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Abstract: It is necessary to extract and recognize the cloud regions presented in imagery to generate
satellite imagery as analysis-ready data (ARD). In this manuscript, we proposed a new deep learning
model to detect cloud areas in very-high-resolution (VHR) satellite imagery by fusing two deep
learning architectures. The proposed UNet3+ model with a hybrid Swin Transformer and EfficientNet
(UNet3+STE) was based on the structure of UNet3+, with the encoder sequentially combining
EfficientNet based on mobile inverted bottleneck convolution (MBConv) and the Swin Transformer.
By sequentially utilizing convolutional neural networks (CNNs) and transformer layers, the proposed
algorithm aimed to extract the local and global information of cloud regions effectively. In addition,
the decoder used MBConv to restore the spatial information of the feature map extracted by the
encoder and adopted the deep supervision strategy of UNet3+ to enhance the model’s performance.
The proposed model was trained using the open dataset derived from KOMPSAT-3 and 3A satellite
imagery and conducted a comparative evaluation with the state-of-the-art (SOTA) methods on
fourteen test datasets at the product level. The experimental results confirmed that the proposed
UNet3+STE model outperformed the SOTA methods and demonstrated the most stable precision,
recall, and F1 score values with fewer parameters and lower complexity.

Keywords: analysis-ready data; cloud regions; convolutional neural networks; deep learning; Swin
Transformer; UNet3+STE; very high resolution

1. Introduction

Remotely sensed satellite imagery can be applied in various applications, such as
digital mapping, environmental analysis, disaster monitoring, forestry, and agriculture,
by processing images of wide regions and conducting time series analyses via temporal
datasets. In particular, due to the development of artificial intelligence (AI) and various
image-processing techniques, preprocessing algorithms for satellite imagery have rapidly
evolved. Specifically, for the operation of different satellite sensors, such as Landsat,
Sentinel-2, PlanetScope, and Worldview, preprocessing steps, including orthorectification,
geometric correction, and radiometric correction, have been performed to provide satellite
imagery archives in the form of analysis-ready data (ARD), allowing users to utilize such
satellite imagery immediately [1]. In addition, when distributing ARD, along with satellite
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imagery, per-pixel quality assessment information, such as unusable data masks and cloud
masks, is provided to users in the raster format [2,3].

In remote sensing, cloud information within satellite imagery has been utilized in
environmental and meteorological studies to forecast weather and environmental changes.
Utilizing stationary-orbit satellite sensors such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS), Visible Infrared Imaging Radiometer (VIIRS), and Geostationary
Korea Multi-Purpose Satellite (Geo-KOMPSAT) with spatial resolutions of approximately
1 km, algorithms for performing cloud detection at the product level in continental-scale
regions have been developed for environmental and meteorological analysis purposes.
Frey et al. [4] developed a spectral-based threshold algorithm using brightness temperature
differences and the ratios of channels. Stökli et al. [5] proposed a regression model based on
diurnal clear sky reflectance and temperature data. Mahajan and Fataniya [6] analyzed and
classified various cloud detection algorithms based on the existence of clouds and cloud
types, including snow, ice, and cloud shadows. Lee and Choi [7] developed an algorithm
based on automatic threshold determination for generating cloud products from images
provided by the GK-2A satellite.

In the imagery provided by remotely sensed satellite sensors with medium or high
spatial resolutions, such as Sentinel-2, PlanetScope, and WorldView-3, cloud regions pose
challenges in effectively utilizing the imagery because clouds contaminate terrestrial ar-
eas. Extracting information about cloud regions from satellite images and providing it to
users can enhance the usability of the imagery, while cloud detection algorithms based on
stationary-orbit satellite sensors focus on environmental applications using cloud products.
Therefore, various cloud detection algorithms have been developed to extract and identify
cloud areas in medium- and high-resolution satellite images and provide them as binary
data or classified information products [2]. Conventional cloud detection algorithms com-
prise rule-based methods, such as single or multiple thresholds for each multispectral band.
The representative rule-based cloud detection algorithm is the Fmask algorithm presented
by Zhu and Woodcock [8]. Based on the Fmask algorithm, Zhu et al. [9] developed a multi-
temporal mask (Tmask) to improve the performance of the Fmask algorithm on the Landsat
archive. Qin et al. [10] developed the Fmask 4.0 algorithm based on integrating auxiliary
data and forming cloud probabilities and spectral contextual features. In addition, Sen2Cor,
which is a software program for generating the Sentinel-2 Level 2A product, was developed
to classify clouds, shadows, water, and snow and serves as a cloud information product [11].
However, most rule-based algorithms, including Fmask, rely on the surface reflectance of
each band or require various spectral features, making them difficult to reliably apply to
satellite images with different seasonal and regional characteristics. Various supervised
pixel classification methods have been developed to overcome such limitations. Specifically,
machine learning-based techniques, such as random forests, support vector machines, and
multilayer perceptrons (MLPs), have been employed to extract cloud regions [12–16].

Moreover, since the introduction of AlexNet in computer vision, various deep learning
models based on convolution have been developed [17,18]. Fully convolutional networks
(FCNs) based on encoder–decoder structures, such as UNet, DeepLab, and FC-DenseNet,
have been proposed and used for semantic segmentation [19–21]. Recently, deep learning
models based on transformers, which have shown outstanding performance in natural
language, have been extended to vision transformers (ViTs) and have demonstrated a
superior performance to traditional CNNs on open datasets such as ImageNet-1K [22–24].
However, compared with CNNs, ViTs are computationally expensive because of the large
amounts of required training data, and they lack desirable inductive biases [25]. Consider-
ing the training efficiency and computational costs, various models that integrate ConvNets
and transformers have recently been proposed [25–28]. These approaches have also been
implemented in remote sensing and have all been proven to achieve an improved perfor-
mance when integrating two networks relative to using either ConvNet or a transformer
alone [29–32].
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With the acquisition of large amounts of high-resolution satellite imagery and ad-
vancements in deep learning technology, various deep learning-based studies have been
conducted to extract clouds from high-resolution images. Segal-Rozenhaimer et al. [33]
developed a CNN model for cloud detection using WorldView-2 and Sentinel-2 satellite im-
agery. Pu et al. [34] improved the accuracy at the edges of cloud areas via self-attention and
spatial pyramid pooling fusion in a CNN model. Li et al. [35] developed a deep learning
model based on spectral assimilation for multiple types of satellite images to generalize the
model’s performance and apply it to various satellite imagery. Pasquarella et al. [36] devel-
oped a spacetime context network through a weakly supervised measure of a fined-tuned
atmospheric similarity model for Sentinel-2 imagery. Specifically, numerous studies have
been conducted to generate open data by compiling satellite imagery, such as Landsat-8 and
Sentinel-2, along with corresponding ground-truth data. These open data enable diverse
users to evaluate the performance of deep learning models and conduct benchmarking
analyses. The spatial procedures for automated removal of cloud and shadow (SPARCS)
dataset was generated and tested to develop a CNN model for cloud detection [37]. The
SPARCS dataset comprises 80 images captured in various regions, including major ter-
restrial habitats, inland wetlands, rocks, and ice. In addition, the WHUS2-CD+ dataset
consists of 36 Sentinel-2 satellite images depicting clear skies and cloudy conditions [38].
Utilizing WHUS2-CD+, the Cloud Detection-Fusing Multi-Scale Spectral and Spatial Fea-
tures (CD-FM3SFs) model was proposed [38]. The AIR-CD open dataset, constructed using
GF-2 satellite images captured in various regions of China from February to November
2017 with a spatial resolution of 4 m, was utilized by He et al. [39] to develop a deformable
contextual and boundary-weighted network. López-Puigdollers et al. [40] applied deep
learning models to an open dataset constructed from Landsat-8 and Sentinel-2 satellite
imagery and analyzed their performance. Kim and Oh [41] produced large amounts of
AIHub open datasets for cloud detection in KOMPSAT images; these data are composed
of 4000 image pairs with a resolution of 1000 × 1000 and were obtained through funding
from the government AI training dataset building program.

Applying a rule-based approach is challenging when conducting cloud detection on
high-resolution satellite imagery because of radiometric correction difficulties and spectral
constraints composed of visible and near-infrared (VNIR) wavelengths with blue, green,
red, and NIR channels [38]. Existing deep learning-based cloud detection algorithms and
open datasets have been applied primarily to medium- and low-resolution satellite imagery,
such as Landsat and Sentinel-2, which contain multiple spectral bands with VNIR and
short-wave infrared (SWIR) regions [37,38]. In particular, clouds and cloud shadows within
high-resolution imagery exhibit spectral characteristics similar to those of snow and water.
Difficulties in defining thin clouds and producing corresponding labeling data have led to
a predominant focus on binary classification research for distinguishing between cloud and
non-cloud regions [39]. Therefore, improving the performance of deep learning models
is necessary to detect cloud regions within high-resolution satellite images containing
VNIR spectral bands. Additionally, the training processes of deep learning models are
typically performed using small image patches, but clouds in high-resolution satellite
imagery could exceed the sizes of these patches, leading to ineffective spatial feature
learning and potentially resulting in lower performance. Therefore, developing models
capable of effectively detecting clouds with various shapes and sizes exceeding a certain
threshold is necessary.

In this manuscript, we proposed a new deep learning model network for detecting
cloud regions in VNIR multispectral satellite images with high spatial resolutions. To
generate scene-level products for the cloud detection results derived from high-resolution
satellite images, we integrated traditional CNN and transformer layers to detect vari-
ous clouds in the images effectively. Since a typical CNN structure could be effective at
extracting local spatial features from images, we modified the structure of the UNet3+
network, which is known for its excellent semantic segmentation performance. In UNet3+,
residual blocks are used in the encoder, and a deep supervision structure was employed
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in the decoder to integrate the feature maps acquired from each depth. Then, we recon-
structed the residual block via mobile inverted bottleneck convolution (MBConv), used
in the EfficientNet model, to construct the model efficiently and achieve an improved
performance [42].

Additionally, some parts of the encoder with a transformer block were replaced to
effectively extract the global characteristics of the clouds contained within image patches.
By integrating the CNN and transformer in the encoder section, we aimed to enhance the
cloud detection results produced for high-resolution satellite images with VNIR bands. In
the case decoder part, the skip connections and convolutional layer of the original UNet3+
model via MBConv were reorganized. Image patches consisting of four classes—clouds,
thin clouds, cloud shadows, and clear skies obtained from KOMPSAT imagery—were
used for model training purposes. The KOMPSAT-3 and 3A satellite imagery used in this
manuscript, provided by AIHub, offers a higher spatial resolution but is limited to four
bands: R, G, B, and NIR. The performance of the trained model was also evaluated on scene-
level KOMPSAT images. Therefore, the contribution of this study is to develop a new deep
learning model by combining a CNN and a transformer and increasing the performance of
the deep learning model for cloud detection in high-spatial-resolution imagery containing
VNIR bands. The outline of our manuscript is as follows. Section 2 describes the training
and test datasets the deep learning model uses for cloud detection. Section 3 presents
the proposed deep learning model, and Section 4 describes the experimental results and
discussion. Finally, the conclusions are provided in Section 5.

2. Materials
2.1. KOMPSAT Imagery

KOMPSAT is a representative series of satellites operated by the Korea Aerospace
Research Institute (KARI) in South Korea for earth observation, monitoring, and digital
mapping. Currently, KOMPSAT-3 and 3A are in operation, providing VNIR satellite
imagery with high spatial resolutions, including panchromatic and four-band multispectral
images. The characteristics of each satellite image are summarized in Table 1.

Table 1. Specifications of the KOMPSAT-3 and 3A satellite sensors.

Satellite Sensor KOMPSAT-3 KOMPSAT-3A

Ground sample distance Multispectral 2.8 m 2.2 m
Panchromatic 0.7 m 0.55 m

Spectral wavelength

Panchromatic 450–900 nm 450–900 nm
Blue 450–520 nm 450–520 nm

Green 520–600 nm 520–600 nm
Red 630–690 nm 630–690 nm
NIR 760–900 nm 760–900 nm

Orbit altitude 685 km 528 km

Swath width >15 km (at nadir) >12 km (at nadir)

Radiometric resolution 14 bits 14 bits

2.2. Training and Testing Datasets

To train a deep learning model, a training dataset should be constructed based on
labeled data and satellite imagery suitable for the intended use. Cloud-masked data
and satellite imagery for scene products, known as the AIHub open dataset, were devel-
oped in South Korea through the AI training dataset building program provided by the
government [41]. The clouds in optical satellite imagery can be influenced by terrain and
location characteristics. In the AIHub open dataset, labeling data for each KOMPSAT
satellite image product were generated through the visual interpretation of various regions,
including urban areas, mountains, coasts, agricultural lands, and deserts. The labels of the
AIHub open dataset were categorized into four classes: thick clouds, thin clouds, cloud
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shadows, and clear skies. The AIHub open dataset was constructed using 148 images
from the KOMPSAT-3 and 3A satellites. The generated data are on the project website
(www.aihub.or.kr (accessed on 17 October 2024)) [41]. In high-resolution satellite imagery,
thin clouds can manifest in various forms, such as haze and fog, presenting challenges
when distinguishing them from other cloud types. Therefore, in this manuscript, we in-
spected the 148 images provided by AIHub through visual interpretation and excluded
those with inaccurately labeled thin clouds and other features. Thick and thin clouds were
subsequently integrated into a single cloud class within the images, and 130 images were
then recategorized into three classes—clouds, cloud shadows, and clear skies—after remov-
ing 18 images that included ambiguous labeling results. Of these, we used 116 images as
training data and 14 images as test data.

Preprocessing was applied to the satellite imagery to increase the performance of the
deep learning model. First, the spatial resolution of the original multispectral images was
reduced by half via interpolation techniques. Since the cloud regions in high-resolution
satellite imagery could occupy many pixels, patches with only clouds could exist when a
small patch size, such as 128 × 128, is used. These patches might be confused with other
homogeneous areas, such as sand, ice, and snow-covered regions. Even when considering
the increase in the receptive field of a deep learning model, this allows the constructed
model to analyze a broader area. After the spatial resolution of the original satellite data was
decreased, 2% linear stretching was applied to each image, and the data were normalized to
the range of 0~1. Finally, they were divided into 512 × 512 image patches. Table 2 provides
examples of the image patches used for training. We considered the number of patches
sufficient and did not perform data augmentation.

Table 2. Specifications of the image patches used for model training.

Characteristics Variables

Size Satellite image: 512 × 512 × 4
Labeling data: 512 × 512

Number Training data: 9628
Validation data: 1069

Additionally, the image patches were divided into training and validation datasets, as
the validation data were used during the training process to determine the optimal model
with minimal overfitting. Figure 1 provides examples of the image patches. The AIHub
datasets were labeled as thick clouds, thin clouds, cloud shadows, and clear skies. Since
thick and thin clouds are difficult to distinguish even with visual inspection, the thick and
thin clouds were integrated into one class, as illustrated in Figure 1. The reference data
were reorganized into three classes: clear skies, clouds, and cloud shadows. We selected
14 images as test data for evaluating the trained model; these images were not used for
making image patches. These images also reflected the characteristics of various regions,
as detailed in Figure 2.

www.aihub.or.kr
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3. Methodology
3.1. UNet3+

UNet is a fully connected network (FCN)-based approach that uses an encoder–
decoder structure developed for semantic segmentation [19]. The general deep learning
models for semantic segmentation employ encoder–decoder structures. The encoder, also
known as the contracting path, reduces the size of the feature map or input data while
extracting features, typically through a convolution unit implemented via a combination
of convolution layers, activation functions, and maxpooling. The size-reduced feature
map obtained from the encoder includes meaningful information for segmenting each
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pixel while losing spatial information. The decoder restores the feature map to the size of
the input image and produces pixelwise segmentation results. In particular, the spatial
information derived from the encoder process can be restored in the decoder through skip
connections that utilize feature maps with the same resolution during the encoder process.
However, even with skip connections, the inability to use the spatial information of each
feature map stage remains an issue. To address this, UNet3+ introduced inter-connections
and intra-connections to minimize the loss of spatial information while extracting sufficient
information from feature maps [43]. Additionally, the training performance was improved
by generating resolution-specific segmentation results from the produced feature maps and
integrating these results through a deep supervision process. Figure 3 shows an overview
of UNet3+ [43,44].
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3.2. Proposed Network Integrating a CNN and a Transformer

This manuscript proposed a new deep learning model for detecting clouds in high-
resolution satellite images by integrating convolution layers and transformers based on
UNet3+. To fuse the CNN and transformer, we restructured the encoder part of UNet3+
based on MBConv, proposed by Dai et al. [25] and used in EfficientNet [42]. Figure 4 shows
the overall architecture of our proposed UNet3+ with a hybrid Swin Transformer and
EfficientNet (UNet3+STE). UNet3+STE is composed of an encoder and a decoder, such
as UNet3+. The encoder part extracts feature maps E = [E1, E2, E3, E4, E5] containing
information about the cloud regions in high-resolution satellite images. In the typical
encoder part of a CNN, the integration of a convolutional layer, an activation function, and
maxpooling is repeatedly applied to reduce the size of the feature map while increasing the
number of channels in the feature map to extract rich spectral information. In particular,
processes based on maxpooling increase the receptive field during convolution, which
enables the extraction of information across the global range of the feature map.

However, deep learning models that use convolutional layers might exhibit a poorer
performance in effectively extracting global information from images than models based on
transformers. ViTs, however, may face limitations, including the need for vast training data
and high computational costs. To address these issues, techniques that combine CNNs and
transformers have been developed, as described in the introduction [27,28,31]. Specifically,
Dai et al. [25] proved that sequentially mixing CNNs and transformers is more effective
from generalizability and model capacity perspectives. Utilizing this concept, CNNs and
transformers were integrated to construct the encoder of the proposed model. The encoder
part of the proposed model was built over five stages. The 1st through 3rd stages ( E1 ∼ E3)
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of the encoder part consisted of the EfficientNet structure, which is based on MBConv. The
Swin Transformer was employed in the 4th and 5th stages (E4 and E5) to generate feature
maps for extracting the final global information. The detailed structure of the encoder part
is described in Figure 5.
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As shown in Figures 4 and 5, a convolutional layer consisting of a 3 × 3 convolution
with a stride of 2, batch normalization, and a Swish activation function was used to create
the initial feature map from the input data. By utilizing the strided convolution, the size
of the input data was reduced by half, generating a feature map E1 with dimensions of
H
2 × W

2 × 32. Based on this feature map, MBConv was applied in the 1st through 3rd
stages of the encoder. The MBConv used in the encoder part, as shown in Figure 6a,b, was
composed of a 1 × 1 strided convolution, a 3 × 3 depthwise convolution, and a squeeze-
and-excitation module [45,46]. In the first 1 × 1 convolution, the expansion ratio increased
the number of channels. After the 1 × 1 convolution, a 3 × 3 depthwise convolution was
applied. The squeeze-and-excitation module, composed of adaptive average pooling and
two fully connected layers, assigned additional weights to each feature map during the
two-stage convolution process [47]. Finally, the 1 × 1 convolution adjusted the number of
channels to match the number of input feature maps, forming a bottleneck. In the proposed
model, MBConv was iteratively applied within each stage. When the size of the feature map
was reduced via basic convolution (stride = 1) in the initial 1 × 1 convolution, a sequential
block structure was used (Figures 5 and 6a). However, when the size of the feature map was
decreased (1 × 1 convolution with stride = 2), MBConv was configured as a residual block
to enhance the performance of the network (Figures 5 and 6b). Therefore, the MBConv of
each stage utilized a combination of sequential and residual block structures depending
on the stride of the 1 × 1 convolution. In addition, these methods were iteratively applied
according to the structure of each CNN stage, as shown in Figure 5.
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The 4th and 5th stages of the encoder were composed of Swin Transformer blocks to
enforce the global information of each feature via the convolutional layers of the 1st~3rd
stages [23]. Various attention-based techniques have been developed for applying trans-
formers because of the differences between the resolutions and spatial characteristics of
images and those of natural language processing. In particular, transformer-based methods
for image processing divide an image into patches and apply window-based attention
to each patch. However, since the diverse information in images has spatial characteris-
tics, the existing window-based attention methods have difficulty reflecting the spatial
information among patches. The Swin Transformer utilizes cross-window connections via
a shifted window-based attention model to preserve the advantages of nonoverlapping
windows [23]. Figure 7a shows the structure of the Swin Transformer block. In the first step,



Remote Sens. 2024, 16, 3880 10 of 20

the feature map was divided into windows of size M to create a regular partition, and then,
window-multihead self-attention (W-MSA) and an MLP were applied to each partition.
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A layer normalization (LN) layer was added before the MSA and MLP, and residual
connections were employed for both modules. Because each partition remained fixed
during the application of MSA, no connections occurred between the local windows.
Therefore, before the feature map was divided into windows of size M, the feature map
was shifted by M

2 and then partitioned. A cyclic shifting method was used to move
the windows to the top left to create shifted windows, enabling a more efficient batch
calculation method. The attention process applied to the shifted window partition is
defined as SW-MSA. In the second module, the SW-MSA and MLP were configured as a
residual block, allowing the model to learn about the connections between local windows.
The feature map generated through the Swin Transformer block was reconstructed through
the patch merging process. As shown in Figure 7b, by splitting the pixels of neighboring
2 × 2 patches into four separate pieces to create individual feature maps that were half the
original size, the size was reduced by half. At the same time, the number of channels was
doubled, transforming the patches into new patches through the concatenation process and
the MLP.

The decoder integrated the feature maps generated at each stage of the encoder with
the feature maps generated during the decoding process via MBConv. The decoder consists
of four stages, and Figure 8 shows an example of D2 using the 2nd MBConv process in the
decoder part. First, the feature maps (e.g., D1 in Figures 4 and 8), which were acquired
from the previous stage and were smaller than the feature map D2 of the decoder part, and
the final-stage feature map of the encoder part, E5, were transformed into feature maps
with the same size as that of D2 through bilinear resampling. Moreover, the feature maps of
the encoder part that were equal to or larger than that of D2 in terms of size were reduced
to the same size as that of D2 via maxpooling. The feature maps derived from the encoder
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and decoder parts, transformed to the same size as that of D2, were integrated into a single
feature map through skip connections.
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The main reason for performing skip connections on the feature maps of the encoder
part was to reflect the spatial information of that stage. Then, the feature map of the decoder
part was integrated to utilize the global information of the feature map acquired from the
previous stage. After each feature map extracted from the decoder and encoder parts was
adjusted to have 32 channels through convolution, it was integrated into one map through
concatenation. Finally, D2 was generated through the MBConv operation. This feature
map was reused as the input data in the next decoder stage. Ultimately, the feature map
D4 generated in the 4th stage was computed as a feature map for the three classes through
convolution, and an output with the same size as that of the input image was produced
through the interpolation process.

3.3. Deep Supervision for Efficiently Conducting Training

To train the proposed model, the deep supervision techniques used in UNet3+ were
employed [43]. For the optimized training process of the model, feature maps of various
sizes generated from each decoder part are needed to effectively reflect each class’s char-
acteristics. To achieve this, as shown in Figure 9, deep supervision transformed all the
feature maps of the decoder part into outputs for the three classes, and a loss function was
calculated for these outputs to proceed with the training procedure. A 3 × 3 convolution
was performed on each feature map to generate a feature map with three channels, and
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interpolation was applied to the ground-truth data to match the sizes of the feature maps
at different stages before applying loss functions. The loss functions L1 ∼ L5 for each
feature map and ground truth were calculated, as shown in Figure 9, and the final loss
function was calculated by adding them together. The size of the ground-truth data was
reduced to shorten the computational time, and larger feature maps were adjusted to have
higher weights.
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4. Experimental Results
4.1. Training the Deep Learning Model

The proposed UNet3+STE and state-of-the-art (SOTA) models were trained via the
same hardware and hyperparameters presented in Table 3. The deep learning models were
implemented via PyTorch on Linux, and training was performed using an NVIDIA RTX
A5000 GPU. The batch size was set to 3 for training the models, and the weighted adaptive
moment estimation (AdamW) optimizer was used. CycleLR was used to adjust the learning
rate when the optimizer was applied to increase the efficiency of the training process. The
utilized loss function was categorical cross-entropy. In the case of the proposed model,
deep supervision was used, so the loss function was composed of the average of the loss
functions produced at each stage, as shown in Figure 9. The UNet3+STE and SOTA models
were trained using the same training and validation data presented in Table 2.

Table 3. Hardware and hyperparameters for training the deep learning model.

Hardware and Hyperparameters Value

Hardware

CPU Intel Xeon W-2235 (3.8 GHz)
GPU NVIDIA Quadro RTX A5000
RAM 128 GB

OS Linux
Framework PyTorch
Batch size 3
Optimizer AdamW

Number of epochs 100
Loss function Categorical cross-entropy
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Table 3. Cont.

Hardware and Hyperparameters Value

Hyperparameter

Base learning rate 0.0001
Max learning rate 0.001

Step size 5
Gamma 0.995
Mode Exponential range

4.2. Assessment of the Proposed Deep Learning Model

We conducted a comparative evaluation with the SOTA techniques to evaluate the
performance of the proposed UNet3+STE method. CD-FM3SF, HRNet, UNet3+, and the
Segformer were selected as these SOTA techniques [24,38,43,48]. UNet3+ was chosen as the
benchmark for the proposed method, and the Segformer was used to conduct a comparative
evaluation with transformer-based techniques [24,43]. HRNet is a convolution-based
segmentation method, whereas CD-FM3SF is a representative method proposed for cloud
detection [38,48]. The performance of the models was assessed in terms of the precision,
recall, and F1 score values achieved for each class, as well as the average F1 score. The test
data comprised 14 KOMPSAT-3 and 3A satellite images were not included in the training
process. Since the KOMPSAT-3 and 3A imagery used as the test data were much larger
than the image patch size, the test images were divided into smaller patches for applying
the deep learning models due to GPU memory limitations. Specifically, as this study
aimed to apply the developed deep learning model to satellite imagery at the product level,
overlapping image patches were used to minimize the errors induced at the boundaries
of the image patches. Each deep learning model was applied to a 512 × 512 image patch.
The test images were divided into patches, with each patch overlapping with the adjacent
patches by 32 × 32 patches. The final output was generated by integrating the results
obtained for the 480 × 480 pixels in each 512 × 512 image patch, excluding the overlapping
32 × 32 pixels at the boundaries. The average F1 score results produced by each deep
learning model for each image are shown in Table 4.

Table 4. Quantitative evaluation results produced by the proposed deep learning model and the
SOTA models.

Test Image ID CD-FM3SF HRNet Segformer UNet3+ UNet3+STE

1 0.9421 0.9541 0.9433 0.9527 0.9555
2 0.9187 0.9213 0.9252 0.9141 0.934
3 0.9244 0.9232 0.9339 0.9193 0.9331
4 0.9707 0.9735 0.9725 0.9713 0.975
5 0.9543 0.9569 0.957 0.9527 0.9587
6 0.9465 0.949 0.9541 0.9413 0.9529
7 0.9876 0.9894 0.9915 0.9882 0.99
8 0.9683 0.9727 0.9754 0.9686 0.9733
9 0.9284 0.9346 0.9325 0.9284 0.9383

10 0.9552 0.9554 0.9592 0.9539 0.9587
11 0.9147 0.9754 0.9418 0.9581 0.978
12 0.9626 0.9628 0.9732 0.964 0.9733
13 0.8828 0.9161 0.9085 0.9091 0.9235
14 0.9776 0.9778 0.978 0.9787 0.9813

Mean 0.9453 0.9544 0.9533 0.95 0.959

As shown in the experimental results of Table 4, the Segformer method had the highest
values for a total of five images, whereas the proposed UNet3+STE method yielded the best
results for nine images. The average F1 score of the proposed model was the highest across
the fourteen images used for the test. Therefore, it was confirmed that the proposed model
is stable and exhibits excellent performance compared with that of the SOTA algorithms.
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Figure 10 shows the average precision, recall, and F1 score values produced for each class
of the test dataset. As shown in Figure 10, the F1 score values ranked from high to low
are listed in the following order: clear skies, clouds, and cloud shadows. While the clear
sky class accounted for the greatest proportion of high-resolution satellite images in our
training dataset, clouds and cloud shadows constituted the lowest proportions. Therefore,
the results reflected these characteristics of imbalanced training data. Nevertheless, since
cloud areas were distinguishable from the clear sky class, most of the results produced
by the deep learning models yielded F1 scores of 0.88 or higher for the cloud class. As
shown in Figure 10a, the results of the proposed method presented the highest precision
and F1 score for the clear sky areas. In the case of UNet3+, although it had the highest
recall, it presented the lowest precision, indicating a tendency to overestimate clear skies.
This tendency was related to the results of the UNet3+ method, as shown in Figure 10b,c,
which had very low recall values for clouds and cloud shadows and underestimated these
classes in contrast to clear skies. Additionally, the CD-FM3SF results also overestimated
the cloud class. However, the proposed UNet3+STE method yielded the highest F1 scores
for the cloud and cloud shadow areas, with the smallest differences between the precision
and recall values. Therefore, the proposed method could detect clouds in high-resolution
satellite images with the highest level of stability.
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Figures 11–13 illustrate the results obtained after applying each model to the test
dataset. Figures 11–13 show that the deep learning models efficiently detected the overall
cloud regions. First, Figure 11 represents an entire image processed at the product level
with a size of 5965 × 6317. As shown in Figure 11a, clouds are widely distributed over
the entire area in the upper left. The proposed UNet3+STE effectively detected the overall
clouds, whereas CD-FM3SF, HRNet, and the Segformer detected some coastal areas as
cloud shadows. Additionally, compared with UNet3+STE, the Segformer and UNet3+
detected some of the widely distributed cloud regions on the left as clear skies. Therefore,
the proposed method could effectively detect large cloud regions. Figures 12 and 13
are examples of 2000 × 2000 subset areas of the cloud detection results produced for
the product-level image. As shown in Figure 13, all the SOTA methods and proposed
techniques effectively detected the cloud and cloud shadow areas within the urban area.
This finding indicates that AIHub data could be used to build an effective cloud detection
model for satellite images with high spatial resolutions. However, some techniques detected
clouds as clear skies (Figure 12c,e) or failed to distinguish dark areas with low reflectance
values from cloud shadows (Figure 12f). On the other hand, the proposed technique stably
detected clouds and cloud shadow areas compared with the SOTA techniques, indicating
that the proposed approach, which integrates a CNN and a transformer, could be more
effective for detecting clouds.
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Additionally, an analysis of the model complexity and computational efficiency was
conducted. As shown in Table 5, the proposed method in this manuscript had the fewest
FLOPs and parameters, excluding the CD-FM3SF model, which achieved the lowest cloud
detection performance. By utilizing MBconv in the encoder, the proposed method demon-
strated a superior model complexity and computational efficiency compared with those of
UNet3+. Additionally, by combining a CNN with a transformer, it was confirmed that the
model demonstrated superior performance with fewer parameters and lower complexity
than a model using only a transformer did. Thus, the proposed model outperformed the
SOTA algorithms in terms of accuracy and efficiency.
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Table 5. Complexity and computational efficiency of the SOTA and proposed algorithms.

Model FLOPs Parameters

CD-FM3SF 23.0 G 0.66 M
HRNet 183.6 G 137.55 M

Segformer 99.8 G 84.60 M
UNet3+ 203.0 G 6.75 M

UNet3+STE 65.7 G 5.93 M

4.3. Ablation Study

Additionally, we evaluated UNet3+STE without deep supervision to verify the efficacy
of the proposed method. Table 6 shows the performance evaluation results obtained for
each class with the application of deep supervision. As shown in Table 6, except for the
recall achieved for the clear sky class, the proposed UNet3+STE method outperformed
the model without deep supervision in terms of the other metrics. It was confirmed
that generating stagewise outputs in the decoder part based on deep supervision and
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calculating the loss function for each output during training was a much more effective
strategy. Moreover, in this experiment, categorical cross-entropy was used as the loss
function for the comparison with the SOTA method, and the performance of the model
could be improved by applying an optimal loss function that is effective in cloud detection
cases with imbalanced data. However, this study focused on improving the UNet3+ model
for conducting cloud detection in high-resolution satellite images, so the impact of the loss
function was not analyzed.

Table 6. Quantitative evaluation results obtained by UNet3+STE when deep supervision was applied.

Method
Clear Sky Cloud Cloud Shadow

Mean F1 Score
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

UNet3+STE
without deep
supervision

0.9726 0.9810 0.9766 0.9077 0.9081 0.9056 0.8380 0.7224 0.7576 0.9585

UNet3+STE 0.9744 0.9791 0.9767 0.9132 0.9089 0.9068 0.8517 0.7377 0.7613 0.9590

5. Conclusions

In this manuscript, we developed a deep learning model to detect cloud regions in
very-high-resolution (VHR) satellite images at the product level. The proposed UNet3+STE
model uses an encoder that sequentially combines a CNN structure composed of MBConv
and a transformer structure composed of a Swin Transformer. Sequentially combining
the CNN and transformer enables the transformer to be effectively trained with a small
amount of training data and generate feature maps containing information about the
local and global cloud areas in the input image by reflecting the characteristics of both
the CNN and transformer. Additionally, when deep supervision was used, the model’s
overall performance improved. The experimental results on the AIHub datasets acquired
from KOMPSAT-3 and 3A indicated that UNet3+STE produced the highest F1 scores
across the entire test dataset. Specifically, the SOTA techniques tended to overestimate
or underestimate the results for the clear sky, cloud, and cloud shadow classes, but the
proposed method demonstrated stable precision and recall values. Since the experiments
conducted in this study were performed on KOMPSAT-3 and 3A images at the product
level, the proposed method yielded a performance directly applicable to actual VHR
satellite images. The UNet3+STE model developed in this manuscript could be used as
a preprocessing step in various remote sensing application fields for creating ARD for
VHR satellite imagery and for improving data usability. Moreover, in high-resolution
satellite imagery, there is often an imbalance between the classes of clouds, clear skies,
and shadows in the training data. In future work, to minimize performance degradation
due to this imbalance, it may be necessary to optimize and refine the loss function and
hyperparameters during training.
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