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Abstract: Rainfall-triggered landslides generally pose a high risk due to their sudden initiation,
massive impact force, and energy. It is, therefore, necessary to perform accurate and timely hazard
prediction for these landslides. Most studies have focused on the hazard assessment and verification
of landslides that have occurred, which were essentially back-analyses rather than predictions. To
overcome this drawback, a framework aimed at forecasting landslide hazards by combining UAV
remote sensing and numerical simulation was proposed in this study. A slow-moving landslide
identified by SBAS-InSAR in Tianjin city of northern China was taken as a case study to clarify
its application. A UAV with laser scanning techniques was utilized to obtain high-resolution to-
pography data. Then, extreme rainfall with a given return period was determined based on the
Gumbel distribution. The Particle Flow Code (PFC), a discrete element model, was also applied to
simulate the runout process after slope failure under rainfall and earthquake scenarios. The results
showed that the extreme rainfall for three continuous days in the study area was 151.5 mm (P = 5%),
184.6 mm (P = 2%), and 209.3 mm (P = 1%), respectively. Both extreme rainfall and earthquake
scenarios could induce slope failure, and the failure probabilities revealed by a seepage–mechanic
interaction simulation in Geostudio reached 82.9% (earthquake scenario) and 92.5% (extreme rainfall).
The landslide hazard under a given scenario was assessed by kinetic indicators during the PFC
simulation. The landslide runout analysis indicated that the landslide had a velocity of max 23.4 m/s
under rainfall scenarios, whereas this reached 19.8 m/s under earthquake scenarios. In addition, a
comparison regarding particle displacement also showed that the landslide hazard under rainfall sce-
narios was worse than that under earthquake scenarios. The modeling strategy incorporated spatial
and temporal probabilities and runout hazard analyses, even though landslide hazard mapping was
not actually achieved. The present framework can predict the areas threatened by landslides under
specific scenarios, and holds substantial scientific reference value for effective landslide prevention
and control strategies.
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1. Introduction

Rainfall-induced landslides are one of the most frequent and deadly natural hazards
around the world, and have been reported to cause considerable damage on a yearly
basis [1–3]. China is the country most severely affected by landslides in Asia, due to its
large-scale mountainous terrain, complicated climate conditions, and massive engineering
activities [4,5]. The recent EMDAT database indicates that the number of events and people
impacted by climate-related disasters in China rank at the forefront among countries [6].
Hence, it is important to develop and implement a landslide hazard assessment framework
for local authorities and researchers. This is widely considered to be a key step in landslide
investigations, risk management, and mitigation, since it can determine the spatial and
temporal probability of the occurrence of landslides in target areas, along with their mode
of propagation, size, and intensity [7].

Generally, the standard procedure for landslide hazard assessment involves three
aspects, namely the susceptibility [7], temporal, and magnitude probabilities of landslide
events [8,9]. However, a complete landslide hazard assessment is an operational challenge
commonly faced by the scientific community in practice. This is mainly associated with
data availability, especially the severe scarcity of data on landslide date and magnitude [10].
Hence, most quantitative methods within this topic are related to the spatial probability
assessment of landslides, which is also expressed as susceptibility in the literature, con-
ducted at a various scales, ranging from the regional to slope scale. For large areas, many
methods have been developed, which can be roughly divided into three categories, namely
heuristic models [11], data-driven models [12,13], and physical-based models [14,15]. For
local or small scales, the slope failure probability is often determined by using numerical
analysis, such as the Monte Carlo method [16,17], and various simulation software [18–20],
where the input parameter uncertainties of soil materials and random rainfall patterns are
often combined.

Regarding the temporal probability of landslides, this can be determined by analyzing
the historical activities of a single hazard, where the exceedance probability or occurrence
frequency are estimated as the real probability of the landslide [21,22]. However, this is
difficult for regions without a complete landslide inventory or historical records. Hence,
some studies utilize the temporal probability of triggering events as a proxy, mainly includ-
ing rainfall and earthquakes [23,24]. In addition, the probability of whether a landslide can
reach the elements at risk should also be also clarified, namely by so-called runout analysis,
especially for spatially explicit cases [7]. Numerical simulation is normally employed as the
method of choice in this topic, and many numerical models based on various mathematical
foundations have been proposed and developed, including but not limited to PFC [25,26],
SPH [27], DDA [28], UDEC [29], and their coupling methods. Recently, rapid mass move-
ment simulation [30] and the depth-integrated continuum method [31] were also reported
in the literature. During the analysis procedure, the deposit depth, velocity, impact force,
and energy were the most important indicators for characterizing the landslide intensity.

Surface data on landslides, which can directly reflect geomorphological features such
as terrain, plants, and infrastructure, are necessary for hazard assessment strategies [32,33].
Compared with ground-based instruments, an increasing number of studies are using
remote sensing methods with a high spatial resolution to obtain these data, for instance,
manned aircraft and satellite remote sensing [34,35]. However, atmospheric conditions and
timely data acquisition are common issues when it comes to these methods [36]. Hence,
researchers are exploring the use of manned-control UAVs for sensing, the photogram-
metry of landslide surfaces, and obtaining beyond-surface data, taking advantage of its
flexible, effective, and low-cost characteristics. The most recent research regarding on-site
landslide studies indicates that UAVs have almost become a necessary tool to support
investigations [37,38]. On the one hand, UAVs can get closer to slopes in a contactless way,
thus offering a rapid response option in the aftermath of natural hazards. On the other
hand, UAVs can be employed for ground displacement monitoring and geological struc-
tures to characterize both the dynamic and static facets of landslides [39–41]. Additionally,
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it should be noted that UAVs should be used for mapping/inventorying recent landslides,
not for old landslides, where they will be lost.

The main aim of the present study was to develop a framework regarding the pre-
diction and assessment of landslide hazards under extreme conditions (rainfall and earth-
quakes), where remote sensing and numerical simulation were the most relied upon tools.
The ZhuangGuoYu landslide (ZGYL) in Tianjin city of northern China was selected as
the study area. Specifically, our objectives included the following: (i) obtaining high-
resolution topography data by employing a UAV, (ii) determining the failure probability of
the landslide under a specific scenario based on a numerical simulation, and (iii) forecasting
the landslide kinematic process after sliding and comparing the landslide hazard under
various scenarios.

2. Study Area
2.1. General Settings

ZhuangGuoYu landslide (ZGYL) is located in the Jizhou District of Tianjin city in
northern China (Figure 1), with center coordinates of 117◦18′36′′E, 40◦07′23′′N. The el-
evation of the landslide ranges from 110 ASL to 205 ASL, with a length of 220 m and
a width of ~100 m. Its average slope angle is 30◦, and the total area of the landslide is
2.1 × 104 m2, with an approximately 11 × 104 m3 volume. Regarding geological data, the
sliding materials mainly contain artificial filling soil, Quaternary Holocene sediments, and
Quaternary Holocene alluvial sediments. The bedrock is the Wumishan Formation of Juras-
sic (Jxw), and the outcrop lithology mainly involves dolomites and dolomitic limestone,
where a brownish grey flint band can be found occasionally. According to a field survey,
the rock–soil mass has been strongly to extremely weathered, thus, the sliding surface is the
boundary between the upper layer and the bedrock (Figure 2). In addition, considering that
the landslide has been undergoing continuous deformation in recent years, the local civil
administration conducted a drilling investigation in the field. The drilling data revealed
that the average depth of the slope was approximately 4.5 m.

The study area has a temperate monsoon climate, characterized by distinct seasons
and obvious seasonal fluctuations regarding dry and wet conditions. The topography is
higher in the north and lower in the south, with an average temperature of 11.6 ◦C for the
whole year and 24 ◦C for summer. The long-term annual precipitation ranges from 351 mm
to 1213 mm, with a mean value of 678.6 mm. An extremely uneven distribution regime for
precipitation is observed, where more than 80% of the total annual precipitation happens
during June and September.

The area is highly urbanized, with a village at the toe of the landslide, which has a
population of approximately 1100 inhabitants. This village is the main area affected by the
landslide, especially considering its potential for failure. Human activities in the area have
developed rapidly over recent decades. On the one hand, the settlement quickly expanded,
and important transportation infrastructure was also constructed (e.g., Highway G1N and
G102). On the other hand, the region has alternating hills and plains, thus, a large amount
farmlands have been developed.

2.2. Landslide Details

The area was once a small-scale landslide at the toe of the slope after heavy rainfall in
the summer of 2015, with a volume of more than 1000 m3. The plants have been damaged
here, but other sections of the slope are still covered by trees. The local civil administration
set a warning point for geohazards here, but no professional monitoring instruments were
implemented, besides a simple protective net (Figure 3).

To illustrate the ground deformation of the slope, SBAS-InSAR techniques were uti-
lized to obtain the displacement of the ZGYL over the past decade (see Section 3.2 for
technical details). It was found that the pixel displacements within the slope were rela-
tively larger than those beyond the slope (Figure 4). During the past decade, the general
trend of deformation has gradually increased. In particular, since the year of 2020, the
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cumulative displacement has exceeded 30 mm, thus indicating that the ZGYL is under the
creeping stage.
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Regarding the landslide mechanism, the investigation report from local authority
mentioned that the deformation was mainly triggered by rainfall during the past years. This
was determined from the three following main aspects: (i) No extreme events were recorded
in the study area during the last decade, including earthquakes, typhoons, tropical cyclones,
blasting, etc. (ii) It was not possible that potential engineering activity (slope cutting, etc.)
disturbed the slope stability, given that the site has been protected. (iii) The continuous
deformation by SBAS-InSAR leads us to believe that the triggering factor for activating
the landslide should have long-term effect, rather than short-term effects. However, it
is difficult to analyze the quantitative relationship between landslide deformation and
rainfall, since detailed rainfall data on a daily/monthly basis on-site is not available. In
addition, it should be noted that Tianjin city is located along the North China Plain seismic
belt, which is a seismically active region in the eastern Chinese mainland [42]. Several
strong earthquakes have been reported in this region, including the 1966 Ningjin M7.2
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earthquake (~300 km from Tianjin) and the 1976 Tangshan M7.8 earthquake (~100 km
from Tianjin), causing huge casualties and economic losses [43]. Studies have confirmed
that the region poses a high risk of earthquake hazards, with the potential for strong
earthquakes in the future when stress accumulation reaches a certain level [44,45]. This
leads us to believe that an earthquake may also trigger the catastrophic failure of the ZGYL,
although its current creeping deformation is not associated with this. Hence, both extreme
rainfall and earthquake scenarios should be taken into account in stability analysis and
hazard assessment.

3. Materials and Methodologies
3.1. Modeling Framework

Overall, the modeling framework proposed in this study includes several steps, as
follows (Figure 5): (i) the Gumbel distribution is used to determine extreme rainfall scenar-
ios based on historical rainfall data; (ii) the UAV remote sensing technique is applied in
the field to generate high-resolution topography data; (iii) the Geostudio software v2024 is
used to compute the factor of safety and the probability failure of the slope under different
scenarios; (iv) the results regarding the stability analysis are used to determine the input
parameters for the PFC; (v) a runout analysis of the landslide is conducted by PFC mod-
eling, and kinetic indicators are analyzed; and (vi) the landslide hazard under different
scenarios is assessed and compared. The detailed method for each step will be introduced
in the following sections.
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3.2. Deformation from SBAS-InSAR

The small baseline subset (SBAS) interferometric synthetic aperture radar (InSAR)
method is a technique used for measuring ground deformation over large areas, which was
proposed in 2002 [46]. It has been widely applied for landslide deformation monitoring
due to its high accuracy and temporal continuity, especially for high mountain regions,
where physical accessibility is seldom achieved [35,47].

In this study, the raw images used were Sentinel-1A data, which were downloaded
from the website of the Alaska Satellite Facility (https://asf.alaska.edu/, accessed on
10 September 2024). The data spanned ascending and descending track Sentinel-1A SLC
images from November 2014 to November 2023. Since the calculated deformation is
along the LOS direction of the satellite, we converted the line-of-sight deformation to the
deformation along the slope direction of the landslide. To achieve this goal, the ascending

https://asf.alaska.edu/
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and descending tracks were first combined to obtain the two-dimensional deformation.
During this procedure, Precise Orbit Ephemerides (POD) data from the European Space
Agency were selected for orbital position correction.

3.3. UAV Remote Sensing

In this study, the DJI Mavic3E UAV with an RTK module was utilized to conduct
high-resolution remote sensing of the landslide. The important parameters for the UAV
and camera are shown in Table 1. The technical procedure was mainly as follows: (i) We
determined the working region in Google Earth and saved it as a KMZ file, which was
subsequently imported into the UAV. (ii) We set the controlling points, which were evenly
distributed in the region, as well as the UAV routes. It should be noted that two overlapping
routes were employed to achieve the oblique photography. Since the study area had a
relatively undulating terrain and the features of the ground objects were not obvious, the
heading overlap was set to 83% and the lateral overlap was 75% when planning the route to
ensure smooth data processing. (iii) The Pix4Dmapper software v4.5.6 was used to process
the image data and obtain dense point cloud data to generate a digital surface model (DSM),
orthophotos, and oblique models of the survey area (Figure 6). These data can not only be
used to present the overall terrain conditions of the landslide, but also to conduct accurate
numerical analysis due to their high resolution (0.08 m resolution in this study).

Table 1. The important parameters of the DJI Mavic3E UAV.

Weight Duration for Single Fight Cruising Speed Max Climbing Speed Pixel of Camera Resolution of Images

0.915 kg 0.5 h 15 m/s 8 m/s 2 × 107 5280 × 3956
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3.4. Extreme Rainfall Analysis

Landslide hazard assessments should be based on the determination of scenarios [7,48].
For the ZGYL, rainfall is the most important factor triggering instability, hence, extreme
rainfall scenarios should be analyzed to predict the potential landslide stability and hazard
in advance. Generally, there are two main types of situations when considering the temporal
probability of triggering events. The first one is designed (specific) events according to
historical data. However, this may be subjective, because the rainfall or cumulative rainfall
thresholds for activating landslides are sometimes determined by expert knowledge or
statistical results. The second deals with return periods, the concept of which has been
widely used to illustrate the degree of cumulative rainfall or rainfall intensity in the
literature [24,49,50]. Considering that the main objective of the present study is to predict
the landslide hazard under extreme scenarios, we adopted a return period for determining
rainfall scenarios. The main idea in calculating the return period of rainfall is to fit the
frequencies of historical rainfall and then predict the extremes within a given probability.
In this study, the long-term historical rainfall during 1980 and 2017 was applied to generate
the extreme rainfall of the study area (Figure 7). An analysis regarding the number of days
with rainfall for every single month showed that three continuous days of rainfall was
the most frequent event during the rainy season in the study area. The largest continuous
3-day rainfall for each month was taken into account and then used to calculate the rainfall
versus the return period with the Matlab program based on the Gumbel distribution.
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The probability density function f (x) and cumulative density function F(X) for the
Gumbel distribution are as follows [51,52]:

f (x) = (
1
α
)exp[−(

x − β

α
)]− exp[−(

x − β

α
)] (1)

F(x) = exp[−exp[−(
x − β

α
)] (2)

where α is the scale parameter and β is the location parameter. Their relationship can be
denoted as follows:

µ = β + 0.5772α (3)

where µ is the mean value of the distribution. The parameters α and β can be obtained
through maximum likelihood estimation.
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3.5. Landslide Stability Evaluation and Runout Analysis
3.5.1. Failure Probability of the Landslide

As mentioned above, landslide hazard involves the occurrence probability, which was
determined by numerical simulation in Geostudio software v2024 in this study. It is based
on the finite element method, and can compute both the seepage (ground water level, pore
water pressure, etc.) and stability of a slope. In particular, the software can obtain the
failure probability by considering the spatial variability of soil properties. For the ZGYL,
the modeling and analysis procedure were conducted as follows:

(i) A geological model of the landslide was first established with grid shapes of quadri-
laterals and triangles. Considering the geometry and volume of the slope, the size of
the grids was set to 0.5 m, thus determining a total of 6027 nodes and 5866 elements
(Figure 8).

(ii) The whole slope was divided into a sliding body and bedrock according to the cross-
section of the landslide, and the hydraulic boundary conditions were added according
to the results from the extreme rainfall analysis. Because the on-site engineering
investigation did not reveal the ground water level, the eater level was not set. The
seepage field of the slope under rainfall scenarios was computed in the SEEP/W mod-
ule of the software, and the results from this step were taken to conduct the stability
analysis using the SLOPE/W module. During this procedure, when the deterministic
parameters were used as the inputs, the factor of safety (FS) was obtained. The fail-
ure probability was computed when the distribution functions of the shear strength
parameters were defined (i.e., stochastic parameters). In this study, the deterministic
values for the parameters were set according to Table 2, which were mainly provided
by the archived landslide report from the local authority of the geo-environmental
department. The cohesion and friction angle followed a normal distribution based
on the existing literature [18], where the max and min values were determined by
laboratory tests.

(iii) As analyzed in Section 2.2, the landslide is under the slow-moving stage, and future
earthquake scenarios will possibly cause catastrophic failure. In China, the seismic
hazard assessment and seismic design of buildings are commonly based on seismic
intensity zonation maps [53]. Tianjin city is classified as the VII level in the latest ver-
sion of the Seismic Ground Motion Parameters Zonation Map of China, representing
a peak ground acceleration of 0.15 g [54]. Regarding the seismic duration, the assess-
ment in this study was not for a specific event, but for a general scenario. We referred
to the most famous earthquake within the study area, namely the Tangshan M7.8
earthquake, which lasted 14–16 s (https://www.britannica.com/event/Tangshan-
earthquake-of-1976, accessed on 10 September 2024). Hence, the duration of the
earthquake scenario for the ZGYL was set as 20 s. For a comparison, the duration of
the Luding M6.8 earthquake in China in 2022 was ~20 s [55].

3.5.2. Landslide Runout Analysis Based on Discrete Element Model

For a slow-moving landslide, a high risk is mainly posed by rapid movement after
catastrophic failure, rather than the creeping stage. Hence, the PFC was used to conduct the
runout analysis in this study, which determined the spread distance of the slope. The PFC
is a numerical simulation tool based on the discrete element model, capable of modeling
both the macroscopic and microscopic features of rocks or soils. It can simulate the entire
process from separation to final failure in rock–soil masses, fitting well with the landslide
initiation and movement in the real-world scenarios. Hence, the PFC is a powerful tool for
landslide runout analyses and kinematic characteristics [56].

Geological models of the ZGYL were established in the PFC at the 2D and 3D scales,
respectively (Figure 9). However, we were not aiming to confirm the PFC2D conclusion
by the results of PFC3D, especially given that it was impossible for the parameters of
two calculations to be totally the same. These calculations were performed to compare
the relative trends of kinematic indicators under different scenarios. The reliability of

https://www.britannica.com/event/Tangshan-earthquake-of-1976
https://www.britannica.com/event/Tangshan-earthquake-of-1976
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the results can be guaranteed if the trends fit well with each other between two scaling
operations. The porosity was set to 0.2 to randomly generate particles, and the sliding
body and bedrock layers were contacted in the ball–ball manner for 2D and the ball–wall
manner for the 3D modeling. The particle sizes of the sliding body ranged from 0.4 to 0.7 m,
whereas those for the bedrock were 0.5–1 m. The total numbers of generated particles for
the ZGYL were 8195 (2D) and 8589 (3D), respectively.
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Figure 8. The settings for the stability evaluation in Geostudio: (a) the established geological model
and (b) the hydrological parameter settings.

Table 2. The parameters for the slope stability analysis in Geostudio.

Section Unit Weight
(KN/m3) Cohesion (KPa) Friction Angle (◦) Elastic Modulus

(KPa) Poisson’s Ratio Volumetric
Moisture Content

Sliding body 20 30 22 1200 0.3 0.4
Bedrock 21 50 30 20,000 0.33 0.3
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It should be noted that the initiation moment and movement process of landslides are
influenced by rainfall magnitude and intensity, so they normally exhibit different kinetic
characteristics under different scenarios. However, the PFC struggles to analyze rainfall
infiltration and seepage, thus making it unable to reflect the effects of rainfall or earthquakes
on mechanical parameters. Therefore, the strength reduction method was applied to the
parameters in this study when simulating the landslide kinetics to distinguish different
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scenarios. Given that the Geostudio software v2024 can simulate the slope stability, the
strength reduction method integrates the advantages of Geostudio and the PFC. In detail,
the factor of safety (Fs) of the slope was first calculated by using Geostudio under different
scenarios. The Fs value was considered as the ratio of the stability between the natural
scenario (no rainfall or earthquake) and the triggering one. Next, the coefficient was utilized
to reduce the natural parameters from the natural scenario (Table 3). For example, if the FS
obtained from Geostudio under the rainfall scenario with 50-year return period was 0.5,
the input parameters for the PFC simulation should be half of that for the natural scenario.

Table 3. The important original parameters for the runout analysis in PFC.

Section Density
(kg/m3) Cohesion (KPa) Friction Angle (◦) Bulk Modulus

(MPa)
Shear Modulus

(MPa) Poisson’s Ratio

Sliding body 21 30 22 60 50 0.35
Bedrock 21 50 30 300 100 0.35

As seen in Figure 9, a total of four particles were selected in the 2D model to monitor
the dynamics of the velocity and displacement. They cover different parts from the top
(#1) to the toe (#4) of the profile, thus, they can reflect the detailed kinetic characteristics at
different locations. We did not analyze the average values of all particles, since calculation
is time consuming when it comes to a large amount of particles. In addition, the analysis
regarding a specific particle is considered as more meaningful, given that a particle can be
affected by the impacts or push forces from nearby particles.

4. Results
4.1. Extreme Rainfall and Landslide Stability Analysis

The results of the extreme rainfall versus the return period obtained from the Gumbel
distribution are shown in Figure 10. It can be seen that the rainfall with a return period
of 20 years, 50 years, and 100 years was 151.5 mm, 184.6 mm, and 209.3 mm, respectively.
Given that most rainfall events occurring within one single day were concentrated in
several hours, it can be inferred that the rainfall intensity in the study area could even reach
100 mm/h. Subsequently, rainfall events with 50-year and 100-year return periods were
set as the hydraulic boundary conditions, and the safety of factor and failure probability
under each scenario were determined by using Geostudio. The results showed that the
Fs values were 0.897 (rainfall with a 50-year return period), 0.819 (rainfall with a 100-year
return period), and 0.956 (earthquake), respectively. The failure probabilities were 84.3%
(rainfall with a 50-year return period), 92.5% (rainfall with a 100-year return period), and
82.9% (earthquake), respectively (Figure 11). The results indicated that both heavy rainfall
and earthquake scenarios posed a high risk of inducing instability in the ZGYL, and the
stability of the landslide was worse under heavy rainfall than under earthquake scenarios.
Regarding the displacement, the max values under rainfall scenarios were 0.73 m and 1.22 m,
respectively. It should be noted that these were probably not the actual displacements in
practice, because the finite element method is not suitable for simulating large deformation.
In fact, when the slope had a deformation of more than 1 m, the slope failure may have
already happened. Under the earthquake scenario, the displacement was only 0.09 m,
which was mainly because some of the forces provided by horizontal seismic acceleration
were towards the slope, which improved the slope stability.

4.2. Landslide Runout and Kinetic Analysis

The PFC 2D simulation results of the ZGYL showed that the duration of the landslide
movement lasted approximately 60 s. The movements of the particles at different moments
for the scenarios of rainfall with a 100-year return period and earthquake are shown in
Figures 12 and 13 for comparison. It can be seen that the movement was fast during the
first 10 s after the landslide failure, and many particles reached the flat area at the toe of the
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slope. From 20 s to 60 s, slow movement and the accumulation stage were mainly observed.
In comparison to the rainfall scenario, the particles seemed to accumulate faster under the
earthquake scenario, and, in particular, the accumulation pattern was more compact at
20 s. From 20 s to 60 s, the dynamic changes of the particles under the earthquake scenario
were smaller than those under the rainfall scenario, which also indicated that the kinetics
process under the earthquake scenario was faster. However, the runout distance under the
earthquake was smaller than that when it came to the rainfall scenario, thus meaning that
the overall speed of the particles under the earthquake scenario was slower.
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The results regarding the PFC3D also confirmed the conclusions from the 2D simula-
tion. The kinetic processes under different scenarios are shown in Figure 14. It should be
mentioned first that the color bars in the subfigures are different because the magnitudes of
the kinetic indicators varied with time. It can be seen that the runout distance was larger
when the return period of rainfall was larger, with more particles accumulating at the toe
of the slope rather than stopping on the slope. Next, the velocity and total displacement of
the four monitoring particles were obtained and compared. It was found that the initiation
moments for different particles varied, which was associated with the positions of the
particles, as well as the movement characteristics of the surrounding particles. When the
velocity of a specific particle fluctuated frequently or changed suddenly, it may have been
affected by the impacts or push forces from other neighboring particles. Hence, the dynam-
ics of the velocities for the monitoring particles are difficult to summarize quantitatively,
but at least one peak velocity was observed for each particle (Figure 15). In addition, the
max velocity of all the particles under the rainfall scenario with a 100-year return period
(P = 1%) was the largest compared with other scenarios, thus indicating the highest hazard
under this scenario. Regarding the runout distance (Figure 16), the max displacement of
the particles also had the peak value when it came to the rainfall scenario with P = 1%. The
max displacements for the rainfall with P = 2% for the four particles were 122 m (#1), 123 m
(#2), 144 m (#3), and 146 m (#4), respectively; the max displacements were 132 m, 142 m,
149 m, and 162 m, respectively for the rainfall with P = 1%. Under the earthquake scenario,
the peak displacements were 121 m, 119 m, 133 m, and 143 m, respectively. Considering
that a settlement is located at the toe of the slope, it can be highlighted that the landslide
hazard under the rainfall scenario was greater than the earthquake scenario.
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5. Discussion

Three major topics are discussed in this section. Firstly, the relationship between
the UAV remote sensing and the discrete element model for landslide disaster prediction
is presented. Secondly, the modeling and analysis uncertainties within the current land-
slide hazard prediction framework are addressed. Finally, the results associated with the
landslide hazard assessment and zonation will be debated.

UAVs have been one of the most important tools for landslide investigation and
monitoring. Particularly, they can be applied both before and after a landslide to obtain
information. As it stands, the current methods/models for landslide assessment invariably
require multi-temporal landslide information. On the one hand, although it is also a
common practice to utilize remote sensing imagery to characterize original slopes prior to
an event, this approach faces several technical challenges, such as resolution limitations
and availability in terms of time. On the other hand, UAVs can get closer to landslides
to generate high-resolution images, and users can use UAVs at any time. On the other
hand, UAVs offer a rapid response option in the aftermath of hazard events, particularly
when ground investigations are time-consuming. In this study, the most important role
of UAV remote sensing was to obtain a high-resolution DSM of the slope, which can be
used as critical input data for discrete element simulations. Considering that the ZGYL is
currently in the creeping deformation stage without catastrophic motion, it is difficult to
determine whether the application of a UAV in our case belongs to the pre- or post-event
time period. Certainly, open-source DEM/DSM data are a common option for most studies.
For example, the 12.5 m ALOS, 30 m ASTER, and 90 m SRTM terrain data have been widely
used worldwide [57,58]. However, the impact of data resolution on outcomes always exists,
and some research has investigated the impact of data resolution and the scaling effect [5,59].
In fact, data with a resolution of more than 10 m are normally suitable for cases with a large
area, such as regional-scale landslide susceptibility and hazard assessments. Regarding
the local or slope scale, the sensitivity of the model to spatially varied parameters and
inputs limits its accuracy for application. In this study, UAV remote sensing derived 0.08 m
resolution DSM data, which also contained vegetation information. It is apparent that the
rock–soil mass will also move along with the plants on the slope, so a DSM is more accurate
for landslide hazard simulations than a DEM. In addition, images from UAV remote sensing
will help us to recognize the boundaries of elements at risk (roads and houses, etc.) for
vulnerability assessment, which needs subsequent work in hazard zonation.

The uncertainties of the results in the present study are related to several important
aspects, among which, the that first should be mentioned is the determination of parame-
ters. Two categories of numerical simulation were included in the proposed framework
for landslide hazard assessment, therefore, the accurate parameters for hydrological and
mechanical properties were the solid foundation for reliable outcomes. However, the pa-
rameter values were determined only according to limited survey and laboratory results in
our procedure, incorporating the probabilistic distribution of the shear strength parameters
in Geostudio rather than their spatial distribution. Indeed, the characterization of spatial
heterogeneity for soil properties has been always a technical issue faced by the scientific
community [60]. Hence, as reported by Hürlimann et al. [2], techniques that consider the
spatial uncertainties of soil properties may be of a high interest and importance. In fact,
some methods have been developed to address this issue [61,62], which can improve the
accuracy and reliability of the proposed framework. Moreover, the mechanical parameters
were determined according to the strength reduction by comparing the factors of safety
under different scenarios, which also caused uncertainties in the final results. This is mainly
associated with the inherent limitations of numerical simulation methods. Geostudio can
compute the failure probability of the slope by considering the probability distribution of
the parameters, but it struggles to simulate macro large deformation and movement [18,63].
The PFC is suitable for analyzing landslide kinetics, but it seldom incorporates rainfall
infiltration. Therefore, the present framework combined these two tools together to achieve
all three components of the landslide hazard concept, namely spatial probability, temporal
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probability, and landslide kinetics under a given scenario. It should also be mentioned that
the incorporation of strength reduction into numerical simulation modeling is a common
method for conducting slope stability quantification in the literature [64,65]. Therefore,
using the safety factor obtained by Geostudio as a strength reduction factor was considered
to be rational in this study. Moreover, given the previous limitations regarding quantitative
landslide hazard assessments at the slope scale, the uncertainty during the determination
of parameters was acceptable.

Furthermore, one uncertainty with regard to the stability analysis originated from
the setting of the extreme rainfall scenario. The rainfall was determined by the statistical
data from continuous 3-day rainfall events during rainy season in the region, where the
number of days with rainfall fit with the most frequent single rainfall event, and the rainfall
intensity was evenly distributed. This was actually a hydrological simplification, without
an adequate analysis of the rainfall infiltration and effective recharge. Given the diversity
of the evolution of rainfall-induced landslides under random rainfall patterns in the real
world, e.g., the evolution time and the cumulative landslide area [66], the uncertainty
associated with the volume of the ZGYL may be quite large. In particular, the landslide
initiation and failure may be highly variable with respect to the various distributions of
rainfall peaks, which was not considered in this case. Certainly, it is also important to admit
these limitations rather than evading them, which can help users to improve modeling
accuracy in the future. Hence, the present modeling strategy is more likely a guideline
for predicting landslide hazards quantitatively under extreme conditions. The outcomes
regarding the comparison of the landslide hazards between the rainfall and earthquake
scenarios can be utilized to provide early warnings for threatened areas and take measures
for risk mitigation. Last but not least, the extreme rainfall under a given return period may
also change in the future due to global climate change, especially regarding the aspects
related to the frequency and abundance of extreme rainfall events.

Typically, landslide hazard assessment is expressed as zonation or mapping based
on GIS, ranked by the probability values in various sections. However, the proposed
framework enables revealing the potential threatened regions impacted by mass movement
under a given scenario. The spatial and temporal probabilities of the landslide occurrence
were computed, but the spatial distribution of the landslide intensity (i.e., the probability
of an area being impacted by a given landslide intensity) was not provided in our case.
In fact, initiation and runout hazard analyses are the most difficult challenges within
landside hazard assessment. The first critical issue is landslide volume characterization
under different scenarios [7]. It is evident that the landslide volume varies with the rainfall
intensity or earthquake magnitude, but most available codes seldom consider the failure
process [67,68]. Users commonly set the sliding surface according to the investigation
results, which are consistent under all scenarios. Moreover, every landslide event will
produce a different distribution of intensity and different probability of impact based
on its dynamics. Hence, iterative calculations for various scenarios may be necessary to
determine the probabilities of the occurrence of landslides with different magnitudes at
particular locations below the slope, which is highly time-consuming. Given the limitations
mentioned above, the present study only simulates landslide kinetics under a specific
scenario without hazard zonation. However, the analysis results still revealed the regions
that were most likely to be affected, as well as the most important indicators (velocity and
displacement) for characterizing the mass movement. In the future, analysis regarding the
magnitude–frequency relationship may be a potential solution, in order to create landslide
hazard maps for specific return periods [69,70].

6. Conclusions

There is no doubt that landslide hazard assessment is critically important for stake-
holders responsible for civil protection and land use planning. In the present work, a
framework for landslide hazard assessment at the slope scale was proposed. Given that a
complete hazard modeling procedure is commonly ignored, all the three different aspects
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associated with this topic were incorporated into the framework, namely spatial proba-
bilities, temporal probabilities, and landslide runout analyses. UAV remote sensing was
utilized to obtain high-resolution terrain data, and scenarios were determined according
to the extreme analysis regarding the rainfall time series. The application results with the
ZhuangGuoYu landslide in Tianjin city of China confirmed the framework’s applicability.
The results showed that the spatial probabilities of the landslide under extreme rainfall
scenarios were larger than those under earthquake scenarios. The failure probabilities
computed by Geostudio were 84.3% (rainfall scenario with P = 2%), 92.5% (rainfall scenario
with P = 2%), and 82.9% (earthquake scenario), respectively. The landslide kinetics and the
regions affected by mass movement were revealed by PFC modeling at a 3D scale. Two
important kinetic indicators were analyzed by four monitoring particles. The max velocities
ranged from 19.8 m/s to 23.4 m/s, whereas the displacement varied from 119 m to 162 m,
and the rainfall with a 100-year return period was still the most dangerous scenario.

Overall, the present model strategy combined multiple methods and tools to achieve
landslide hazard assessment. The outcomes indicated that UAV remote sensing, numerical
simulation, and extreme value analysis can be integrated to improve the quantitative hazard
assessment, even though the “real” landslide hazard zonation was not created. Meanwhile,
the existence of multiple sources of uncertainties within this work was also stated, which
need to be transferred to end-users.

The proposed framework can be easily replicated in the areas with similar geological
contexts. In particular, the prediction of the locations which may be affected by future
slope failures under specific scenarios has twofold practical applications. It can be in-
corporated into the development program of urbanization and spatial planning to avoid
the most dangerous locations. Moreover, the outcomes from the hazard assessment can
be combined with the spatial distribution of people and assets to identify risk exposure.
Finally, we recommend undertaking efforts to develop techniques regarding runout anal-
yses or magnitude–frequency relationships of landslides to further improve quantitative
hazard mapping.
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