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Abstract: Salinity is an essential parameter for evaluating water quality and plays a crucial role in
maintaining the stability of lake ecosystems, particularly in arid and semi-arid climates. Salinity
responds to changes in climate and human activity, with significant impacts on water quality and
ecosystem services. In this study, Sentinel-2A/B Multi-Spectral Instrument (MSI) images and quasi-
synchronous field data were utilized to estimate lake salinity using machine learning approaches
(i.e., XGB, CNN, DNN, and RFR). Atmospheric correction for MSI images was tested using six
processors (ACOLITE, C2RCC, POLYMER, MUMM, iCOR, and Sen2Cor). The most accurate model
and atmospheric correction method were found to be the extreme gradient boosting tree combined
with the ACOLITE correction algorithm. These were used to develop a salinity model (N = 70, mean
absolute percentage error = 9.95%) and applied to eight lakes in Inner Mongolia from 2016 to 2024.
Seasonal and interannual variations were explored, along with an examination of potential drivers
of salinity changes over time. Average salinities in the autumn and spring were higher than in
the summer. The highest salinities were observed in the lake centers and tended to be consistent
and homogeneous. Interannual trends in salinity were evident in several lakes, influenced by
evaporation and precipitation. Climate factors were the primary drivers of interannual salinity trends
in most lakes.

Keywords: lake salinity; Sentinel-2A/B; machine learning; pattern; driving factors

1. Introduction

Salinity is an essential parameter for evaluating water quality and plays a crucial
role in maintaining the stability of lake ecosystems, in particular, in arid and semi-arid
climates. Changes in salinity impact species richness, functional diversity, habitat quality,
water resource utilization, and carbon cycling in ecosystems [1–3]. Recently, global climate
change and intense anthropogenic activities have led to alterations in lake hydrological
systems, particularly in arid and semi-arid regions, inevitably affecting lakes’ salinity [4–6].
Therefore, quantitative analysis of the climatic and anthropogenic drivers of lake salinity
variation is essential for understanding response mechanisms and providing feedback on
the climate by using lakes as climate indicator windows [7], aiding in both current and
future lake management. However, conventional field measurement methods for lake
salinity face challenges in conducting extensive and frequent data collection [8], which
limits the ability to capture spatiotemporal patterns and explore the underlying drivers.
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Remote sensing enables access to extensive information about salinity through the
use of direct or indirect functions between radiance and salinity. Estimates of salinity
using remote sensing can be based on microwave or optical data. While microwave-based
salinity retrieval missions have been successful in oceanic studies, its spatial resolution
of 40–150 km [9] is too coarse for inland lakes. Therefore, optical data with higher spatial
resolution present an opportunity to estimate salinity in inland lakes. The present study uti-
lized data from the Multi-Spectral Instrument (MSI) onboard Sentinel-2A/B (2015–present),
a 12-bit push-broom sensor that measures in 13 spectral bands from visible to shortwave
infrared, with spatial resolutions of 10 m, 20 m, and 60 m, and high revisit frequency of five
days with twin satellites [10]. MSI-derived remote sensing reflectance Rrs(λ) (units sr−1)
was used to monitor optically active constituents (OACs) or non-OACs [11–14]. However,
deriving valid Rrs(λ) requires a robust atmospheric correction specific to the atmospheric
and aerosol conditions of the lake area [15,16].

Salinity is a non-OAC with no direct color signal and a complex non-linear relationship
with Rrs(λ) [17]. Given this complexity, machine learning (ML) algorithms may be used
to explore the indirect relationship between reflected radiance and salinity by taking
advantage of complex networks and structures. Several machine learning-based algorithms
have been applied in inland lakes to estimate OACs and non-OACs, including multilayer
perceptron neural networks (MPNNs) [18], extreme gradient boosting tree (XGB) [19], deep
neural networks (DNNs) [20], convolutional neural networks (CNNs) [21], and random
forest regression (RFR) [22]. For salinity applications, ML algorithms using the visible to
near-infrared (NIR) bands have been used in single lakes or bays [23–25].

Inner Mongolia has a massive longitudinal gradient and the most pronounced wet
and dry zonation of climate in China (Figure 1). Lake salinity extends over multiple
orders of magnitude (Table 1), including freshwater (<1 g L−1), brackish (1–3 g L–1), and
oligosaline (3–35 g L−1). Many lakes receive large exogenous imports and have shown
climatic effects that influence their salinity [26]. Runoff of rivers flowing into the lakes has
seasonal variations, with concentrated precipitation in the summer with the flood season
and increased runoff from melting snow in the spring with the temperatures rising. But
some rivers dry up during the dry season. And the plume extends about 4–7 km in the
summer, with an even wider range under wind effects. This study aimed to (1) develop
a lake salinity retrieval model using MSI images through machine learning approaches,
(2) employ the model to map spatiotemporal patterns of salinity in Inner Mongolian lakes,
and (3) explore the drivers of lake salinity variation. The novelty of this study is to apply a
singular approach across a range of lakes characterized by different drivers and conditions.

Table 1. Fundamental information about the sample lakes; not all parameters were measured, and
the standard deviation is shown simply as S.D. in this study.

Lake Name Sample Number
Salinity (ppt) SDD (m)

Mean ± S.D. Range (Min–Max) Mean ± S.D. Range (Min–Max)

Hulun 35 0.78 ± 0.08 0.54–0.86 0.29 ± 0.02 0.26–0.33
Dalinor 42 6.42 ± 0.16 6.15–6.60 0.48 ± 0.06 0.36–0.54
Chagannaoer 15 0.86 ± 0.03 0.83–0.92 / /
Daihai 56 13.56 ± 2.38 10.67–16.81 2.37 ± 1.1 0.63–4.80
Hongjiannao 34 5.94 ± 0.13 5.82–6.30 1.78 ± 0.28 1.46–2.20
Nanhaizi 3 1.39 ± 0.01 1.39–1.41 0.27 ± 0.02 0.24–0.29
Ulansuhai 35 1.93 ± 0.64 0.86–3.27 0.88 ± 0.34 0.24–1.30
Juyan 11 4.61 ± 0.11 4.53–4.93 / /
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Figure 1. Location of the eight lakes and field samples, from east to west including (a–h) Hulun 
Lake, Dalinor Lake, Chagannaoer Lake, Daihai Lake, Nanhaizi Lake, Hongjiannao Lake, Ulansuhai 
Lake, and Juyan Lake; rivers colored light blue indicate outflow and dark blue means inflows. 

2. Materials and Methods 
2.1. Field Data 

We obtained field data for the eight lakes through uniformly distributed in situ sur-
veys and past studies (Table 1). A total of 231 data sources were used: 191 from in situ 
measurements and 40 from the published literature [27–29]. These data were divided into 
two datasets, Dataset one contains 211 field salinity data for model training and valida-
tion. Dataset two comprises 45 in situ measurements of the spectrum, absorption coeffi-
cients, chlorophyll-a (Chl-a), suspended particulate matter (SPM), and Secchi disk depth 
(SDD), which were employed to evaluate AC. Sampling and measurements were made 
within 6 h of the Sentinel-2 overpass (June 2022 of Ulansuhai, July 2022, and April 2024 of 
Daihai). Dataset one was of salinity only, with a matching interval of ±3 days between the 
in situ salinity and MSI images. Lake salinity does not change rapidly in the short term 
[30]. 

Salinity was measured in the spring, summer, and autumn by using a calibrated YSI 
multiparameter sonde (YSI, Inc., Yellow Springs, OH, USA). Above-water radiance meas-
urements were carried out using the Spectral Evolution PSR-1100f (350‒1050 nm, with 1 
nm interval, Spectral Evolution, Inc., Haverhill, MA, USA), which measured in situ spec-
tral data for the total water leaving radiance (Lsw), the sky radiance (Lsky), and the radiance 
of the reference gray panel (Lp) at a 135° azimuth relative to the sun and with a nadir 
viewing angle of 45° [31,32]. These radiances were used to calculate Rrs(λ), and the equa-
tion is as follows: 

Rrs(λ) = [(Lsw − ρ × Lsky) × ρp]/π × Lp (1)

Figure 1. Location of the eight lakes and field samples, from east to west including (a–h) Hulun Lake,
Dalinor Lake, Chagannaoer Lake, Daihai Lake, Nanhaizi Lake, Hongjiannao Lake, Ulansuhai Lake,
and Juyan Lake; rivers colored light blue indicate outflow and dark blue means inflows.

2. Materials and Methods
2.1. Field Data

We obtained field data for the eight lakes through uniformly distributed in situ sur-
veys and past studies (Table 1). A total of 231 data sources were used: 191 from in situ
measurements and 40 from the published literature [27–29]. These data were divided into
two datasets, Dataset one contains 211 field salinity data for model training and validation.
Dataset two comprises 45 in situ measurements of the spectrum, absorption coefficients,
chlorophyll-a (Chl-a), suspended particulate matter (SPM), and Secchi disk depth (SDD),
which were employed to evaluate AC. Sampling and measurements were made within 6 h
of the Sentinel-2 overpass (June 2022 of Ulansuhai, July 2022, and April 2024 of Daihai).
Dataset one was of salinity only, with a matching interval of ±3 days between the in situ
salinity and MSI images. Lake salinity does not change rapidly in the short term [30].

Salinity was measured in the spring, summer, and autumn by using a calibrated
YSI multiparameter sonde (YSI, Inc., Yellow Springs, OH, USA). Above-water radiance
measurements were carried out using the Spectral Evolution PSR-1100f (350–1050 nm,
with 1 nm interval, Spectral Evolution, Inc., Haverhill, MA, USA), which measured in situ
spectral data for the total water leaving radiance (Lsw), the sky radiance (Lsky), and the
radiance of the reference gray panel (Lp) at a 135◦ azimuth relative to the sun and with a
nadir viewing angle of 45◦ [31,32]. These radiances were used to calculate Rrs(λ), and the
equation is as follows:

Rrs(λ) = [(Lsw − ρ × Lsky) × ρp]/π × Lp (1)
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where ρ is the air–water interface reflectance assumed to be 0.028 based on filed solar zenith
angle, azimuth, and wind speed [31]. ρp is the reflectance of the gray panel of 30%. Finally,
each band-center Rrs(λ) was resampled using the spectral response function of Sentinel-2
A/B.

Surface water samples were collected in the field for laboratory analysis. Whatman
GF/F filters were used to filter the water samples. Next, 90% acetone was used to extract the
pigments for Chl-a concentration measurement with a Shimadzu UV2700 spectrophotome-
ter (Shimadzu, Inc., Kyoto, Japan) [33]. SPM and suspended particulate inorganic matter
(SPIM) were determined using gravimetric methods; the suspended particulate organic
matter (SPOM) was associated with the difference between the SPM and the SPIM. Water
clarity was measured using a Secchi disk. Absorption of the colored dissolved organic
matter (CDOM), [ag(λ)], was measured using a UV2700 spectrophotometer with a spectral
resolution of 1 nm from 280 to 700 nm after filtering [34].

2.2. Meteorological and Anthropogenic Factors

Temperature (◦C), evaporation (mm), precipitation (mm), and wind speed (m/s) were
obtained from ERA5-Land reanalysis data produced by the European Center for Medium-
Range Weather Forecasts (ECMWF), with monthly data averaged by hour of day [35].
Monthly averaged meteorological data for eight lakes from 2016 to 2023 were obtained
from ECMWF at a spatial resolution of 11 km. Annual data were based on averaged
monthly data.

Three anthropogenic factors including population, nighttime light (nW/cm2/sr), and
normalized difference vegetation index (NDVI) were used to estimate the impact of human
activities. The nighttime light and NDVI in lake basins with derived from Visible Infrared
Imaging Radiometer Suite (VIIRS) and Landsat-8 imagers based on boundaries from the
level-7 sub-basin in HydroBASINS [36] (Figure 2). Land use types of grassland dominate
in most lake basins, but farmland types dominate in the Ulansuhai basin (data source:
https://data.casearth.cn/, accessed on 10 October 2024). The proportion of impervious
surfaces found in the Nanhaizi basin was 14%, which is higher than the other lake basins
and indicates intensive socio-economic activities (Figure 2). The population data were col-
lected from the statistical yearbook (https://tj.nmg.gov.cn/tjyw/, accessed on 1 July 2024).
Annual anthropogenic data from 2016 to 2023 were used.

 
Figure 2. (a–h) The level-7 sub-basins of the corresponding lakes and seven types of land use, and
the relative proportions of farmland, grassland, forest land, and impervious surfaces associated with
human activity.

https://data.casearth.cn/
https://tj.nmg.gov.cn/tjyw/
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2.3. Sentinel-2 MSI Data and Preprocessing
2.3.1. Sentinel-2 MSI Data and Lake Area

A total of 485 Sentinel-2 MSI Level-1C images covering eight study lakes were down-
loaded from the Copernicus Data Space Ecosystem for the period from March 2016 to
June 2024. The images for each year covered spring (March to May), summer (June to
August), and autumn (September to November) under cloudless conditions. Winter lake
conditions were dominated by ice cover. The lake area was extracted by using the Normal-
ized Difference Water Index (NDWI) and the OTSU algorithm based on the Google Earth
Engine (GEE) platform [37].

2.3.2. Atmospheric Correction

The optimal AC for the eight Inner Mongolian lakes was determined by comparing six
AC algorithms: the Atmospheric Correction for OLI lite with Dark Spectrum Fitting algo-
rithm (ACOLITE DSF) [38,39], the Case 2 Regional Coast Color (C2RCC) processor [40,41],
the POLYnomial-based algorithm applied to MERIS (POLYMER) [42,43], the Management
Unit of the North Seas Mathematical Model (MUMM) [44], the image CORrection for
atmospheric effects (iCOR) [45], and the Sen2Cor [46]. With the exception of the iCOR
(comprehensive processor) and Sen2Cor (designed for land), the other algorithms were
designed for water processing. Each AC method primarily operated with default param-
eters, as detailed in Table S1. For AC algorithms that output water-leaving reflectance
(pw, dimensionless), the products were transformed to Rrs(λ) by dividing by π. The six
AC algorithms were evaluated based on 45 matched Rrs(λ). These Rrs(λ) images were
resampled to 10 m spatial resolution.

2.4. Salinity Retrieval Model Training

MSI image-derived Rrs(443), Rrs(497), Rrs(560), Rrs(664), Rrs(704), Rrs(740), Rrs(842),
B4/(B4 + B3), B4/(B2 + B3), B4/B2, NDWI, chromaticity angle (alpha), and lake area were
used as input features; more details about feature selection are provided in the Supporting
Materials (Text S1). The 211 matched pairs of salinity and images were randomly divided
into 70% training (N = 141) and 30% test datasets (N = 70), based on the size of Dataset
one and the ratio commonly used for ML algorithms. The training dataset was used to
determine the model parameters and structure, while the testing dataset was utilized for
model validation. During training, a GridSearchSV method was used to search the model
hyperparameters. Four ML methods were selected including XGB, CNN, DNN, and RFR.
The XGB model is a powerful ensemble learner based on decision trees, which uses an
additive strategy to integrate multiple trees [47]; through iterative fitting of the residuals
until reaching the threshold, the sum of the predicted scores on the leaf nodes of each tree
is the prediction. The mathematical structure is to determine the optimal objective function
with loss and regularization terms, as follows:

obj =
n

∑
i=1

L(xi,yi) +
K

∑
k=1

Ω( fk) (2)

Ω(fk) = γT +
1
2
λ∥ω∥2 (3)

where i represents the i-th training data, n is the number of training data, L(xi, yi) is the
difference between measured (xi) and estimated (yi), Ω(fk) is the complexity of the k-th
tree, K is the number of trees, T is the number of leaves, γ and λ are the regularization
coefficients, and ω is the leaf weight. In this study, we constructed the XGB salinity model
as shown in Figure 3. Four model structures and hyperparameter settings are specified in
Table S2.
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Figure 3. The fundamental structure of the XGB salinity model constructed in this research. Model
inputs include the feature variable (X) and the target variable (y, measured salinity). During training,
an initial learner (Tree 1) is first fit using the entire dataset; subsequently, a tree is added to fit the
residual of the previous tree, and finally, the leaf node scores corresponding to the optimal objective
function of each tree are summed to estimate salinity. θ represents the parameter corresponding to
solving the optimal Obj for each tree.

To assess model stability and generalization performance, we performed the k-fold
cross-validation (CV) procedure after determining the model’s structure. This step enables
one to obtain information about whether the model relies on the training dataset [48].
The entire dataset was randomly divided into five folds, with four sets used for training
and one set for testing. These were repeated until the test set covered five folds, and the
averaged statistical metrics of five evaluations were used to assess model performance.
Finally, the optimal model was selected to map spatiotemporal patterns of water salinity
in Inner Mongolian lakes using MSI images from 2016 to 2024. Subsequently, pixel-based
annual and seasonal mean salinity were calculated for the eight lakes.

2.5. Driver Mining

A generalized linear model (GLM) was implemented to explore the relative impor-
tance of different drivers of the interannual and monthly changes in lake salinity for each
lake. The coefficients of different variables in the linear model were interpreted as contribu-
tion values to understand the extent to which meteorological and anthropogenic factors
influence salinity variation. Correlations between salinity and the driving factors were
also investigated.

2.6. Trend Analysis

The Mann–Kendall test was applied to detect trends in annual average lake salinity
from 2016 to 2024, with Sen’s slope quantifying the monotonic change rate in salinity over
the past nine years. This approach is more resistant to outliers and non-normal distributions
than least-squares regression [49].
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2.7. Accuracy Analysis

The accuracy of the estimated salinity values and Rrs(λ) were analyzed using the
coefficient of determination (R2), root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), bias (systematic error), and percent of
valid matched pairs (VP). These metrics’ formulas are written as:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − xi)
2 (4)

MAE =

N
∑

i=1
|yi − xi|

N
(5)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ yi − xi

xi

∣∣∣∣ × 100% (6)

bias = 10(
∑N

i=1 log10yi−log10xi
N ) (7)

VP =
n
N

× 100% (8)

where y and x are the estimated and measured values, i represents the i-th sampling data,
n is the number of valid pairs, due to AC sometimes fails with abnormal values, N is the
number of pairs.

2.8. Analysis Overview

This study consists of three main modules, shown in Figure 4. The first module is the
collection of satellite data and field surveys. The second module is the AC of the MSI data
and salinity model development with validation. The final module is the driver analysis of
salinity variation using the GLM.
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3. Results
3.1. Performance of Atmospheric Correction Algorithms

The performance of the six AC algorithms showed relatively high accuracy in the
green band (560 nm) and red band (664 and 704 nm) (R2 ≥ 0.41, RMSE ≤ 0.0255 sr−1,
VP ≥ 22.22%) but poor accuracy in the blue band (443 and 497 nm) and the NIR bands
(842 and 865 nm). The ACOLITE and C2RCC outperformed the MUMM, POLYMER,
and Sen2Cor, with iCOR performing worst (Table S3 and Figure 5). ACOLITE had the
most valid pairs (VP ≥ 88.89%), while the C2RCC achieved the highest R2 in each band
(R2 ≥ 0.33). Both processors showed different strengths and required further analysis.
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The Rrs(λ) spectral shape of the ACOLITE and C2RCC was compared in waters with
and without aquatic vegetation (submerged and floating) (Figure 6), using 5 × 5 10 m
pixels centered around the in situ station to explore changes in spectral shape [50]. The
averaged Rrs(λ) retrieved from C2RCC and ACOLITE in waters without aquatic plants
provided similar and consistent trends with averaged in situ Rrs(λ) (Figure 6b). For sites
with aquatic vegetation, C2RCC failed in the 443–704 nm range (red box in Figure 6e) and
did not generate spectral shapes that were similar to the in situ measurements. ACOLITE
reproduced the correct spectral shape with high reflectance at 740–865 nm (Figure 6d).
ACOLITE was then used to process the MSI images in this study.
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Figure 6. (a) Sample locations in aquatic plant waters and coordinates, (b) averaged Rrs(λ) in situ,
ACOLITE and C2RCC, respectively, in waters without aquatic plants, (c) in situ Rrs(λ) with aquatic
plants, (d) ACOLITE-derived Rrs(λ) from MSI images in aquatic plant waters, and (e) C2RCC output
Rrs(λ) in aquatic plant waters.

The accuracy of ACOLITE-derived Rrs(λ) from MSI images affects the performance of the
XGB model. The ACOLITE processor had high accuracy at 497–740 nm (RMSE < 0.0038 sr−1)
but performed worse at 783–865 nm (RMSE > 0.0039 sr−1) (Table S3), where errors propagate
to the model, affecting its accuracy. Overestimates of aerosol optical thickness occur when the
calibration window does not contain dark pixels, which may overcorrect and result in negative
values [51], causing an underestimate of salinity. The low observational viewing angles of
Sentinel-2 make the images susceptible to sunglint, although the dark spectrum fitting algorithms
reduce the effect of sunglint to some extent but do not eliminate it [52]. Adjacency effects and
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bottom reflections can lead to incorrect estimates of salinity in the nearshore waters of lakes. To
minimize these effects, a water mask with two pixels indentation was used for cropping [53].

3.2. Model Performance

To select the optimal machine learning approach for salinity retrieval, scatterplots
of the 30% independent dataset test and five-fold CV were plotted; the performance
of the four models is shown in Figure 7a,b and Table S4. From the results of the 30%
dataset test (N = 70), the XGB model estimated salinity with a wider range (0.72–18.1 ppt)
(Figure 7a), whereas the CNN, DNN, and RFR tended to underestimate salinity with a
narrower range (0.74–15.75 ppt) (Figure 7c–h). The XGB model had high accuracy (R2 = 0.98;
RMSE = 1.03 ppt; MAE = 0.53 ppt; MAPE = 9.95 %); it slightly overestimated salinity in the
range of 10–18 ppt but generally on the 1:1 line (Figure 7a).
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The five-fold CV of the four ML models suggests that each model has acceptable
performance (N = 211) (Figure 7). The XGB model performs better than the CNN and
DNN, with RFR as the worst. The MAPE and bias of the CNN and DNN models were
greater than those of the XGB model due to these models having deficiencies in stability
(Figure 7d,f). The XGB model had a mean bias of 1.01 and a MAPE of 11.08%, which was
closest to the results of the 30% dataset test (Figure 7a). Moreover, the salinity derived from
the five-fold CV of the XGB model was consistent with the distribution range of measured
salinity, demonstrating its robustness with unremarkable reliance on the training dataset.
Consequently, the optimal XGB salinity model was selected by comprehensively assessing
its performance during the 30% dataset test and the five-fold CV of each model, applied to
generate long-term salinity data.

3.3. Spatial Pattern of Lake Salinity

The seasonal salinity maps of the eight lakes show the highest mean salinity during
the autumn (4.53 ppt) and spring (4.43 ppt) compared to the summer (4.08 ppt). Seasonal
salinity variation was greatest in Daihai Lake, with a minimum value of 10.98 ± 1.47 ppt in
the spring and a maximum value of 12.99 ± 0.91 ppt in the autumn (Figure 8v–x). Hulun
Lake had the smallest seasonal salinity variation, with a minimum value of 1.01 ± 0.07 ppt
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during the autumn and a maximum value of 1.35 ± 0.13 ppt during the spring (Figure 8d–f).
The spatial distribution of lake salinity showed the lowest values at the river inlet during
summer-related freshwater plume in the southern sections of Hulun Lake and Juyan Lake
(Figure 8e,t). The Daihai, Dalinor, Hongjiannao, and Nanhaizi lakes exhibited gradually
increasing salinity from the shores to the center in all seasons. Ulansuhai Lake exhibited
higher salinity in the southern region than the in northern region in all seasons. Chagan-
naoer Lake did not show significant spatial variations in salinity.
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Annual scale salinity maps showed interannual spatial variations (Figure 9), prominent
in oligosaline lakes (Figure 9). The Dalinor, Hongjiannao, and Daihai lakes exhibited
uniform and homogeneous high salinity patches in the lake centers and low salinity at
the lake edges each year. The salinity of Juyan Lake shows a spatial pattern of low south
and high north from 2016 to 2024, as shown in Figure 9(7a–7i). Ulansuhai Lake had minor
interannual changes in the north-south pattern. There were no significant interannual
spatial variations of salinity in the Chagannaoer and Hulun lakes, with an interannual
difference of less than 0.6 ppt.
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3.4. Interannual Trends in Lake Salinity

From 2016 to 2024, two lakes had a positive trend in salinity, with most lakes showing
non-significant changes (Figure 10). The salinity in Daihai (change rate: 0.57 ppt/year,
p < 0.05) and Nanhaizi (0.11 ppt/year, p < 0.05) was positive. Trends were not significant
in Hongjiannao (0.12 ppt/year, p = 0.28), Chagannaoer (0.01 ppt/year, p = 0.72), Dalinor
(0.13 ppt/year, p = 0.07), Juyan (−0.19 ppt/year, p = 0.13), Ulansuhai (−0.01 ppt/year,
p = 0.73), and Hulun (−0.01 ppt/year, p = 0.95).
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3.5. Driving Factors of Lake Salinity Variations

Interannual and seasonal salinity variations in the eight lakes were compared to
coincident climate and anthropogenic factors using a GLM modeling approach. There were
seven drivers considered: temperature, wind speed, precipitation, evaporation, population,
nighttime light, and the NDVI (Figure 11a–p). In terms of interannual drivers for all
lakes together (Figure 11a–h), climate-related factors were the dominant drivers of salinity
change in most lakes. The relative contributions of anthropogenic factors exceeded climate
factors in Nanhaizi Lake and Hongjiannao Lake (Figure 11e,f). Interestingly, temperature
exhibited a relatively minor contribution to interannual and seasonal salinity variations,
particularly at the seasonal scale.

At an annual scale (Figure 11a–h), evaporation and precipitation were the most im-
portant climate-related drivers, with the averaged relative contributions of 26% and 20%
across all lakes. Evaporation controlled salinity changes in Dalinor Lake with a relative
contribution of 50.5%. Precipitation dominated changes in Juyan Lake with a relative
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contribution of 52.2%. The interannual salinity dynamics of the Daihai and Ulansuhai lakes
were controlled by a combination of wind speed, precipitation, and evaporation.
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relative contributions of meteorological and anthropogenic factors and (i–p) seasonal scale relative
contributions of meteorological factors.

At the seasonal scale (Figure 11i–p), precipitation dominated salinity changes in the
Hulun, Chagannaoer, Juyan, and Nanhaizi lakes with relative contributions of 41%, 48%,
45%, and 63%, respectively. Evaporation dominated in the Hongjiannao and Dalinor lakes.
In Ulansuhai Lake, wind speed had the largest relative contribution (50%). Evaporation
and precipitation jointly controlled the seasonal salinity dynamics in Daihai Lake.

Correlations between salinity variations with drivers further confirm the importance
of climate-related drivers (Figure 12a–d). Regarding the correlations at interannual scales
(p < 0.05) (Figure 12a,b), salinity in the Hongjiannao and Nanhaizi lakes showed negative
correlations with precipitation (|r| < 0.83), while the salinity of Ulansuhai Lake increased
with temperature (r = 0.64). But the salinity in Daihai Lake presented positive correlations
with nighttime light (r = 0.77). At the seasonal scale (p < 0.05) (Figure 12c,d), temperature,
evaporation, and precipitation showed negative correlations (|r| < 0.79) with salinity in
the Juyan, Ulansuhai, and Hongjiannao lakes. For salinity, temperature and evaporation
presented positive correlations in Chagannaoer Lake (r > 0.39).
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Figure 12. (a) Correlation between annual average salinity and meteorological factors with anthro-
pogenic drivers; (b) p-values of annual driving factors and temperature, wind speed, precipitation,
evaporation, population, and nighttime light abbreviated as TEMP, WS, PRE, EVP, POP, and NTL;
(c) correlation between seasonal average salinity and meteorological drivers; (d) p-values of seasonal
drivers. Horizontal coordinates are the central longitude of each lake. The lakes from Juyan Lake to
Hulun Lake are simply noted as JY, UL, NHZ, DH, CG, DL, and HL, respectively. * and ** denote
significant correlation at p < 0.05 and 0.01.

4. Discussion
4.1. Model Interpretation: Capabilities and Limitations

The XGB algorithm performed well for the eight lakes, generating a valid salinity
time series. It has been previously shown that salinity can be established as a function of
ag(λ) or SDD, both optical characteristics that can be estimated by remote sensing [54,55].
However, this indirect method is inherently complex and strongly conditioned by the
accuracy of the parameter associating salinity with ag(λ), for example. Likewise, ag(λ) and
SDD are strongly influenced by Chl-a and SPM. The XGB model relating Rrs(λ) to salinity
reduces the effect of error propagation on the predictions. With respect to other machine
learning approaches, the XGB algorithm outperformed neural network models without
overfitting, which occurred in the CNN and DNN approaches (Figure 7c–f), due to design
regularization to control overfitting and implement gradient descent of the residuals using
an optimization strategy [47]. Another tree model approach, RFR, performed poorly (with
a much higher MAPE) compared to XGB, as it did not incorporate the covariance of input
features and also lacked regularization.

Interestingly, XGB reached the highest scores at the red edge (740 nm) (Figure S1),
suggesting that 740 nm was the most sensitive band for salinity retrieval. This result
supports earlier studies that suggest that the red and NIR bands are most sensitive to salinity
changes [56]. The green (560 nm) and blue bands (443 and 497 nm) have also been used for
salinity estimates [24]. They showed some sensitivity in the present study. As previously
hypothesized [57], the results suggest that, as salinity increases, a change in absorption
occurs, and the maximum wavelengths reflect a shift to higher wavelengths. Thus, multiple
bands from visible to NIR can be used as inputs to explore salinity changes [23,25]. Lake
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area was also an important component of the XGB model, indicating a relationship between
the bathymetric features of a lake and its salinity [5].

Similarly, for all machine learning models, the application of the XGB model is de-
pendent on the training datasets used. This study included salinity values spanning three
magnitudes but lacked samples from hypersaline lakes (>35 g L−1), making the model inap-
propriate for high-salinity lakes. It should also be noted that spatiotemporal heterogeneity
caused by in situ salinity within three days of the satellite overpass would inevitably induce
errors in the model estimations. The ACOLITE algorithm showed satisfactory accuracy in
the visible and NIR bands, which helped to improve the performance of the XGB model.
But the influence of sunglint and adjacency effects was not completely eliminated and
might cause uncertainty of salinity values in nearshore water pixels.

4.2. Mechanism Analysis of Salinity Driving Factors

Investigation of salinity drivers demonstrated that precipitation and evaporation play
key roles in lake salinity variations (Figure 11), which influence salinity by controlling the
water volume balance in the lake; these results reflect similar findings on salinity variations
in Bosten Lake [58,59]. Precipitation supplements surface runoff injections into lakes, dilut-
ing salinity as total dissolved solids dissolve more solvents, which explains the negative
correlation of salinity with precipitation exhibited in most lakes on both interannual and
seasonal scales (Figure 12a,c). Salinity displayed negative correlations with temperature
and evaporation on a seasonal scale, likely also related to summer precipitation [60]. A
few lakes present a positive mode between salinity and precipitation; this pattern can be
ascribed to anthropogenic activities that have substantially intercepted runoff, causing
water volume decline combined with runoff from agricultural areas containing nutrients
and salts [61]. Wind speed exhibits a high relative contribution to salinity in several lakes
(Figure 11), as wind can accelerate the diffusion of ions by altering the hydrodynamic
field [62]. Note that temperature exhibited a minor contribution to salinity dynamics; a
possible interpretation was that the increased precipitation and freshwater inflow during
the summer diluted the salinity, thereby masking the effect of temperature [63]. In addition,
lake salinity was compared between early and late spring after ice melt, indicating that
salinity often decreases, likely as a result of increased solvents from ice melt or spring
flooding (Figure 13).
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The responses of salinity under human activities cannot be ignored. The contribu-
tions of anthropogenic factors exceeded climatic factors in the Hongjiannao and Nanhaizi
lakes (Figure 11e,f). This is likely due to the higher population and more pronounced
economic activities in these two drainage basins [64]. A significant positive correlation
between salinity and nighttime light was observed in Daihai Lake (Figure 12a,b), indicating
that intensive anthropogenic activities in the watershed tend to drive salinity increases.
Especially in terminal lakes with long water renewal cycles, salinity responds sensitively to
human activities [5].

4.3. Implications for Monitoring Salinity

Over recent decades, increases in lake salinity have occurred in lakes around the world,
such as the Aral Sea in Central Asia [65], Urmia Lake [24], Great Salt Lake in the United
States [66], and Daihai Lake in China [67]. Some lakes have shown decreased salinity,
such as lakes on the Tibetan Plateau [5,55]. In the cold and arid Inner Mongolia region,
lakes showed both trends and important interannual and seasonal changes, which could
impact the microbial communities’ species richness and functional diversity [2,68], as well
as degrading habitat quality with potential losses such as species extinction if the biological
tolerance thresholds are exceeded [69]. Additionally, increased salinity can reduce lake
methane concentrations with consequent benefits for greenhouse gas emissions [70] and
the lake carbon cycle [3]. Fortunately, high-resolution satellite images offer opportunities
for the long-term monitoring of salinity variations. It is important to understand the basic
condition of water quality and salinity trends through long-term monitoring and provide
services for the routine management and restoration assessment of lakes in northern China.

The United Nations Sustainable Development Goal 6.3, specifically indicator 6.3.2,
addresses the evaluation of water quality, proposed conductivity, or salinity as the key
parameter for water quality monitoring [71]. However, there are significant data gaps
that have limited the capacity of many countries to report data [72]. A global-based XGB
salinity model could provide important new information on lake water quality, utilizing
multi-source satellite data (terrestrial, water color, and microwave sensor products) coupled
with field data to achieve broader salinity monitoring for SDG 6.3.

5. Conclusions

Through the determination of lake salinity using Sentinel-2 images coupled with a
machine learning algorithm, seasonal and interannual variations were explored, along
with an examination of potential drivers of salinity change over time. Average salinities
in the autumn (4.53 ppt) and spring (4.43 ppt) were higher than in the summer (4.08 ppt),
with the salinity diluted by freshwater inflows during the summer. The higher salinities
were commonly observed in the lake center and tended to be consistent and homogeneous.
Significant increase trends were found in Daihai Lake, dominated by a combination of wind
speed, precipitation, and evaporation, and also in Nanhaizi Lake, controlled by human
factors such as nighttime light. Meteorological factors are the primary drivers, with mean
contributions of 64%, exceeding 36% for anthropogenic factors, with evaporation and
precipitation as the key factors. The dilution of salinity by summer precipitation explains
its negative correlation with temperature and evaporation, while potentially masking
the contribution of temperature. The influence of human factors cannot be overlooked,
especially in lakes with intense human activity within the watershed. Long-term monitoring
of salinity using satellites enhances managerial staff’s understanding of water salinization
or desalination and safeguards lake ecosystem security.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16203881/s1. Text S1: Input feature selection; Figure S1: Feature
importance score of (a) RFR and (b) XGB; Table S1: Software version and parameter settings for
each atmospheric correction processor; Table S2: Four machine learning model structures and
hyperparameter settings; Table S3: Accuracy statistics of in situ measurements Rrs(λ) and six AC
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processors derived MSI Rrs(λ); Table S4: Results of 30% independent dataset testing and five-fold
cross-validation of four model.
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