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Abstract: Coastal forests in the eastern United States are increasingly threatened by hurricanes; how‑
ever, monitoring their initial impacts and subsequent recovery is challenging across scales. Under‑
standing disturbance impacts and responses is essential for sustainable forest management, biodi‑
versity conservation, and climate change adaptation. Using Sentinel‑2 imagery, we calculated the
annual Normalized Difference Vegetation Index change (∆NDVI) of forests before and after Hurri‑
cane Michael (HM) in Florida to determine how different forest use types were impacted, including
the initial wind damage in 2018 and subsequent recovery or reactive management for two focal ar‑
eas located near and far from the coast. We used detailed parcel data to define forest use types and
characterized multi‑year impacts using sampling and k‑means clustering. We analyzed five years
of timberland logging activity up to the fall of 2023 to identify changes in logging rates that may
be attributable to post‑hurricane salvage efforts. We found uniform impacts across forest use types
near the coast, where winds were the most intense but differences inland. Forest use types showed
a wide range of multi‑year responses. Urban forests had the fastest 3‑year recovery, and the timber‑
land response was delayed, apparently due to salvage logging that increased post‑hurricane, peaked
in 2021–2022, and returned to the pre‑hurricane rate by 2023. The initial and secondary consequences
of HM on forests were complex, as they varied across local and landscape gradients. These insights
reveal the importance of considering forest use types to understand the resilience of coastal forests
in the face of potentially increasing hurricane activity.
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1. Introduction
Hurricanes are changing in intensity and frequency, with broad implications for de‑

veloped areas and forest landscapes [1–4]. In particular, portions of the Atlantic and Gulf
Coast of the southeast United States have experienced extensive ecological and economic
damage to forests in recent decades [3–5]. Hurricanes directly affect forests through salt‑
water intrusion in coastal areas, inland flooding, and damage from highwinds [6–8]. Long‑
term forest impacts include disruption of timber supply, altered wildlife habitat, changes
in fuels that affect wildfire risks, altered carbon storage, and changes in stream hydrologi‑
cal regimes, among other factors [3,9–11].

Initial hurricane impacts are known to vary across the landscape due to differences
in wind speed and duration, which are often related to the distance from the track and
coast [12]. At local scales, topography, forest type, edge effects, stand age, and stand den‑
sity can also affect the impacts [13,14]. This cross‑scale complexity of contributing fac‑
tors can make the initial impacts difficult to assess. Secondary impacts, including how
forest managers respond to damage, can affect the rate of successional recovery and long‑
term forest viability; however, secondary responses and recovery can be difficult to resolve
across different forest uses and types after a major event. The forests of the Southeast US
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have particularly complex patterns of forest use, as their provision of ecosystem services
includes industrial‑ andwoodlot‑sourced timber, water supplies, flood and urban heatmit‑
igation, and biodiversity, among others [15]. As a single strong hurricane can destabilize
urban, woodlot, and industrial forest services for years, understanding forest dynamics
across forest use types is essential to address the implications of these extreme events.

Monitoring how forest owners manage post‑disturbance recovery remains a complex
but critical problem [16,17]. After a severe hurricane, a rapid response is crucial to ensure
that monetary value can be reclaimed from damaged trees to mitigate pine beetle infes‑
tations and wildfire risk [18]. This is especially important in the forests of the Southeast
US because of the prevalence of commercial timberland and its importance for the econ‑
omy. After a destructive storm, the active management of pine plantations can restore
their economic viability and mitigate wildfire risks. Industrial forest owners may leverage
capital more efficiently than small rural woodlot owners, and in urban areas, neighbor‑
hood responses may also vary according to socioeconomic factors [12,19,20]. In this sense,
leveraging forest use and ownership data may help contextualize impacts according to
socioeconomic factors that relate to a hurricane’s broader impacts and resilience.

Hurricane researchers have relied on a number of different satellites, grid resolu‑
tions, vegetation‑sensitive indices, and temporal periods for analyses [10,21–24]. Although
post‑hurricane forest monitoring involves broad‑scale and local questions at multiple time
scales [12], cross‑scale analyses are relatively uncommon. Recent post‑hurricane studies
have used remote sensing to assess vegetation impacts [25,26], and more specifically, to
estimate changes in the basal area [27], assess post‑storm debris [28], and assess impacts
on watershed hydrology [10]. However, while remote sensing‑based monitoring that re‑
lies on coarse spatial resolution is often adequate for capturing general impacts, such as
recognizing gradational impacts at scale, such data can fail to meaningfully inform ques‑
tions related to differences across vegetation or forest types, ownership and management
in highly fragmented landscapes. Due to inherent differences in forest patch size and for‑
est vulnerability, it is difficult to quantify changes across uses that are as disparate as ur‑
ban parcels and industrial timberland. Regardless of resolution, the most commonly used
remote sensing technique has been change‑over‑time analysis, which has become a partic‑
ularly powerful approach for understanding hurricane impacts in near‑real‑time, across
years, and for understanding recovery [21–24]. Analyses that rely on change over time
must contend with seasonal phenological variability and non‑targeted disturbances, such
as silvicultural activity, wildfire, or land cover change, depending on the latitude or re‑
gion. In many regions, anniversary dates are preferred over shorter‑term change analyses
because the vegetation is often in decline at the end of the growing season when hurri‑
canes occur, making it difficult to isolate hurricane impacts. A tradeoff, however, is that
anniversary assessments are more likely to include the cumulative effects of multiple dis‑
turbances. Because of this, there is a need to understand hurricane impacts in the context
of these other changes. Several indices are particularly adept at tracking seasonal phe‑
nology and a variety of disturbances in temperate latitudes, particularly the Normalized
Difference Vegetation Index (NDVI) [29].

The need to understand hurricane impacts in areas with complex background distur‑
bances was well demonstrated by 2018’s Hurricane Michael (HM), one of the most pow‑
erful and destructive hurricanes in the history of the United States [30]. This category
5 hurricane made landfall on Mexico Beach, Florida, on October 10 and caused a range
of forest impacts across the three states. The initial damage estimates were $25 billion, in‑
cluding $18.4 billion in Florida alone. A subsequent estimate of forest damage in Florida,
using pre‑storm Forest Inventory and Analysis (FIA) surveys, was $1.29 billion, but this
was found to be an underestimate after extensive field surveys were completed [31]. Dam‑
age to urban forests was excluded from the latter estimate, yet the impacts extended across
all forest types. As a result, knowledge of the initial and secondary hurricane impacts and
their recovery across the entire urban‑to‑industrial forest gradient remains uncertain. To
achieve this broader landscape insight, our study aims to assess pre‑storm dynamics, ini‑
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tial storm impacts, and secondary responses on forests associated with HM through the
use of high spatial‑resolution remote sensing and parcel data.

2. Materials and Methods
2.1. Study Area

The 60 km‑wide study area was centered on the HM track in Florida’s panhandle,
falling entirely west of the Apalachicola River and extending 100 km inland (Figure 1).
It comprises all or parts of the Gulf, Bay, Washington, Calhoun, and Jackson Counties.
Within this area, we defined two focal areas: A, 0–50 km from the coast, and B, 51–100 km
from the coast. According to the 2016 National Land Cover Dataset (NLCD) [32]. Focal
area A includes 12% urban land cover, which includes Panama City (the principal urban
settlement of the study area), 24% evergreen forest, 40% woody wetlands, 1% agriculture,
and 23% other land cover types. Focal area B consists of 8% urban, 32% evergreen forest,
23% woody wetland, 16% agricultural, and 22% other cover types.
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Northwestern Florida’s coastal plain forests are disturbed by logging, thinning, pre‑
scribed fires, wildfires, insects, disease, and wind. Loblolly pine (Pinus taeda L.) and slash
pine (P. elliottii Engelm.) are widely used in industrial pine stands. Non‑industrial upland
forests also include longleaf pine (P. palustris Mill.), sand pine in coastal areas (P. clausa
(Chapm. ex Engelm.) Vasey ex Sarg.), and various species of hardwoods. Riparian and
floodplain forests are dominated by swamp tupelo (Nyssa biflora Walter), swamp laurel
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oak (Quercus laurifoliaMichx.), Cypress (Taxodium spp. L.), sweet bay (Magnolia virginiana
L.) and sweetgum (Liquidambar styracifluaL.) amongmany other species [33]. Urban forests
consist of a diverse mix of native and non‑native tree species. Tree species can respond to
hurricane winds quite differently due to their respective traits [5].

2.2. Mapping Pre‑Hurricane Forest Cover
Amapof the baseline forest cover is essential for isolating hurricane impacts on forests

in this diverse landscape. Elsewhere, Coleman， et al. [34] combined the submeter Na‑
tional Aerial Imagery Program (NAIP) and 10 m Sentinel‑2 imagery to map urban veg‑
etation and land cover changes at a high resolution. Other studies have shown that the
use of very high‑resolution NAIP creates better maps than coarser‑resolution approaches
and allows rescaling [35]. The study area lacks a pre‑hurricane forest cover classification
other than the National Land Cover Dataset (NLCD), which was derived from Landsat at
30 m [32].

We created a high‑resolution pre‑hurricane forest cover mask using the 2017
NAIP [36]. The aerial data were collected during October and November 2017. Using
Google Earth Engine [37], we then performed an unsupervised classification using the red,
green, blue, and near‑infrared bands and the derived Normalized Difference Vegetation
Index (NDVI) at 1m resolution using k‑means clustering. We identified the classified types
of tree cover based on visual observations in both urban and rural areas. For validation, we
generated 300 random points for heavily urbanized Bay County and 300 points for the rest
of the study area and evaluated every point as to its accuracy. The overall accuracy of the
2017 forest mask was 86.5%. Sensitivity was 85.9%, and precision was 81.05%, leading to
an F1 score of 0.834. We then resampled the forest mask to derive the majority forest cover
at a 10 m resolution for integration with other data used in this analysis. For a graphical
depiction of the workflow, see Figure 2.
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2.3. Classifying Forest Use Types
The primary objective of this research was to understand how different forest use

types were affected by HM and assess how they recovered or were subsequently man‑
aged. In particular, we sought to compare the dynamics of urban forests, privately owned
woodlots, non‑developed forest parcels, and industrial timberlands. To define these cate‑
gories, we used the 2020 Florida parcel database from the University of Florida GeoPlan
(https://fgdl.org/ accessed on 24 June 2022) and the 2012 Microsoft Building Footprints
(MBF) fromArcGISHub (https://hub.arcgis.com/ accessed on 1 July 2022). TheMBFdataset
used deep learning to identify building footprints from high‑resolution satellite imagery.

Using the 2017 forest cover mask defined in Section 2.2, we selected parcels that were
at least 25% forest cover. The MBF provided a standardized way to define urban forests
based on building structure density beyond what was possible using the parcel dataset
alone. We converted buildings to points, then calculated the density with a 1‑km moving
window using ESRI’s ArcMap 10.7, and defined urban areas as having at least 50 build‑
ing structures per km2. Using this threshold, the resultant urban patterns corresponded
well with the general urban categories defined by the 2016 NLCD, while the patterns also
corresponded to the precise locations of high‑density urban parcels, such as single‑family,
multi‑family, and commercial. We then used the parcel designation “timberland” to iso‑
late commercial timberland forest use. Parcels were designated as “farm woodlots” when
theywere categorized as cropland, grazing, or improved agriculture in the parcel database.
“Woodlots” were defined as vacant residential, mobile homes, or single family. All other
parcels with forests were designated “other” and this often included parcels with descrip‑
tors such as governmental and commercial. For a graphical representation of the forest
cover type classification and the resulting map, see Figures A1 and A2 in Appendix A.

2.4. Analyzing Annual Forest Change
We sought to distinguish the effects of two predominant disturbance types: wind

damage from HM and logging. Other disturbances, such as saltwater intrusion, wild‑
fire, pine beetle mortality, and flooding, were localized to an extent. We measured annual
changes in forest conditions for two years prior toHMand three years after using theNDVI.
NDVI is commonly used to monitor forest conditions, disturbances, and recovery at this
latitude, including those from wind and logging [10,29,38–40]. To calculate the NDVI an‑
nual change from two years before HM and three years after (2016 to 2021), we calculated
3‑month (10 July–10 October) NDVI composites for every year from Sentinel‑2 imagery
using Google Earth Engine. This temporal window fell immediately before the anniver‑
sary date of HM. As clouds, cloud shadows, and haze are common in this landscape, we
usedmaximum‑NDVI‑value compositing to efficiently derive a high‑quality, robust NDVI
value for each grid cell [41,42]. We examined the true color composites in GEE to ensure
quality. Raster layers showing the change in NDVI (∆NDVI) were then masked using the
resampled NAIP‑derived forest cover to derive ∆NDVI for each parcel.

To isolate responses that related to parcels with sufficient forest cover, we selected
a random subset of parcels that had at least 25% forest cover and sampled the forested
portions of parcelswith randompoints using the package SP inR 2023.06.1 software [43,44].
This step filtered out parcels that were not primarily forest use, as our unit of analysis was
predominantly forested parcels, not trees, in this landscape. We extracted the forest use
type and the five annual ∆NDVI values. For focal area A, the total sample size was 1475,
and for focal area B, it was 2015 with their respective forest use type observations (Table 1).
To compare annual ∆NDVI among forest use types and between focal areas, we then used
the non‑parametricWilcoxon rank‑sum testwithin the rstatix package in R software [43,45]
and reported the adjusted p value using the Holm method to counteract the problem of
multiple comparisons.

https://fgdl.org/
https://hub.arcgis.com/
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Table 1. Number of observations by focal area and by forest use type.

Forest Use
Focal Area

A B

Timberland 711 1128
Farm woodlots 70 324

Woodlot 248 313
Other 129 150
Urban 317 100

Total 1475 2015

To understand the variation in post‑storm recovery, we graphed the distribution of
responses by forest cover type for the 3 years post‑storm, from 2019 to 2021. We standard‑
ized ∆NDVI to a pre‑hurricane baseline condition by recalculating the values with respect
to their 2018 values.

2.5. Classifying Post‑Hurricane Forest NDVI Behavior
To generalize themulti‑year patterns of disturbance and recovery across the five coun‑

ties in and adjacent to the study area, we standardized changes according to each cell’s pre‑
hurricane NDVI value. Then, spatio‑temporal clustering was performed using the annual
∆NDVI forest maps for 2018–2019, 2019–2020, and 2020–2021 using R and the packages
Raster and RStoolbox [46,47]. Spatio‑temporal clustering is a powerful method to empir‑
ically classify data to recognize and map areas sharing statistically similar forest‑∆NDVI
behavior across time [48,49]. We stacked the three forest ∆NDVI raster maps and ran an
unsupervised classification using k‑means non‑hierarchical clustering. To ensure robust
cluster initialization, the k‑means algorithmwas runwith 10 random starts to define 10 dis‑
tinct ∆NDVI profiles that reflect common behavioral patterns of NDVI decline and recov‑
ery over the three years. Clustering was based on a random sample of 1000 pixels from
the input dataset, allowing for efficient computation while maintaining a representative
cluster distribution. We iteratively explored different numbers of clusters, but we found
that 10 sufficiently captured the range of annual behaviors that we could interpret and
communicate with regard to initial hurricane impacts and secondary recovery or logging.

2.6. Isolating Post‑Hurricane Salvage Logging Activity
In an entirely separate analysis (Figure 2), we isolated the variation in annual clear‑ cut

logging activity, including salvage logging that occurred soon after the hurricane, by cal‑
culating the 1‑year change in the fall period after the storm for the focal areas A and B. The
anniversary dates used in the prior ∆NDVI analyses were problematic for isolating post‑
hurricane salvage logging because the first year of change (2018–2019) included both direct
hurricane damage and secondary forest management. To isolate potential salvage logging,
we calculated six new annual ∆NDVI rasters from Sentinel‑2 in Google Earth Engine us‑
ing a two‑month (15 October to 15 December) NDVI‑compositing window for five years
post‑HM and the one and only available pre‑HM year, 2016–2017. This two‑month win‑
dow avoided the influence of standing flood water in the bottomland forests. We ignored
2017–2018 because this year includes HMdamage. This approach allowed us to establish a
1‑year baseline harvesting rate against which we could infer changes in the rate of logging
activity across the non‑urban forest sector. For this analysis, we masked the analysis to in‑
clude only evergreen, deciduous, mixed, and woody wetland forest types using the 2016
NLCD [32]. We usedNLCD2016 rather than our prior‑used 2017 forestmask to ensure that
we had a robust measure of clearcut activity for the 2016–2017 baseline year. For each of
the six annual maps, we isolated clear‑cuts using a diagnostically severe decline in annual
∆NDVI below −0.20. We chose this threshold of change by comparing late‑season NDVI
changes with the 2017 NAIP imagery to isolate unmistakable clearcut activity from other
disturbance impacts [39]. We examined the ∆NDVI within several dozen harvesting units
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and then examined the final map products for consistency with the footprints of clear‑cuts
using true color Sentinel‑2 imagery. Visual examination of the imagery showed that such
severe declines caused by non‑clear‑cut activity are exceedingly rare in the timberland type
for this landscape. While this threshold does not reliably include selection logging or thin‑
ning, our intent was to have a standard indicator of large‑patch salvage logging, which is
consistent with the widely observed commercial sector’s response to reclaiming produc‑
tion after hurricane damage. We then compared temporal patterns of harvesting between
industrial timberland and non‑urban forests.

3. Results
3.1. NDVI Annual Change of Forests

During the two years prior to HM, forest disturbance and recovery were relatively
low in both focal areas and across all land use types (Figure 3). There was a sharp de‑
cline across both focal areas immediately after the storm, with more within‑use type vari‑
ability than for any other year analyzed. For 2019–2020 and 2020–2021, recovery was the
predominant response, but the distribution of NDVI changes remained broader than that
for either of the two pre‑HM years. For focal area A, near the coast, there was no dif‑
ference among forest use types for the HM year 2018–19 (Figure 3a), but there was for
focal area B for timberland and urban (adj. p value < 0.001), timberland and farm wood‑
lots (adj. p value < 0.001), and urban and woodlot (adj. p value < 0.001) types (Figure 3b).
A comparison of types across focal areas revealed no differences among forest use types
for 2018–2019 (Figure 3a,b). However, during 2019–2020 and 2020–2021, the 1‑year NDVI
change was higher inland for timberland (adj. p value < 0.001).
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Figure 3. Annual ∆NDVI by forest use type near (a) and far (b) from the coast for two years prior to
HurricaneMichael, the year of the storm (2018–2019), and for two years after. The boxes represent the
25th and 75th percentiles of each distribution and the lines inside the boxes represent the medians.

When considered in context with the pre‑hurricane condition, post‑hurricane ∆NDVI
shows progressive recovery of all forest use types through 2021 (Figure 4). Near the coast,
there are no differences in recovery among forest use types for the three years post‑storm
(Figure 3a), but inland urban forests recovered faster compared to urban forests near the
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coast (adj. p value < 0.001) (Figure 4b). For 2019–2020, both inland urban (adj.
p value < 0.001) and timberland forests (adj. p value < 0.001) recovered more than those of
the corresponding forest use type near the coast. For 2020–21, these differences expanded
to include urban and timberland forests as well.
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3.2. Post‑Hurricane Forest Behavior
Mapped clusters of three‑year ∆NDVI behavior show spatial aggregations over the

three post‑storm years (Figure 5). The technique reveals ∆NDVI behavior regardless of
the forest patch size across the urban‑to‑industrial forest gradient (Figure 5b–d). Blue areas
(clusters 9 and 10) are considerably more dominant farther from the track toward both the
northwest and southeast.

The mean values of the ten clusters show strong differences in three‑year behavior
relative to their pre‑hurricane condition (Figure 6). Clusters 9 and 10 are relatively stable,
while 7 increases during the first year before stabilizing. The other clusters show various
magnitudes and timings of the decline and recovery responses over the analysis period.
Clusters 3 and 6 are remarkable because declines continue for two years before starting
to recover.

Despite the patchy aggregation of behavioral clusters at fine scales that are shown in
Figure 5, clusters do not closely correspond to individual forest use types at the landscape
scale, as their representation within forest use types varies (Table 2). The most common
behavior for all forest use types was cluster 5, which constituted nearly a third of the area’s
forest overall (Table 2). As shown in Figure 6, cluster 5 exhibited a modest decline after the
storm, which was followed by a gradual recovery over two years. The severe rapid decline
exhibited by cluster 1 was more common in urban, timberland, and other forest use types
than in the woodlot type, where cluster 8, having a similar but less intense initial drop,
was prevalent (Table 2). This difference in first‑year decline could reflect both the severity
of hurricane damage and, when present, any early secondary management response.
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Figure 5. Patterns of NDVI decline and recovery from spatio‑temporal clustering over three years
of annual post‑hurricane ∆NDVI behavior (2018–2019 to 2020–2021). Note that warmer colors (clus‑
ters 1–6) mostly surround the track, indicating stronger declines in NDVI (see corresponding clus‑
ter numbers in Figure 6): (a) the southwest corner of the study area showing the hurricane track,
(b) industrial forests, (c) interface forests (i.e., woodlot, farm‑woodlot, and other), and (d) ur‑
ban forests.

Table 2. Prevalence of post‑hurricane forest behavioral clusters across forest use types.

Forest Use Types
Cluster

1 2 3 4 5 6 7 8 9 10 Total

Timberland 4.5% 4.5% 2.0% 1.8% 31.4% 5.7% 0.8% 19.1% 15.6% 14.7% 100%
Farm woodlots 2.6% 3.8% 0.2% 0.4% 28.3% 4.6% 0.2% 15.4% 21.5% 23.1% 100%

Woodlot 1.8% 2.3% 1.3% 0.6% 38.7% 3.7% 0.5% 21.7% 16.1% 13.4% 100%
Other 4.8% 2.9% 1.1% 0.8% 32.3% 3.5% 0.3% 21.9% 16.5% 16.0% 100%
Urban 5.3% 4.2% 1.5% 2.0% 25.4% 5.5% 0.6% 16.4% 17.7% 21.4% 100%
Overall 4.0% 3.9% 1.5% 1.3% 31.5% 5.0% 0.6% 19.0% 16.7% 16.4% 100%
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3.3. Isolating Post‑Hurricane Salvage Logging Activity
Compared to the baseline rate of 2016–2017, industrial timberland showed a strong

and sustained increase in logging beginning in the first year afterHM (Figure 7). Following
a minor decline in 2020–2021 (during the COVID‑19 pandemic), peak timberland harvest‑
ing occurred four years after the storm (2021–2022) when the area logged constituted 4%
of the timberland use type of the study area (Table 3). By 2022–2023, timberland nearly
returned to the baseline rate (Table 3). In contrast, the logging activity of all other non‑
urban forest use types fell below the baseline year for all five post‑hurricane years that we
analyzed (Figure 7), and by 2022–2023, harvesting constituted less than half of the baseline
rate (Table 3).

Table 3. Annual percentage of available forest use type logged for the study area compared to the
pre‑hurricane baseline year 2016–2017.

Forest Use Types Baseline 2016–2017 2018–2019 2019–2020 2020–2021 2021–2022 2022–2023

Timberland 2.1 2.5 3.2 3.1 4.2 2.2
All other 2.5 2.0 1.9 2.0 1.7 1.0

Forest overall 2.2 2.3 2.8 2.8 3.5 1.8
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4. Discussion
At the broadest scale, our findings regarding the usefulness of remote sensing to cap‑

ture immediate hurricane impacts and recovery are consistent with those of other studies.
Remote sensing, and, in particular, change‑over‑time analysis, is a powerful method for
monitoring hurricane impacts on the forest canopy across large areas. We documented
high levels of immediate wind impact on forests within the HM footprint, which is consis‑
tentwith the results of earlier studies [5,6,10,27,31]. Research that has addressedmulti‑year
recovery has been relatively limited in scope, but [6] found a sustained reduction in pro‑
ductivity in longleaf pine woodlands up to two years after HM from field observations.
Like prior post‑hurricane research in the broader Atlantic region, we found that tracking
conditions over time with remote sensing is consistent with the expectations of vegetation
recovery [21,22]. Unlike prior studies, our analysis documented impacts at a fine resolu‑
tion to better understand how impacts varied by forest use type across a complex urban‑
to‑industrial forest landscape gradient.

Our analysis of forest impacts from this category 5 hurricane provides new insights
into how the effects of this event were nuanced across scales. We demonstrated these
cross‑scale differences through the use of high‑resolution remote sensing and parcel data.
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Broadly, we found no differences in 1‑year impacts near and far from the coast, which
may reflect the extreme wind speeds that extended well into Georgia through our study
area [30]. Locally, initial impacts showed no difference among forest use types near the
coast, but urban forests and farm woodlots were less impacted than timberlands or other
woodlots inland (Figures 3 and 4). Some of this heterogeneous first‑year difference in sever‑
ity may be related to the selective implementation of responsive management activities,
including salvage logging in industrial timberlands, as suggested by Cluster 5 in Table 2
and Figure 6.

In subsequent years, we found complex gradational patterns of forest recovery after
HM.While inland areas were not disturbed initially, NDVI recovery progressed further in
the second year after the storm for most forest use types (Figure 4). Recovery patterns of
urban forests are particularly remarkable, as we resolved the fine resolution and coast‑to‑
inland differences in recovery behavior (Figures 4 and 5). Overall, near‑coast urban forests
recovered more slowly than did those inland, and the former includes the Panama City
metropolitan area, wheremost urban forest areas in the study area occurred. These coastal
urban forests exhibited more diverse recovery (Figure 4), which is consistent with the fine
texture of clusters that we mapped there (Figure 5), more fragmented ownership and indi‑
vidual forest owner responses, and the greater forest structural and compositional diver‑
sity that likely existed in Panama City’s varied neighborhoods prior to the storm. Urban
forest disturbance and recovery are likely to be influenced by very fine‑scale landowner
decisions that are made on a tree‑by‑tree basis, such as removal, pruning, and replanting.
This fine spatial texture may reduce the accuracy of our 10 m assessment more than for
other forest use types that respond more uniformly (Figure 5).

This research highlights the importance of contextualizing post‑disturbance observa‑
tions in a socioeconomic context. Few studies have examined how forest owners, farmers,
and rural communities differ in terms of preparedness or their capacity to respond to se‑
vere disturbances [50,51], and none of these have had a remote sensing component. This
study also suggests that there can be substantial differences in how types of forest own‑
ers can effectively respond in the years following a catastrophic disturbance. The capacity
to respond to forest disturbance expeditiously may affect when or if timber is salvaged,
hazardous fuels are mitigated, or working forests are restored to production [12,52]. Un‑
mitigated damage may mean that forests are more likely to fall out of commercial use
or be converted to non‑timber land use, such as development. The additional problem of
unmanagedwildland fuels is of particularly high concern in this landscape, as was demon‑
strated by several post‑hurricane wildfires. In March 2019, the 293 ha CR‑2297‑Allenton
wildfire burned near the community of Appaloosa Way southeast of Panama City, and in
April 2022, the 306 ha Adkins Avenue wildfire threatened the eastern fringe of Panama
City, as the 9322 ha Bertha Swamp Road wildfire burned 15 km to the east. Prompt miti‑
gation of hurricane‑associated fuels can reduce the risk of wildfires in both communities
and forests [53]. Multi‑year monitoring efforts, such as ours, may capture these secondary
or consequential events, which may also affect forest sustainability.

As climate changes, assuring the continued provision of ecosystem services is one of
the most important challenges for sustainability [54]. However, it can be difficult to moni‑
tor precise impacts using measures that efficiently convey practical value. After any major
disturbance, monitoring is especially important [12,22,24], and multi‑year monitoring is
readily captured by various remote sensing techniques [21,23,55]. However, our analysis
suggests some limitations of NDVI behavior as a disturbance and recovery measure. At
the spatial resolution addressed by our forest use classification, forest sustainability may
be indicated by either rapid NDVI recovery or delayed NDVI recovery, as the latter may
reflect salvage logging that sustains forest production over the long term, even when de‑
layed for years. Hazardous fuel treatment may also delay NDVI recovery while providing
greater community and ecological resistance. As these activities are inherently local, it
can be challenging to make practical sense of the range of post‑disturbance remote sensing
indicators that define resilience at the landscape scale. In theory, the resilience concept
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has been defined by the terms absorbing, resisting, organizing, transforming, adapting,
or bouncing back, but it also involves performance with respect to that which precedes
it [56–59]. That is, destabilizing changes can be difficult to separate from the background
dynamics. By framing expectations in terms of forest use types, monitors gain a context
for understanding landscape dynamics, resilience, and sustainability more meaningfully.

Isolating and monitoring post‑hurricane salvage logging is particularly important for
this landscape, and we found substantial differences in post‑HM activity among forest
use types until late 2023. Industrial timber owners seem to have a more successfully re‑
stored commercial function than farms and other woodlots. Remarkably, non‑timberland
types saw a reduced rate of logging since the pre‑storm period, and this was included in
the first year after HM, when salvaging may have derived some commercial value from
the damaged trees. The persistence of these differences in logging from 2018 to 2023 sug‑
gests that theremay be disproportionate long‑term consequences for industrial and private
forest owners. These differences are especially enlightening because of the reported will‑
ingness of most affected private landowners to actively manage their forests after a hurri‑
cane [53]. This may reflect differences in the owner’s capacity to respond proportionately,
as active management may already be constrained by issues like fractioned ownership of
heirs’ property [60].

Wedetected a decrease in thewave of logging for timberlandduring 2020–2021, which
could be related to the COVID‑19 pandemic. We also observed a minor decline in the
logging of other non‑urban forest types that year. This decline is inconsistent with broader
regional findings that COVID‑19 has had a minimal effect on harvesting [61]. This may
reflect the local challenges of harvesting due to the severity of hurricane damage two years
earlier. As the post‑hurricane activity lasted for years after the storm, the pandemic may
have slowed the recovery of this forest sector.

This study makes several methodological contributions that help satisfy the cross‑
scale monitoring needs after severe disturbances. Reliance on the Google Earth Engine
for processing high‑resolution remote sensing products allowed us to address impacts ef‑
ficiently at scale. Then, our use of spatio‑temporal clustering demonstrated how multi‑
year NDVI behavior can help resolve both direct and secondary hurricane impacts at a
high resolution. By then upscaling these data to the parcel level, we tied forest dynamics
to forest ownership and forest use, which is critical for understanding the socioeconomic
implications of this extreme weather event.

5. Conclusions
The systematic monitoring of coastal landscapes is becoming increasingly important

as hurricanes become more intense and frequent. Satellite‑based remote sensing is espe‑
cially well‑suited for this task, as it allows analysts to track the same location over multiple
years with relatively uniform measures that cross ecological and socioeconomic gradients.
Over time, continuous monitoring captures the background dynamic, the initial distur‑
bance impact, and a range of secondary impacts. These secondary dynamics are especially
important to track, but they can be difficult to interpret, as they often include both actioned
responses like salvage logging, which is intended to restore long‑term functional recovery
in addition to successional recovery more generally.

Combining remote sensingmeasureswith ancillary data, such as the parcel and build‑
ing footprint data used in this study, provides a context critical for understanding land‑
scape questions related to sustainable management and forest resilience. Using these
datasets and their derivatives, we documented important differences across broad and lo‑
cal gradients related to storm intensity and types of forest use. We also found that the
combined importance of these gradients varied, as initial impacts were more indiscrimi‑
nate across types near the coast, while impacts were more likely to vary inland. We found
important longer‑term differences in the rate of recovery, particularly in the logging re‑
sponse across forest use types for up to five years after the storm. Our results suggest
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that to appreciate the implications of hurricanes more comprehensively, it is important to
characterize how impacts are realized across spatial and temporal scales.

Although we focused on a single major hurricane in this study, such storms vary
greatly in terms of wind intensity, duration, and the landscapes affected. Moreover, cli‑
mate, vegetation, and socioeconomic factors may also vary regionally. This study high‑
lights the importance of understanding these cross‑scale factors and the implications of
how disturbance impacts can be better characterized across complex landscapes. Such
finer resolution analyses may lead to more effective strategies to monitor and mitigate the
adverse effects of hurricanes on forest ecosystems.
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