm. For BR09_C, the R(Zh, Zdr) algorithm performed the best (worst) in
spring (fall), while for BR09_S, the R(Kdp, Zdr) algorithm performed the best (worst) in
summer (spring). For BR03_C (BR03_S), the double-parameter algorithm exhibited
the best performance in spring (summer).

The results of this study show that it is necessary to consider different rainfall types
and seasons, as well as classification methods for rainfall types, when applying RKEE
and dual-polarization radar QPE. In this process, choosing a suitable estimator (KEtime(R),
KEmm(Dm), R(Kdp), R(Zh), R(Kdp,Zdr), or R(Zh,Zdr)) is key to improving the accuracy of
estimating rainfall KE and R. However, it is necessary to establish a denser DSD observation
network and to use various satellite observations to further obtain RKEE schemes and dual-
polarization radar QPE algorithms over the Tianshan Mountains from a larger spatial scale.
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