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Abstract: Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa,
where several watersheds and regional water basins are poorly gauged or ungauged. In this study,
six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS); Tropical Applications of Meteorology Using Satellite and Ground-based Observations
(TAMSAT); TRMM Multi-satellite Precipitation Analysis (TMPA); and the National Aeronautics and
Space Administration’s new Integrated Multi-SatellitE Retrievals for Global Precipitation Measure-
ment (GPM) early run (IMERG-ER), late run (IMERG-LR), and final run (IMERG-FR), were used to
force a gauge-calibrated Soil & Water Assessment Tool (SWAT) model for the Congo River Basin,
Central Africa. In this study, the National Centers for Environmental Prediction’s Climate Forecast
System Reanalysis (CFSR) calibrated version of the SWAT was used as the benchmark/reference,
while scenario versions were created as configurations using each satellite product identified above.
CFSR was used as an independent sample to prevent bias toward any of the satellite products. The cal-
ibrated CFSR model captured and reproduced the hydrology (timing, peak flow, and seasonality) of
this basin using the average monthly discharge from January 1984–December 1991. Furthermore, the
results show that TMPA, IMERG-FR, and CHIRPS captured the peak flows and correctly reproduced
the seasonality and timing of the monthly discharges (January 2007–December 2010). In contrast,
TAMSAT, IMERG-ER, and IMERG-LR overestimated the peak flows. These results show that some
of these precipitation products must be bias-corrected before being used for practical applications.
The results of this study will be significant in integrated water resource management in the Congo
River Basin and other regional river basins in Africa. Most importantly, the results obtained from
this study have been hosted in a repository for free access to all interested in hydrology and water
resource management in Africa.

Keywords: SWAT; Congo River Basin; surface water; afforestation; water resources management;
satellite precipitation; Africa

1. Introduction

Many of the world’s watersheds and river basins are ungauged. This is a significant
challenge, especially in water resource management projects dealing with precipitation
estimates and distributions. An accurate and reliable precipitation dataset is crucial since
this is the foremost and fundamental component of the hydrologic cycle. A lack of accurate
and consistent precipitation records is common in Africa, where many watersheds are
ungauged or sparsely gauged. In many African watersheds, historical precipitation records
of available observed data are filled with missing values. Hydrologic applications need
complete, seamless, and consistent datasets to make an informed decision. Using an in-
complete and missing dataset can introduce bias and erroneous interpretation. Radar- and
satellite-based rainfall estimates have proven to be a good proxy for observed precipitations
from weather stations [1,2]. Radar is expensive, and its use is limited, especially for devel-
oping nations in sub-Saharan African countries. Therefore, satellite-based rainfall products
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that are free and cover large areas, especially for large river basins, will be the right solution.
The spatial and temporal resolutions of satellite-based rainfall products are also sufficient
for several large river basins in Africa, such as the Congo River Basin (hereafter: CRB) or
Niger River Basin. Several of these available satellite products include the Climate Hazards
Group Infra-Red Precipitation with Station data (CHIRPS; [3]); Tropical Rainfall Measur-
ing Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) (TMPA-3B42; [4–6]);
Tropical Applications of Meteorology using Satellite and Ground-based Observations (TAM-
SAT, [7]); and Integrated Multi-satellitE Retrievals for GPM (IMERG; [8]). Others include
the Global Precipitation Climatology Centre (GPCC) developed by the World Climate
Research Program (WCRP); Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR; [9]); Climate
Precipitation Center Morphing Technique (CMORPH; [10]); and Africa Rainfall Clima-
tology Version 2 (ARC2; [11]). Several of these products have been used as hydrologic
forcing in Africa. Munzimi et al. [12] used TMPA (3B43_V6) to quantify the rainfall pattern
over the entire CRB. The authors reported that these satellite data performed well in the
basin. Further, Nicholson et al. [13] evaluated nine satellite-based rainfall products over the
CRB. These satellite products include CHIRPS (version 2), GPCP (2.3), TMPA (3B43), and
PERSIANN-CDR. Other studies that have quantified the performance of various satellite
products over the CRB include [14–17]. Datok et al. [18] investigated Cuvette Centrale’s role
in CRB’s hydrology. In their study, the authors concluded that runoff from the Congo River
headwater was the largest contributor to this peatland. Kitambo et al. [19] also applied
in situ and satellite-derived observations to quantify the surface hydrology of CRB. They
reported that northern sub-basins and central regions make the largest contributions to
the large peak flow in December–January. In contrast, the southern basins supply water to
the peak flows in April–May. This study does not aim to provide a review but rather to
quantify the reliability of the chosen satellite products in the CRB.

Africa has more than 52 major river basins, which provide ecosystem service benefits
for more than 150 million people. The CRB is the largest river basin in Africa, with more
than 3 million km2 in land area. The CRB is the second largest carbon deposit/sink (after
the Amazon River Basin) in the world [20]. The CRB is also one of the world’s greatest
sources of hydroelectric potential. According to the World Bank, the CRB’s hydropower
potential is estimated to have the capacity to light up the entire African continent [20]. In
addition, the CRB is important for the water resource management, food provision, and
source of livelihood for more than 75 million people in Africa [21]. The Ubangi River,
which drains the northern basins as a whole, is a major tributary of the Congo River. In
addition, this river forms the administrative boundary between the CAR and the DRC. The
northern sub-basins (Ubangi and Quesso basins) have been affected by a reduction in flow
over several decades [22]. This is important because this river is central to and useful for
navigation and a source of economic opportunity for the vulnerable population living in
this area.

One of the widely applied hydrologic models that can be used to assess the perfor-
mance of these satellite products is the Soil & Water Assessment Tool (SWAT). This model
was developed by [23] and has been applied in various applications and studies. Schuol
et al. [24] applied SWAT to predict the hydrologic processes of the entire African continent’s
basins. The authors quantified the freshwater components such as the water yield, aquifer
recharge, actual ET, and soil water. The authors concluded that the products based on
satellite only (without gauged adjusted observations) overestimated the peak flows during
the rainy season. In addition, other products that are already calibrated with gauge precipi-
tation agree more with the referenced product (TMPA 3B42_V7). There is a possibility of
bias in doing this, especially for all satellite products that share similar backgrounds and
algorithms with this reference model. The SWAT model needs calibration with the gauged
discharge from hydrometric stations. The African Database of Hydrometric Indices (ADHI)
was created to provide hydrometric indices for many rivers in Africa. The database has
1466 hydrometric stations with at least 10 years of daily discharge covering 1950 to 2018.
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The National Centers for Environmental Prediction’s Climate Forecast System Re-
analysis (CFSR) climate data, which are from satellite-based rainfall datasets, have special
advantages from both spatial and temporal resolution standpoints. Tomy and Suman [25]
reported that CFSR is adequate in and reliable as a proxy for gauged precipitation in
data-deficient areas. In another study performed using CFSR as hydrologic forcing for an
Arctic watershed, Bui and Nie [26] also concluded that this dataset is reliable and can act as
a proxy for ground-gauged precipitation. Therefore, this dataset will be used in this study
as an independent source of data to calibrate the SWAT model. Tshimanga [27] reviewed
the modeling and predictions performed in the CRB. The author argued that over the past
two decades, all modeling efforts have only focused on testing modeling performance
or experimenting with new models in this data-scarce basin. Several of these studies,
however, did not address the real problems or challenges facing the basin. The author
further advocated that modeling should support policy- and decision-making that will aid
the strategic management of water resources and adaptation to climate change. Therefore,
instead of solely conducting a performance evaluation study, the current study went a step
further by considering a major climate extreme in the basin and how reliable satellite-based
estimations are in capturing or reproducing these events. In addition, the results from this
study are shared through an online platform where users can download the data used in
this study. Therefore, this study provides a tool for those in this developing and data-scarce
region who need information to make water resource management decisions.

It is therefore imperative that the reliability of satellite-based rainfall datasets be
evaluated as forcing for hydrologic modeling applications. Therefore, the primary purpose
of this paper is to quantify the uncertainty in these satellite products by using them as
hydrologic forcing in a hydrologic model. The knowledge about their reliability and
usefulness will guide their application in large basins such as the CRB and other African
regional watersheds. Given the scarcity of gauge data in Africa and the limited research in
this area, the availability of satellite data with continuous observations in both temporal
and spatial dimensions holds great potential for applications in Africa. In this regard, this
study provides valuable insights and contributes to the existing knowledge in this field.

2. Materials and Methods
2.1. Study Area: Congo River Basin

The CRB (Figure 1) is located between 0◦00′N and 25◦00′E. It is the second largest
river basin in the world and the largest river in Africa, with a drainage area covering
3.4 million km2. The CRB is shared by nine countries in Africa (Congo Democratic Rep.
Central African Angola, Congo Rep. Zambia, Tanzania, Cameroon, Burundi, Rwanda,
Gabon, and Malawi). According to Tshimanga et al. [27], the “vegetation cover varies from
open savannah grassland and woodland in the upland areas to tropical rainforest in the
central basin”. Moreover, Lambert et al. [28] also reported that the center of the CRB is
dominated by forest land cover, which is approximately 50% of the total area. Further,
savannah grasslands comprise over 35% of the total area, with croplands integrated within
the natural vegetation [29]. There have recently been increased anthropogenic activities
in this area as well. Deforestation and mining activities have also been reported to have
an increased trend [30]. The CRB is composed of sandy and clayey soil types. Clay soil
dominates both the northern and central sections of the basin [29]. For geologic formations,
unconsolidated Cenozoic sediments dominate the central portion of the CRB, and the main
catchments that feed this central basin are also dominated by weathered Mesozoic and
Precambrian rocks [27,31]. Furthermore, it has been reported that soil type and geologic
formations contributed to the variability in the water level in the second half of the last
century [32]. Annual precipitation in this basin is over 1500 mm [33]. The mean annual
temperature is around 20 ◦C. Furthermore, because of its close proximity to the equator, it
has heterogeneous climatic regimes, with the northern and southern regions experiencing
dry and wet seasons, respectively. Moreover, the equatorial area has a bimodal annual
precipitation distribution [33]. According to Runge [31], there are seasonal height variations
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that are attenuated. There are more than seven sub-basins inside the CRB [34]. At the upper
portion of the CRB, the Ubangi River Basin (URB) and Sangha River Basin (SRB) have a
drainage area of approximately 645,100 km2 and 283,400 km2, respectively. For this study,
we combine both river basins (URB and SRB) and represent them as the Upper Congo
River Basin (hereafter: UCRB, Figure 1). The Ubangi River is one of the most important
tributaries in the UCRB [35].
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Figure 1. Elevation map of the study area that shows the location of ADHI hydrometric stations
(outlets) and the Upper Congo River Basin.

2.2. Description of Datasets

The datasets used for this study will be divided into three categories:

(1) SWAT Inputs: Digital Elevation Model (DEM), Soil and Land Use Maps

The DEM at 30 m resolution was obtained from the United States Geologic Survey
(USGS). The land-use datasets were obtained from the European Space Agency (ESA)
Climate Change Initiative (CCI) generated in 2015 (https://climate.esa.int/en/projects/
land-cover/data/#mrlc-maps-series-from-1992-onwards-(v207-and-v2.1.1), accessed on
5 December 2022). The ESA-CCI is at 300 m resolution. Soil data were obtained from the
SWAT Global Data (https://swat.tamu.edu/data/, accessed on 5 December 2022).

(2) Precipitation and Temperature Forcing

The National Centers for Environmental Prediction’s CFSR climate data include a
satellite-based rainfall dataset. This dataset was obtained from the SWAT global data repos-
itory (https://swat.tamu.edu/data/cfsr, accessed on 5 December 2022). Daily precipitation
and temperature were extracted from this database. Dile and Srinivasan [36] used this
dataset for the Blue Nile River Basin (BNRB), and they concluded that the CFSR was satis-
factory in simulating the hydrology of the basin. In addition, Fuka et al. [37] also concluded
that using CFSR temperature and precipitation data is as good as gauged observations
from weather stations. Therefore, in this paper, both precipitation and temperature will be
used to force the reference model, which will be calibrated and used as a benchmark for all
other satellite-based rainfall products. This dataset will act as an independent sample for
all the satellite-based datasets.

(a) TMPA

https://climate.esa.int/en/projects/land-cover/data/#mrlc-maps-series-from-1992-onwards-(v207-and-v2.1.1
https://climate.esa.int/en/projects/land-cover/data/#mrlc-maps-series-from-1992-onwards-(v207-and-v2.1.1
https://swat.tamu.edu/data/
https://swat.tamu.edu/data/cfsr
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The Tropical Rainfall Measuring (TRMM) Multi-satellite Precipitation Analysis (TMPA)
research product (TMPA Precipitation L3 1 day 0.25◦ × 0.25◦ V7 3B42_Daily; hereafter:
TMPA) is the daily accumulated precipitation produced from the 3 hr TRMM multi-satellite
precipitation analysis TMPA (3B42). According to Huffman et al. [38], this daily accumula-
tion is obtained by “summing valid retrievals in a grid cell for the data day”. This version of
the TMPA is already gauge adjusted with selected stations from the weather network. This
daily TMPA was downloaded from the National Aeronautics and Space Administration
(NASA) Giovanni website (https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/
summary, accessed on 5 December 2022).

(b) CHIRPS
Climate Hazards Group InfraRed Precipitation with Station data Version 2.0 (hereafter:

CHIRPS) is based on infrared Cold Cloud Duration (CCD) observation [3]. Furthermore,
this dataset is a composition of 0.05◦ climatology that includes satellite estimates, daily
0.05◦ CCD-based rainfall estimates, and gauge precipitation from weather stations. More
information about the underlying algorithms used in CHIRPS can be found in Funk
et al. [3]. CHIRPS daily datasets used in this study come from the University of California,
Santa Barbara Channel (https://data.chc.ucsb.edu/products/CHIRPS-2.0/, accessed on 5
December 2022).

(c) TAMSAT
Tropical Applications of Meteorology using Satellite data and ground-based obser-

vations (Version 3.0: hereafter TAMSAT) was developed by the University of Reading in
1977. The underlying algorithm used in TAMSAT includes rainfall estimates based on the
time-lapse analysis of the cloud-top temperature distribution observed every 30 min [39]
from the thermal infrared (TIR) [7,40]. In addition, quality-controlled rain-gauge data are
also used for the calibration of the TAMSAT estimates. The Version 3.0 used in this study is
more accurate compared to Version 2.0; this is because Version 3.0 was based on a 5-day
(pentad) time-step compared to a 10-day pentad in Version 2.0 [40]. Also, Version 3.0 better
captured the local variabilities in rainfall climate [2].

(d) GPM IMERG
The GPM (IMERG, V06) satellite-based rainfall products include three products. The

IMERG-Early Run (hereafter: IMERG-ER) is the GPM Level 3; this is an early dataset derived
from the daily accumulation of the half-hourly version of the GPM (GPM_3IMERGHHE) [8].
This version of the IMERG is the earliest version and has around 4 h observation time and
uses only forward propagation (morphing). The IMERG-Late Run (hereafter: IMERG-LR)
product is also GPM Level 3; it is a late daily dataset derived from the daily accumulation
of the half-hourly version of the GPM (GPM_3IMERGHHL) [8]. IMERG-LR consists of
both forward and backward propagation (morphing). This version uses a climatological
adjustment that includes gauge data [41]. IMERG-Final Run (hereafter: IMERG-FR) is
the GPM Level 3 IMERG Final (GPM_3IMERGDF), which is also derived from the daily
accumulation (24 h) of the half-hourly GPM_3IMERGHH. The dataset has a latency of
~3.5 months using forward, and backward propagation combined with monthly gauge
analyses [8]. In other words, IMERG-FR is the only version with monthly gauge-observation
adjustment when compared to other versions (IMERG-ER and IMERG-LR).

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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(3) Streamflow Data: African Database of Hydrometric Indices (ADHI)

According to Tramblay et al. [42], the ADHI is a hydrometric database consisting of
“1466 stations with at least 10 years of daily discharge data over the period 1950–2018. The
average record length is 33 years, and 131 stations have complete records over 50 years”.
These stations are spatially distributed across the entire African continent. For the UCRB,
the stations inside this sub-basin are shown in Figure 1. As shown in Figure 2, only the
stations “ADHI-49” and “ADHI-1391” have no missing values. In addition, the right panel
(Figure 3) shows several types of missing patterns and their corresponding ratios. The
missing and observed (present) values are represented by yellow and navy blue (Figure 2),
respectively. Only these stations (“ADHI-49” and “ADHI-1391”) without missing values
will be used in the model calibration evaluation. As for the assessment performance
evaluation of the satellite products, only “ADHI-1391” will be used. This is to avoid bias
and misinterpretation if the stations with missing values are used. Furthermore, monthly
discharge datasets from the stations were further accumulated into the season time scale as
rainy (March, April, May, June, July, August, September, October, and November) or dry
(December, January, and February).
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2.3. SWAT Model Hydrologic Processes and Set-Up

The SWAT model is semi-distributed [43] and based on the Curve Number (CN)
method. The hydrologic process in SWAT is based on the hydrologic cycle, in which
precipitation is the dominant process. SWAT can simulate both water quantity and quality.
In other words, various agricultural management practices, such as the impacts of manure
and fertilizer applications, as well as planting and harvesting dates, can be predicted. The
concept of water balance (WB) is the key component of any hydrologic process. Using
this concept, each component of the hydrologic cycle can be evaluated. In other words,
WB provides the means to assess the relationship among all hydrologic processes, such
as evapotranspiration (ET), surface flow (SF), and soil water content (SWC) due to plant
development and water quality (i.e., pathogen, nutrient, and pesticide) fluxes. In the SWAT
model, WB is defined as [44]:

SWt = SWo +
n

∑
i=1

(
Rday − Qsur f − Ea − wseep − Qgw

)
(1)

where SWt is the final water content (mm H2O), SWo is the antecedent soil water content,
Qsurf is the accumulated runoff (mm H2O), Rday is the rainfall depth (mm H2O), Ea is the
evapotranspiration (mm H2O), wseep is the water (mm H2O) entering the vadose zone from
the soil profile on the day i, and Qgw is the return flow (mm H2O).
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The SWAT model simulates these processes in daily time steps. The model was
developed to estimate the amount of runoff from a catchment under different soil and land
use types [45,46].

Qsur f =

(
Rday − Ia

)2(
Rday − Ia + S

) (2)

Qsurf is the accumulated runoff (mm H2O), Rday is the rainfall depth (mm H2O),
Ia is the initial abstractions prior to runoff (mm H2O), and S is the retention parameter.
Furthermore, the retention parameter can be simplified as:

S = 25.4
(

1000
CN

− 10
)

(3)

where CN is the Curve Number for the day, and Ia is usually defined as 0.2 S, making
Equation (1):

Qsur f =
(Rday − 0.2S)2(

Rday + 0.8S
) (4)

In other words, runoff will take place whenever Rday is greater than Ia. A GIS platform
is required to prepare all the spatial inputs needed in SWAT. A Hydrologic Response Unit
(HRU) is created from the intersection of soil type, land use, and topographic features
(i.e., slope). The HRU is the smallest computational unit used to simulate the hydrologic
response in any basin. More information about runoff conceptualization in SWAT can
be found in [44]. The sequential procedure used to set up the modeling and evaluation
performed in this study are shown in Figure 3. The SWAT-CUP program developed by
Abbasapour [47] was used for the sensitivity analysis and calibration of the model. This step
is necessary to quantify the range of parameters to modify during the calibration process.
This also helps in saving time and reducing computation costs for a large basin such as the
UCRB. Table 1 shows the spatial and temporal resolutions of the satellite products used in
this study.

Table 1. Climate data sources and spatial and temporal resolutions of datasets used in the evaluation.

Dataset Used Period Spatial and Temporal
Resolution Source

CHIRPS v2 2007–2010 0.05◦ × 0.05◦,
daily

University of California, Santa Barbara Channel
(https://data.chc.ucsb.edu/products/CHIRPS-2.0/,

accessed on 5 December 2022)

TAMSAT v3 2007–2010 0.0375◦ × 0.0375◦,
daily

TAMSAT Research Group Channel
(https://www.tamsat.org.uk/data/archive,

accessed on 5 December 2022)

TMPA 2007–2010 0.25◦ × 0.25,
daily

Tropical Rainfall Measuring Mission (TRMM) (2011),
TRMM (TMPA/3B43) Rainfall

doi:10.5067/TRMM/TMPA/MONTH/7

IMERG (ER, LR, and FR) 2007–2010 0.1◦ × 0.1◦,
daily

GPM IMERG Final Precipitation L3 1 day 0.1 degree
× 0.1 degree V06, Edited by Andrey Savtchenko,

Greenbelt, MD, Goddard Earth Sciences Data and
Information Services Center (GES DISC), Accessed:

[5 December 2022],
doi:10.5067/GPM/IMERGDF/DAY/06

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://www.tamsat.org.uk/data/archive
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3. Results
3.1. Spatial Variability of Satellite-Based Rainfall Products

Figure 4 shows the spatial distribution of the average annual rainfall for all the satellite
products. The light blue color represents low values, while the dark blue color represents
high values. In other words, the annual average precipitation values in the UCRB vary
from approximately 1041 to more than 3000 mm. All products underestimated CFSR. There
is a clear similarity between IMERG-ER and IMERG-LR, with high values and low values
at the southern and northern portions of the plots, respectively. In addition, IMERG-FR
and TMPA show similar patterns and spatial distributions across the map. This is evidence
of their being integrated with gauged precipitation in their algorithms. CHIRPS also
shows a similar pattern compared to these two products (TMPA & IMERG-FR). It would
be interesting to see if these spatial patterns, variability, and similarities among all the
products would propagate when used as hydrologic forcing through SWAT.
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3.2. Descriptive Statistical Evaluation of Predicted Discharges

The Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), Kling–Gupta efficiency
(KGE), and the ratio of the root mean square error to the standard deviation of measured
data (RSR) for the CFSR-calibrated model (Gauge #: ADHI_1391) are 0.4, 2.9, 0.7, and
0.78, respectively (see Supplementary Materials). Similarly, NSE, PBIAS, KGE, and RSR
for the CFSR-calibrated model (Gauge #: ADHI_49) are 0.4, 6, 0.7, and 0.79, respectively.
Although NSE above 0.5 is recommended as satisfactory by Moriasi et al. [48], Motovilov
et al. [49] also suggested an adequate value within the range of 0.36–0.75. KGE is 0.7
at both hydrometric stations; a value above 0.5 is considered satisfactory. Furthermore,
PBIAS for ADHI_1391 and ADHI_49 is 2.9 and 6, respectively. Both values are within the
±25 suggested as acceptable by Moriasi et al. [48]. The similarities in the performance
metrics for these two hydrometric stations are expected since they are on the same trunk
of the Ubangi River and approximately 78 km apart. Furthermore, the hydrography
plot (ADHI_1391: see Supplementary Materials) shows that the CFSR-calibrated model
responded and captured the rising and descending limbs. Although there is evidence of
overestimation in the earlier part of the time series, the calibration satisfactorily captured
the seasonality of the hydrology. Notably, the gauged discharge used in this calibration is
the average value of measured flow; therefore, the simulated values may still be within
range. With this performance, this calibrated model can be used as the benchmark for all
the hydrologic forcings using satellite products. The satellite product evaluation will be
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performed only at ADHI_1391. The objective of the CFSR-calibrated model is to provide an
even playing field for all the satellite products when used as hydrologic forcing.

The descriptive statistics of the discharge of each satellite product and how they com-
pared with OBSERVED are shown in Table 2. The average discharge by CHIRPS, TAMSAT,
and TMPA is 3036.9 m3/s, 2538.3 m3/s, 4929.7 m3/s, and 3595.6 m3/s, respectively. It is
clear that TAMSAT overestimated the average OBSERVED discharge (2994.6 m3/s). For
the IMERG products, both IMERG-ER (5592.9 m3/s) and IMERG-LR (5592.9 m3/s) overes-
timated the OBSERVED, whereas IMERG-FR (3312.4 m3/s) seems closer to the OBSERVED.
This further confirms that IMERG-FR already has gauged precipitation integrated. In terms
of low flow (minimum discharge), CHIRPS, TAMSAT, and TMPA have a minimum flow of
227 m3/s, 197.0 m3/s, and 862 m3/s, respectively. Thus, TMPA overpredicted the minimum
flow when compared with the OBSERVED (371 m3/s). For the IMERG products, IMERG-
ER, IMERG-LR, and IMERG-FR have a minimum flow of 230.0 m3/s, 334.0 m3/s, and
234.0 m3/s, respectively. Only IMERG-LR is closer to the OBSERVED. For the maximum
flow, all the satellite products overestimated the OBSERVED. This shows that care must be
taken when using these datasets for extreme event (e.g., flooding) prediction, especially for
use in block maxima analysis, such as Generalized Extreme Value Distribution.

Table 2. Descriptive statistics of the rainfall satellite estimation as hydrologic forcing in the Congo
River Basin.

Statistics OBSERVED CHIRPS TAMSAT TMPA IMERG-ER IMERGE-LR IMERG-FR

Mean (m3/s) 2994.6 3036.9 4929.7 3595.6 4588.9 5592.9 3312.4
Standard Deviation (m3/s) 2418.5 3122.4 4715.7 2661.1 4697.7 4515.0 3001.3
Coefficient of Variation (%) 80.8 102.8 95.7 74.0 102.4 80.7 90.6
Skewness 0.8 1.0 0.8 1.1 1.3 1.1 1.2
Minimum (m3/s) 371.4 227.0 246.0 862.0 230.0 334.0 234.0
Maximum (m3/s) 7976.0 10,300 16,300 10,100 17,300 18,700 12,200

Figure 5 shows the correlation matrix plot of the monthly discharge between OB-
SERVED and CHIRPS, TAMSAT, TMPA, and all the IMERG products from 2007 to 2010.
The estimates from CHIRPS and TMPA were correlated with OBSERVED with a value
of r = 0.95 and 0.93, respectively. This is an indication of good linear relationships with
gauged discharge in UCRB. Furthermore, IMERG-ER, IMERG-LR, and IMERG-FR have a
correlation of 0.89, 0.91, and 0.95 with OBSERVED, respectively. This is also evidence of a
strong linear relationship. For TAMSAT, the correlation value was 0.96. Indeed, TAMSAT
has the highest correlation value of all the satellite products; however, using only linear
relationship criteria to quantify the performance of a rainfall product may be misleading.
There is a need to test if the rainfall product will capture peak flow and seasonality and
reproduce the rising and receding of the limbs of the hydrograph. These properties are
crucial in quantifying the hydrologic response of any river basin. In general, all the satellite
products have a good linear relationship with measured discharge.
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and significance levels (*** p < 0.001) between OBSERVED, TMPA, CHIRPS, IMERG-FR, IMERG-LR,
IMERG-ER, and TAMSAT monthly discharge estimates for the years 2007–2010.

3.3. Monthly and Seasonal Evaluation of Monthly Discharge Using Satellite Products as
Hydrologic Forcing

Figure 6a–f shows the hydrograph of the satellite products against the OBSERVED
discharge from January 2007 to December 2010. TMPA and CHIRPS compared well with
OBSERVED, as shown in Figure 6a,b. It is also interesting to see that both satellite products
adequately reproduced the timing of rising and receding limbs of the hydrograph for all
years. For high flow years (2007 and 2008), these two products slightly overestimated the
peak discharge. During the low flow year (2009), TMPA performed better than CHIRPS.
In general, these two products reproduced well the seasonality from year to year. This
good agreement with OBSERVED further confirms the underlying algorithm of these two
products (i.e., inclusion of gauge precipitation). In Figure 6c–e, all the IMERG overesti-
mated the OBSERVED, except for IMERG-FR (Figure 6d). From year to year, IMERG-FR
consistently agreed with OBSERVED from both timing and magnitude perspectives. This
further shows the evidence of gauge precipitation already included in this product. The
overestimation in IMERG-ER and IMERG-LR shows that they must be bias-corrected before
being applied in hydrologic studies. The performance of these products (IMERG-ER and
IMERG-LR) is also consistent with the patterns and similarities seen in previous sections.
The hydrography of the year-to-year performance of TAMSAT is shown in Figure 6f. Both
products overestimated the OBSERVED flow. The overestimating tendencies seen with
these two products are consistent with the average annual spatial distribution pattern seen
and discussed in Section 3.1. Figure 7a–c shows the seasonal Box-and-Whisker plots for
2007, 2008, 2009, and 2010. For these periods, there were variabilities from year to year,
as shown in the 25th and 75th percentiles. The whisker (which is the range of the data) is
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highest for TAMSAT, IMERG-LR, and IMERG-ER. These products exhibited wetness, as
shown in their spatial distributions in Section 3.4. CHIRPS, TMPA, and IMERG-FR show
similar patterns when compared with OBSERVED. These performances and behaviors are
consistent with the similar patterns shown in previous sections.
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Table 3 shows the performance of each satellite product based on the metrics intro-
duced by [49]. The NSE for CHIRPS, IMERG-FR, and TMPA was 0.79, 0.80, and 0.77,
respectively. These NSE values show that these satellite products are skillful in reproducing
the gauged discharge. TAMSAT, IMERG-ER, and IMERG-LR have NSE values of −0.94,
−0.73, and −1.26, respectively. This shows that the average OBSERVED is a better predictor
than all aforementioned satellite products. The above performance is consistent with the
performance discussed in previous sections. Similar trends of performance are also seen
when KGE values are considered. For the PBIAS, CHIRPS and IMERG-FR have 1.4 and
10.6, respectively. This shows that they are closer to zero (optimal) when compared with
other satellite products. RMSE values for CHIRPS, TMPA, and IMERG-FR are 1087 m3/s,
1159 m3/s, and 1081 m3/s, respectively. In addition, TAMSAT, IMERG-ER, and IMERG-LR
have RMSE values of 3334 m3/s, 3148 m3/s, 3169 m3/s, and 3599 m3/s, respectively. The
RSR for CHIRPS, TMPA, and IMERG-FR is the same (0.45), whereas TAMSAT, IMERG-ER,
and IMERG-LR have RSR values of 1.38, 1.3, 1.31, and 1.5, respectively. With the opti-
mal value being zero, it is clear that CHIRPS, TMPA, and IMERG-FR outperformed all
other products.

Table 3. Hydrologic model performance for satellite-based rainfall products and OBSERVED dis-
charge using the SWAT model.

CHIRPS TMPA TAMSAT IMERG-ER IMERG-LR IMGERG-FR

NSE 0.79 0.77 −0.73 −0.75 −1.26 0.8
KGE 0.7 0.76 −0.149 −0.087 −0.229 0.731

PBIAS 1.4 20.1 64.6 53.2 86.8 10.6
RMSE 1087 1159 3148 3169 3599 1081
RSR 0.45 0.48 1.3 1.31 1.5 0.45

3.4. Performance Evaluation Using the Water Balance Components

Further evaluation of WB components was performed based on three key components
of the hydrologic processes. For brevity purposes, the WB for the UCRB of the satellite
products performed based on an average month from 2007–2010 are shown in Figure 8a–c.
For the average surface runoff (Figure 8a, mm/month), this is the runoff contribution from
the streamflow; CHIRPS has the lowest range throughout the year. Low flows during
the dry months (DJF) and high flows during the wet months are clearly partitioned in
the time series plot. It is interesting to see that IMERG-FR and TMPA show a similar
pattern and variability throughout the year. TAMSAT has the highest runoff during the wet
months. This pattern is consistent with TAMSAT’s behavior seen in previous sections. The
implication of this pattern is that overestimated precipitation values propagate through
the hydrologic model, leading to high runoff prediction. Figure 8b shows the average AET
(mm/month) for all the products. All the products have a similar pattern, with high values
during the wet months and low values during the dry months. This pattern is expected
since high plant activity (transpiration) and moisture vaporization (evaporation) will be
high during the wet months and low during the dry months, when plant activities and
moisture availability will be low. Notably, IMERG-ER and IMERG-LR have similar ranges,
behaviors, and patterns for both seasons. SWC (Figure 8c, mm/month) is the average
amount of water stored in the soil profile throughout the period of simulation. The monthly
fluctuations of all the satellite products follow the expected behavior for a watershed in
this region and are also synchronous with other components of the WB discussed above. In
addition, it is expected that SWC should be correlated with seasonal precipitation patterns
(i.e., high values in the wet months and low values in the dry months). It is also interesting
to see that the IMERG products (IMERG-ER and IMERG-LR) without monthly gauge
adjustment follow the same pattern.
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Finally, the close similarities between IMERG products and TMPA are due to the
common underlying algorithm. TMPA is based on an active precipitation radar and passive
microwave imager, while the IMERG products are based on a dual-frequency precipitation
radar and advanced passive microwave sensors. Meanwhile, TAMSAT is based on infrared
satellite data and calibrated with gauged precipitation. CHIRPS combines infrared data,
gauged observation, and climatological datasets. This underlying algorithm plays a role
in their performance, as seen in this study. IMERG products, with their varied latencies,
provide added advantages in monitoring processes that have temporal responsiveness of
less than 24 h, such as flash floods or hurricanes.

4. Conclusions

This study evaluated important satellite-based rainfall estimates as forcing in a semi-
distributed large river basin in Africa. The pertinent research question answered by this
paper is as follows: How good are these satellite products in reproducing the hydrologic
processes of the world’s second largest river basin? Satellite-based products are very useful
in poorly gauged regions. CHIRPS, TAMSAT, TMPA, IMERG-ER, IMERG-LR, and IMERG-
FR are freely available satellite products whose comparative analysis together has not been
performed for a large river basin such as the CRB. These products were used to force a
calibrated SWAT model for the upper region of the CRB. The following remarks can be
drawn from this study:

(a) All the precipitation products responded and reproduced well the timing and season-
ality of the gauged discharge at Bangui hydrometric outlets of the UCRB. This was
consistent for all the years. The seasonality and timing of the hydrographs is very
important in hydrologic applications, such as flood monitoring and early warning
preparedness.

(b) IMERG-FR, TMPA, and CHIRPS captured the peak flows. This is expected, since these
products have been bias-corrected using gauged precipitation. This also shows the
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similarities in their underlying algorithms (gauge-precipitation-adjusted). In addition,
the results show that these products can be used as proxies for gauged precipitation,
especially in sparsely gauged basins such as the CRB.

(c) Using the performance ratings recommended for monthly time steps by Moriasi
et al. (2007) [48], the performance of CHIRPS and IMERG-FR can be rated as very
good. TMPA can be said to be good and satisfactory. Other satellite products, such as
TAMSAT, IMERG-ER, and IMERG-LR, are classified as unsatisfactory and show that
some adjustments may be necessary before they can be used for practical hydrologic
applications in the UCRB.

This research is a call for data collection services in the CRB. This would benefit
hydrologists, water resource managers, ecologists, and other decision-makers with interest
in the basin. Since all organizations and agencies who have worked in the CRB have the
same goals of forest preservation, ecosystem services, water resource management, etc., a
central geospatial portal should be created to house all the various datasets available in the
basin for effective water resource management strategies. Rather than perform a generic
evaluation, this study went further by hosting the results on a dashboard available at the
African River Basin Geoportal.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16203868/s1, Figure S1: Monthly discharge (hydrograph) at
ADHI-1391 flow station based on CFSR-based precipitation forcing (1984–1991). Table S1: Hydro-
logical model performance for CFSR-Model. Table S2: Qualitative summary of the performance of
satellite-based estimates in the Upper Congo Basin using hydrologic attributes.
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