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Abstract: Accurate modeling of sea clutter amplitude distribution plays a crucial role in enhanc-
ing the performance of marine radar. Due to variations in radar system parameters and oceanic
environmental factors, sea clutter amplitude distribution exhibits multiple distribution types. Fo-
cusing solely on a single type of amplitude prediction lacks the necessary flexibility in practical
applications. Therefore, based on the measured X-band radar sea clutter data from Yantai, China in
2022, this paper proposes a multi-task one-dimensional convolutional neural network (MT1DCNN)
and designs a dedicated input feature set for the joint prediction of the type and parameters of
sea clutter amplitude distribution. The results indicate that the MT1DCNN model achieves an F1
score of 97.4% for classifying sea clutter amplitude distribution types under HH polarization and a
root-mean-square error (RMSE) of 0.746 for amplitude distribution parameter prediction. Under VV
polarization, the F1 score is 96.74% and the RMSE is 1.071. By learning the associations between sea
clutter amplitude distribution types and parameters, the model’s predictions become more accurate
and reliable, providing significant technical support for maritime target detection.

Keywords: radar data; sea clutter amplitude distribution; multi-task learning; convolutional neural
networks; joint prediction

1. Introduction

Marine radar, as an essential tool in ocean remote sensing [1], plays a crucial role in
the detection of sea surface targets. However, in complex marine environments, radar
detection of targets is inevitably influenced by sea clutter, i.e., the backscattered echoes
from the sea surface [2]. Sea clutter exhibits complex characteristics, such as non-Gaussian
and non-stationary behaviors, which vary spatiotemporally with marine and meteoro-
logical conditions. These characteristics pose significant constraints on radar detection
performance [3,4]. Therefore, understanding sea clutter properties is crucial for enhancing
radar target detection capabilities within cluttered marine backgrounds [5].

Currently, a substantial body of research has accumulated on the characterization of
sea clutter [6–9], with amplitude distribution being a particularly important characteristic.
The accuracy of sea clutter amplitude distribution modeling has a great impact on radar
target detection capability and the effectiveness of clutter processing techniques [10,11].
Amplitude distribution modeling involves model selection and parameter estimation. The
Rayleigh distribution, an early statistical theory applied to radar sea clutter amplitude
distribution modeling, is primarily suitable for low–medium-resolution radars. However,
with increasing radar resolution, sea clutter’s statistical distributions deviate from the
Rayleigh model, exhibiting enhanced peaks and tails [12], which are particularly evident
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at small grazing angles. Consequently, to improve the fit between statistical models and
empirical data, multi-parameter distribution types have gradually been applied. These
include the Log-normal distribution [13,14], Weibull distribution [15], K distribution [16,17],
and Pareto distribution [18], as well as composite distributions such as KK distribution [19],
WW distribution, and K+Rayleigh distribution [20]. By appropriately selecting and ad-
justing these distribution models and parameters, it is possible to accurately simulate and
predict sea clutter characteristics under different sea conditions, thereby enhancing radar
systems’ performance and reliability.

In various radar and oceanic environmental conditions, sea clutter exhibits significant
differences in amplitude distribution characteristics, including dynamic range and tailing
behavior across different models. For a given type of amplitude distribution, common
methods for the parameter estimation of sea clutter amplitude distribution include maxi-
mum likelihood estimation (MLE) [21,22], moment estimation [23], quantile estimation, and
parameter estimation based on intelligent evolutionary algorithms. Maximum likelihood
estimation is known for its high estimation accuracy but involves complex mathematical
computations. For distributions like the K distribution and Pareto distribution, which
require solving complex nonlinear equations, closed-form solutions may not be achiev-
able [24,25]. Moment estimation, based on mathematical statistics, offers simpler estimation
algorithms but requires a substantial number of sample values and tends to have lower
estimation precision.

Traditional statistical methods typically require large sample sizes for single-instance
estimation, hampering the real-time estimation of sea clutter model parameters. With the
ongoing development of deep learning technology, many researchers are turning to deep
neural networks for parameter estimation. For instance, Mezache et al. [26] used artificial
neural networks (ANNs) to estimate the parameters of the RiIG distribution based on cumu-
lative distribution function (CDF) regression curves derived from measured sea clutter data.
Machado et al. [27] proposed a neural network estimation method more suitable for real
clutter environments to estimate the shape parameters of the Weibull distribution in real
time. Wang et al. [28] trained neural networks on histogram statistics and simulation data
to achieve better results than traditional statistical methods in estimating the parameters
of Log-normal and K distributions. Xue et al. [29] proposed a bipercentiles feedforward
neural network (BP-FFNN-η) method and tackled the challenge of dynamic changes in
outlier proportions using a multiple network structure (MBP-FFNN-η), achieving accurate
shape parameter estimation for K-distributed sea clutter. This method’s robustness and
adaptability in handling continuously changing environments are particularly noteworthy,
offering significant practical value for enhancing sea surface monitoring systems’ perfor-
mance. These studies typically assume a specific distribution for sea clutter and focus on
estimating the parameters of amplitude distribution under that assumption.

However, under the influence of various factors (such as wave height, wind speed,
etc.), the sea clutter amplitude distribution may deviate from the expected model, mak-
ing it difficult to represent dynamic ocean clutter with a fixed distribution model [30,31].
Ma [32] predicted the optimal distribution types and corresponding parameters for four
distributions based on artificial neural networks and radar echo simulation data. Hua
et al. [33] proposed a deep learning model, SE-ResNet-UWL, which includes Rayleigh,
Log-normal, Weibull, and K distributions. This model predicts the most suitable distribu-
tion type and parameters for each distribution based on radar and oceanic atmospheric
parameters, achieving joint prediction in complex spatiotemporal scenarios. However, due
to the limited information contained in the input features and the imbalance of samples,
the predictive performance for Rayleigh and Weibull distributions is suboptimal. Since
the Rayleigh distribution does not meet the requirements of modern high-resolution radar,
we propose replacing it with the Pareto distribution. To maximize the utilization of radar
information, we extracted features from radar echo data under various ocean conditions
and predicted the optimal distribution type and its parameters using a multi-task one-
dimensional (1D) convolutional neural network (CNN), referred to as MT1DCNN. This
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study, based on measured X-band sea clutter data from Yantai in 2022 [34–36], achieved
optimal distribution type and parameter predictions for statistical sea clutter distributions,
including Pareto, Log-normal, Weibull, and K distributions. Specifically, this paper makes
the following contributions:

1. In this paper, an evaluation criterion for fitting sea clutter amplitude distribution that
places greater emphasis on fitting accuracy in the tail regions is proposed. Unlike
traditional methods that rely on simulated data for training, we annotate measured sea
clutter data with this criterion and compile them into a dataset suitable for deep learning.

2. Although histogram features can be adjusted by altering the number of intervals
to obtain features of different lengths, relying solely on a single histogram feature
makes it challenging to achieve highly accurate predictions of more complex sea
clutter characteristics. Therefore, we introduce two long-sequence features along with
supplementary features to more comprehensively describe sea clutter characteristics.

3. A novel multi-task one-dimensional convolutional neural network is proposed for
jointly predicting sea clutter amplitude distribution types and their corresponding
parameters. The features proposed are effectively utilized by this model, which
achieves state-of-the-art performance on the measured dataset.

2. Related Work
2.1. Multi-Task Learning

Multi-task learning (MTL) differs from single-task learning by enhancing model
performance through the simultaneous optimization of multiple related tasks’ loss func-
tions [37,38]. It leverages task interrelations to improve data understanding and information
extraction [39], effectively preventing overfitting and promoting generalization capabili-
ties [40]. In MTL practice, hard sharing and soft sharing are the most used deep neural
network implementation strategies: hard sharing involves fixed sharing of lower-layer
parameters while keeping the upper-layer parameters independent, thereby reducing the
risk of overfitting; soft sharing uses regularization techniques to flexibly control the de-
gree of parameter sharing, increasing the training flexibility [41,42]. The loss function
comprehensively considers specific objectives of each task (such as cross-entropy or mean
squared error) and adjusts different tasks’ contributions to the total loss through weight-
ing factors, ensuring balanced influence among tasks and enabling optimization for task
uncertainties or loss scale differences [43]. Additionally, well-designed auxiliary tasks
serve as a significant advantage of MTL, supplementing the learning of the main task,
introducing additional information resources, and improving the model’s generalization
and stability. The key lies in maintaining a delicate balance between task interrelations and
complexity [44].

In this study, the application of MTL is not limited to theoretical discussion but is
closely integrated with the practical needs of predicting sea clutter amplitude distributions.
Our designed multi-task model not only predicts the type of sea clutter amplitude distribu-
tion but also simultaneously estimates the corresponding parameters (such as shape and
scale parameters). These two tasks are closely related and jointly influence the understand-
ing and processing of sea clutter signals. Through the hard sharing mechanism, the model’s
lower-layer parameters are shared between the classification task of predicting distribution
types and the regression task of predicting corresponding distribution parameters, while
the upper-layer parameters are adjusted according to the task characteristics. This ensures
that the model can capture common features among tasks while handling task-specific
differences.

2.2. One-Dimensional Convolutional Neural Network

Convolution, as a mathematical operation, is utilized in the field of deep learning
through CNNs to efficiently extract features from data such as images and speech, per-
forming tasks like classification and detection [45,46]. One-dimensional (1D) convolution
is particularly suitable for analyzing long-sequence data, such as time series or text. It
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captures features by sliding and weighting a 1D convolutional kernel over the sequence,
and its flexibility lies in the ability to adjust the kernel size to fit different data lengths,
reducing the number of parameters and simplifying computation [47], while retaining the
ability to capture long-range dependencies. The unique advantages of 1D convolution
have shown excellent performance in various fields, including natural language process-
ing, time-series prediction, and bioinformatics [48], such as text classification, sentiment
analysis, and gene sequence analysis, effectively integrating local features with contextual
information to enhance model performance across various sequence tasks [49].

Considering the unique advantages of 1D CNNs in handling time-series data and the
fact that sea clutter amplitude distribution is essentially composed of sequential signals,
this study employs a 1D CNN for predicting sea clutter amplitude distribution. Address-
ing the diversity and dynamics of sea clutter, the 1D CNN can effectively capture the
spatiotemporal features in sea clutter data through specialized convolutional kernel sizes
and structures.

3. Methodology

In this section, we provide a detailed explanation of the method for joint prediction
of amplitude distribution characteristics using multi-task learning combined with a 1D
convolutional network. First, we introduce the multiple input data features of the sea
clutter amplitude prediction model. Subsequently, we present the criteria for the optimal
fitting distribution, aimed at determining the most suitable amplitude distribution type
for sea clutter data. Finally, we describe the comprehensive design of the MT1DCNN
architecture and its key implementation details.

3.1. Description of Multiple Sea Clutter Input Features

In complex and variable marine environments, the mapping relationship between
radar data and sea clutter amplitude distribution characteristics is challenging to articulate
clearly through mathematical or statistical theories [33]. Each radar dataset contains a
vast number of values, and the correlation between values at individual positions and
the final estimated parameters is low, making it difficult to intuitively reveal deeper in-
formation. Moreover, raw data often include low-quality samples [28]. Directly applying
neural networks to fit the raw dataset results in poor performance due to the network’s
large scale, which is challenging to optimize and requires substantial computational re-
sources. Therefore, preprocessing to optimize input features becomes crucial for enhancing
model performance.

In this paper, three long-sequence features are extracted from the sea clutter data:
histograms, the probability density function (PDF), and the complementary cumulative dis-
tribution function (CCDF). Additionally, ten fundamental sea clutter amplitude statistical
measures are incorporated to enhance the feature set.

3.1.1. The Histogram Feature of Sea Clutter

In radar data processing, histogram analysis is a fundamental and effective method. It
involves grouping continuous radar echo intensities or other feature values into specific
intervals and then counting the number of data points within each interval. This method
helps to visually display the distribution characteristics of data, captures the overall shape
and local patterns of data, and is the basis for understanding the amplitude distribution
types of sea clutter. For example, if the histogram shows clear peaks, it may indicate
the presence of a dominant range of clutter intensity, while a broad and flat distribution
indicates significant changes in clutter intensity. Therefore, histogram features help the
model quickly capture the basic contour of amplitude distribution. However, if the interval
size is too large, it may result in a large amount of data being clustered in the same group,
reducing the model’s accuracy. Conversely, if the interval size is too small, some groups
may contain no data, thus diminishing the neural network’s fitting effectiveness [28]. We
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chose to set the number of bins to 100 to better retain the information inherent in the
original data.

3.1.2. The PDF Feature of Sea Clutter

The PDF represents the probability density of sea clutter amplitude data within a
given interval, i.e., the relative frequency of data points within each interval. It is computed
using histogram data while considering the original data range. The calculation formula is
as follows:

Xpd fi =
NNi/N

∆x
, (1)

where NNi is the frequency of the i-th interval in the sea clutter amplitude histogram, N is
the total number of sea clutter amplitude data points, and ∆x is the length of each interval.
In the joint prediction model for sea clutter amplitude, using the PDF feature helps to
accurately measure the probability of different amplitude values, making it easier to match
statistical distribution models like the Log-normal and Weibull models.

3.1.3. The CCDF Feature of Sea Clutter

The CDF represents the cumulative probability of sea clutter amplitude data points
being less than or equal to a given value, showing the cumulative distribution of the data
from the minimum to the maximum values. The calculation formula is as follows:

Xcd fi =
∑i

j=1 NNj

N
, (2)

where NN j is the frequency of the j-th interval in the sea clutter amplitude histogram data.
The CDF feature is helpful for analyzing the overall distribution of data and cumulative
probabilities. However, in subsequent model training processes, the complement of the
CDF, known as the CCDF, was used, which can be expressed by the following formula:

Xccd fi = 1 − Xcd fi, (3)

which means that we focus on the cumulative probability of sea clutter amplitude data
points exceeding a certain threshold. By using the CCDF, we can better capture the tail
behavior and extreme values of the data (such as strong sea clutter), thereby enhancing the
robustness and generalization ability of the model.

Although the PDF and CCDF features are both derived from histogram features, they
each describe distinct levels of information. This ensures that the model can grasp the
overall shape of the amplitude distribution on a macro level, while also capturing the
detailed characteristics of the probability distribution. Additionally, it effectively handles
extreme cases, enabling the joint prediction of the type and parameters of sea clutter
amplitude distribution in complex oceanic environments.

3.1.4. Statistical Features of the Amplitude Distribution of Sea Clutter

To achieve higher predictive performance, sea clutter amplitude statistical measures
were proposed that describe properties related to the location, dispersion, and distribution
shape of the sea clutter amplitude data, comprising minimum (Min) and maximum (Max)
values to identify extremes, variance (Var) and standard deviation (Sd) to quantify variabil-
ity, and skewness (Skew) and kurtosis (Kurt) to characterize distribution shape, along with
four quantiles representing data distribution at the 25th percentile (P25), 50th percentile
(P50), 75th percentile (P75), and 90th percentile (P90). The formulae are as follows:

Xvar =
1
n

n

∑
i=1

(
xi −

−
x)2 , (4)

Xsd = &
√

Xvar, (5)
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Xskew =

1
n ∑n

i=1

(
xi −

−
x)3(

1
n ∑n

i=1

(
xi −

−
x)2

) 3
2

, (6)

Xkurt =
1
n ∑n

i=1

(
xi −

−
x)4(

1
n ∑n

i=1

(
xi −

−
x)2

)2 − 3, (7)

where Xvar represents the sea clutter amplitude variance, Xsd represents the standard
deviation, Sskew represents the skewness, Xkurt represents the kurtosis, n is the sample size,

xi is the i-th sample point, and
−
x is the sample mean.

Quantiles divide data into equally sized portions based on their order. The p-th
percentile is a value in the dataset such that at least p percent of the observations are less
than or equal to this value and at least (1 − p) percent are greater than or equal to this value,
where 0 < p < 1.

They aid in understanding the central tendency, dispersion, and skewness of the sea
clutter amplitude data, commonly used in data analysis and modeling.

3.2. Optimal Amplitude Distribution Annotation of Sea Clutter Based on TEIC Testing

In this study, Log-normal, Weibull, K, and Pareto distributions were selected as foun-
dational statistical models. The parameters of the amplitude distribution were estimated
using the MLE method. To determine the best-fitting model for the given sea clutter ampli-
tude data, it is necessary to define a statistical metric that reflects the degree of fit between
the statistical model and the data. This involves the issue of goodness-of-fit testing in
statistical hypothesis testing. Traditional tests include the Kolmogorov–Smirnov (K-S) test,
Cramer–Von Mises (CV) distance [50], chi-squared test [51], and statistical metrics like
the D-statistic, quadratic statistic Q0, and likelihood ratio [52], among others. Given that
radar target detection emphasizes the tail part of sea clutter, a tail-emphasized inspection
criterion (TEIC) was designed to prioritize the tail behavior. The formula is as follows:

TEIC =
N

∑
i=1

{|p(xi; v, b)− p(xi)|{p(xi > 0.1)} + 102|p(xi; v, b)− p(xi)|{p(xi ≤ 0.1)}}, (8)

where p(xi) represents the PDF of sea clutter amplitude, and p(xi; v, b) represents the PDF
of the statistical sea clutter amplitude distribution model fitted based on a specific shape
parameter v and scale parameter b. A smaller value of the TEIC indicates a better fit.

We employed TEIC testing and selected the distribution with the smallest TEIC value
as the optimal sea clutter amplitude distribution statistical model. Sea clutter amplitude
distribution type labels were one-hot encoded, while the distribution parameter labels
represent the shape and scale parameters obtained from the MLE of the distribution. Details
of the input and output parameters for the multi-task 1D CNN used for jointly predicting
amplitude distribution types and parameters are provided in Table 1.

Table 1. Details of the MT1DCNN model’s input and output parameters.

Inputs (310)

Long-sequence features (300)
Histogram

PDF
CCDF

Supplementary statistical features (10)

Min, Max
Var, Std

Skew, Kurt
Quantiles (P25, P50, P75, P90)

Outputs (6)
Labels of sea clutter amplitude distribution type (4) Log-normal, Weibull, K, Pareto

Labels of sea clutter amplitude distribution parameter (2) Shape parameter, scale parameter
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3.3. Overview of the MT1DCNN Model

The overall structure of the MT1DCNN model for joint prediction of sea clutter
amplitude distribution types and parameters is shown in Figure 1. This model leverages a
1D CNN to abstract and extract features from sea clutter amplitude histograms, PDFs, and
CCDFs in a layer-by-layer manner. The three long-sequence features operate independently
during this process, capturing key characteristics of the sea clutter signal from different
perspectives without interference. This approach allows the model to extract richer and
multi-layered feature representations from the sea clutter signals, thereby enhancing the
ability to distinguish between different types of distributions and improving the accuracy
of parameter predictions.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 23 
 

 

Inputs (310) 

Long-sequence features (300) 
Histogram 

PDF 
CCDF 

Supplementary statistical features (10) 

Min, Max 
Var, Std 

Skew, Kurt 
Quantiles (P25, P50, P75, P90) 

Outputs (6) 
Labels of sea clutter amplitude distribution type (4) Log-normal, Weibull, K, Pareto 

Labels of sea clutter amplitude distribution parameter (2) Shape parameter, scale parameter 

3.3. Overview of the MT1DCNN Model 
The overall structure of the MT1DCNN model for joint prediction of sea clutter 

amplitude distribution types and parameters is shown in Figure 1. This model leverages 
a 1D CNN to abstract and extract features from sea clutter amplitude histograms, PDFs, 
and CCDFs in a layer-by-layer manner. The three long-sequence features operate inde-
pendently during this process, capturing key characteristics of the sea clutter signal from 
different perspectives without interference. This approach allows the model to extract 
richer and multi-layered feature representations from the sea clutter signals, thereby 
enhancing the ability to distinguish between different types of distributions and im-
proving the accuracy of parameter predictions. 

 
Figure 1. The architecture of MT1DCNN. 

When extracting input features using a 1D CNN, taking the PDF feature as an ex-
ample, the feature extraction network starts with a single-channel input and employs 256 

Figure 1. The architecture of MT1DCNN.

When extracting input features using a 1D CNN, taking the PDF feature as an example,
the feature extraction network starts with a single-channel input and employs 256 large con-
volutional kernels, using padding to maintain the input size. The subsequent convolutional
layers gradually reduce the number and size of the convolutional kernels while preserving
the crucial spatial information. The final convolutional layer uses 1 × 1 convolutional
kernels to reduce the dimensions to a single channel. Batch normalization is applied after
specific convolutional layers to mitigate the vanishing gradient or exploding gradient prob-
lem, allowing better gradient propagation, enhancing the network stability, and improving
training outcomes. This technique helps maintain the input distribution within a stable
range, reducing the dependency on initial parameters and facilitating effective learning by
the network. Subsequently, average pooling layers with a kernel size of 3 and a stride of 2
are used to downsample the feature maps, reducing the spatial dimensions of individual
long-sequence features. This step significantly reduces the dimensionality of the features,
making the resulting feature information more sensitive to background information and



Remote Sens. 2024, 16, 3891 8 of 22

increasing the receptive field, which can help improve the performance of the sea clutter
amplitude distribution classification task.

In the task-specific layers and the task assistance module of MT1DCNN, all of the
feature results processed by the 1D convolution are aggregated, forming a highly integrated
and information-rich long-sequence feature representation. This joint feature is then inte-
grated with supplementary statistical features, entering the private layers of the sea clutter
amplitude distribution type classification and amplitude distribution parameter regression
tasks. Specifically, the three types of long-sequence features undergo 1D convolution pro-
cessing and are then concatenated into a joint feature with 147 dimensions, which is further
integrated with 10 additional statistical features to form the input for the classification and
regression task networks. The classification task receives an input with 157 dimensions
(indicated by the light red box). Considering the close relationship between amplitude
distribution type recognition and amplitude distribution parameter prediction, we also
include the classification results in the regression task input, assigning them additional
weights, and expand the input to 161 dimensions (indicated by the dark red box) to enhance
the performance of the regression predictions. Both the classification and regression tasks
have fully connected layers with 128 neurons, using the ReLU activation function consistent
with the convolutional layers. The classification task employs a softmax layer to produce
class probabilities, while the regression task directly outputs continuous predicted values.

The MT1DCNN model employs an MTL strategy, leveraging shared feature extraction
layers to uncover key information common to sea clutter amplitude distribution type classi-
fication and amplitude distribution parameter regression tasks, encompassing the temporal
patterns and nonlinear dynamic characteristics of the signal. Simultaneously, customized
output layers for different tasks enhance the model’s specialization in classification accu-
racy and parameter estimation. Notably, the positive interplay between tasks means that,
when performing any specific task, the model can effectively utilize the feature knowledge
extracted from other tasks, thereby improving its analysis and response capabilities in the
complex sea clutter environment.

During the training process, stochastic gradient descent (SGD) was employed as the
optimization algorithm, coupled with a constant decay strategy for the learning rate. These
measures collectively ensured that the model could efficiently and rapidly converge to the
optimal solution. For the choice of the loss function, the joint loss function proposed by
Ma et al. [27] was adopted, specifically designed for the prediction of sea clutter amplitude
distribution types and their parameters. The classification task used cross-entropy loss,
while the regression task employed mean absolute error (MAE) as the loss calculation
standard.

Additionally, Hua et al. [28] pointed out that predicting the shape and scale parameters
of the K distribution might encounter issues where the parameters could take negative
values. Based on this observation, they proposed a negative value suppression loss function
specifically for the parameter prediction of the K distribution. In our training practice, we
observed similar phenomena, such as the scale parameter of the Log-normal distribution
occasionally taking negative values, the shape parameter of the Weibull distribution some-
times exceeding its upper limit of 2, and the scale parameter of the Pareto distribution
potentially appearing negative. Based on these observations, a new range-constrained loss
function was further designed and implemented, built upon the negative value suppression
loss function, specifically optimized for the parameter prediction of these distributions.
The overall loss function is as follows:

Loss = λ1MAELoss(v, v̂) + λ2MAELoss
(

b, b̂
)
+ λ3CrossLoss(y, ŷ) + λ4RestrainLoss, (9)

RestrainLoss = [L l , Lw, Lk, Lp
]
Y, (10)

Ll = ReLU(b), (11)

Lw = ReLU(v − 2), (12)
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Lk,p = ReLU(−v) + ReLU(−b) (13)

where λ1, λ2, λ3 represent the weights of different losses, v and v̂ refer to the predicted and
target values of the shape parameter, respectively, while b and b̂ represent the predicted
and target values of the scale parameter, respectively. Additionally, y and ŷ indicate the
predicted and target values for the classification task, respectively. Ll , Lw, Lk, p represent
the range-constrained loss functions designed for the four distribution types, and Y is a
4 ×1 vector representing the one-hot encoded distribution type prediction results.

4. Experiments and Results
4.1. Measured Sea Clutter Data

The data used in this study originated from the Sea-Detecting Radar Data Sharing
Program (SDRDSP) proposed by Liu et al. [34–36]. This dataset not only lays a solid
foundation for the research but also significantly enhances transparency and collaboration
in the field of ocean radar technology, holding important value for advancing progress
in related areas. Specifically, this dataset includes experiments conducted using X-band
solid-state fully polarimetric radar for sea surface detection. It contains target and sea
clutter data under various sea conditions, resolutions, and grazing angle conditions. The
sea conditions range from level 2 to level 5, corresponding to increasing and then decreasing
wind and wave severity. The radar model used is the Tianao SPPR50P, with pulse widths
ranging from 40 ns to 100 us and a transmit power of 100 W. It achieves a maximum
range resolution of 6 m. The polarization modes include HH (1.8 m) and VV (2.4 m), and
the antenna operates in both staring and circular scanning modes. It can perform a full
360◦ clockwise scan in the horizontal plane at speeds ranging from 2 to 48 revolutions per
minute or operate in a staring mode at set angles. In this study, data from the staring mode
were used, sampled at 60 MSPS (mega samples per second), corresponding to a sampling
interval of 2.5 m. The overall temporal structure of a complete sampling is illustrated in
Figure 2.
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Figure 2. The overall temporal characteristics of T1 and T2 pulses: (a) T1 pulse echo (dB). (b) T2 plus
Echo (dB).

The data include echoes from T1 pulses (single-carrier frequency transmission signals)
and T2 pulses (LFM transmission signals). The distance dimension samples extracted from
T1 pulse echoes number 950, and those from T2 pulse echoes number 1000 samples, totaling
131,072 pulses stored.

Because the data contain targets such as buoys and ships, their effects were removed
to retain only clean sea clutter data for analysis.

After extracting and annotating features from the Yantai 2022 measured X-band sea
clutter data, HH and VV polarization datasets suitable for joint prediction were obtained,
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each containing approximately 135,000 samples. According to the TEIC, the optimal distri-
butions for HH-polarized sea clutter were found to be 13.3% for Log-normal distribution,
18.4% for Weibull distribution, 5% for K distribution, and 63.3% for Pareto distribution. For
VV polarization, these proportions were 6.2%, 18%, 22.9%, and 52.9%, respectively.

However, due to the approximate solutions provided by the MLE method used for
K distribution and Pareto distribution, some shape parameter estimates were notably
larger than expected. Figure 3 illustrates the data distribution of these shape parameters
for both distribution types, with a maximum value limit set at 100 to focus on details
in high-density regions. In HH-polarized sea clutter data, 0.6% of K distribution shape
parameters exceeded 30, and 0.3% of Pareto distribution shape parameters exceeded 20. In
VV polarization mode, these percentages were 0.5% and 4%, respectively.
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Considering that these outliers in shape factors may adversely affect the training
effectiveness of models, the decision was made to remove these anomalies to ensure high
data quality and stability in subsequent model training. This decision was based on a
comprehensive assessment of potential biases introduced by outliers and their potential
impact on model performance. Our aim was to optimize the effectiveness and reliability of
model training by accurately controlling the data quality.

As a result, a dataset of optimal amplitude distribution types and their corresponding
parameters was obtained based on measured sea clutter data. The amplitude distribution
dataset for sea clutter in HH polarization consisted of 133,938 data points, while the VV
polarization data contained 128,759 data points. The dataset was divided into training,
validation, and test sets at a split ratio of 70%:15%:15%. Tables 2 and 3 present detailed
information about this dataset, including sample counts for each distribution, as well as
ranges of the shape and scale parameters.
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Table 2. Dataset details for sea clutter amplitude distribution in HH polarization radar.

Distribution Types Range of Shape
Parameter

Range of Scale
Parameter Number

Log-normal [0.740, 1.205] [−0.692, −0.245] 18,058
Weibull [0.789, 2] [0.671, 1.129] 24,016

K [0.224, 29,652] [0.074, 23.130] 6622
Pareto [0.458, 17.710] [0.821, 8.871] 85,241

Table 3. Dataset details for sea clutter amplitude distribution in VV polarization radar.

Distribution Types Range of Shape
Parameter

Range of Scale
Parameter Number

Log-normal [0.121, 1.435] [−0.989, −0.007] 8408
Weibull [0.849, 2] [0.807, 1.129] 21,223

K [0.316, 20.378] [0.154, 15.764] 30,719
Pareto [0.587, 19.816] [0.819, 3.416] 68,408

4.2. Evaluation Metrics for Sea Clutter Amplitude Distribution Type and Parameter Predictions

In binary classification problems, there are typically four types of classification out-
comes: true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
These values are used to calculate the precision (Pre), recall (Rec), and F1 score. For the
multi-class classification problem of sea clutter amplitude distribution types, it is common
to decompose the problem into multiple binary classification tasks, treating each class as
the positive class in turn while considering the rest as negative classes. Evaluation metrics
are then averaged across these tasks, as formulated below:

Prei =
TPi

TPi + FPi
, (14)

Reci =
TPi

TPi + FNi
, (15)

F1i =
2 × Prei × Reci

Prei + Reci
, (16)

Weighted Avg F1 = ∑n
i=1 (F1i ×

si
N
), (17)

where i denotes the categories of amplitude distribution of sea clutter, n represents the
number of classes, si denotes the number of samples in the i-th class, and N represents the
total number of samples in the test set. A higher precision indicates fewer errors when
the model predicts positive instances, reflecting the reliability of the model’s predictions.
Higher recall indicates the model’s ability to better capture actual positive samples, demon-
strating stronger classification capabilities in the task of classifying sea clutter amplitude
distribution types. The F1 score is the harmonic mean of precision and recall, providing a
comprehensive evaluation of the model’s performance.

Given that our amplitude distribution classification task involves a four-class imbal-
ance, as shown in Tables 2 and 3, the simple average F1 score might be dominated by classes
with more samples, such as the Pareto distribution; thus, it may not accurately reflect the
overall performance. By using weighted average F1 scores, the sample sizes in each class
are accounted for, weighting the F1 scores of different classes to comprehensively assess
the model’s performance across all classes. Therefore, the weighted average F1 score was
adopted as the metric to assess the overall classification performance of the model, with a
higher score indicative of greater accuracy in predicting the distribution types of sea clutter.
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In regression problems, common evaluation metrics include the mean absolute er-
ror (MAE), RMSE, and R-squared (R2), with their mathematical formulations provided
as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi|, (18)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 , (19)

R2 = 1 − ∑n
i=1

(
yi − ŷi)

2

∑n
i=1

(
yi −

−
y)2

, (20)

where yi represents the true values, i.e., the sea clutter amplitude distribution parameters in

the test set, ŷi represents the predicted values,
−
y is the mean of the true values, and n is the

number of samples. The R2 score indicates the degree to which the model fits the data, with
values ranging from 0 to 1; a value closer to 1 indicates a better model fit. Since the model
has two regression output values, these metrics are calculated for each output variable,
and the average is taken as the evaluation metric for the overall regression performance of
the model.

4.3. Analysis of Sea Clutter Amplitude Distribution Type and Parameter Predictions Based
on MT1DCNN

The MT1DCNN model proposed in this study efficiently predicted the amplitude
distribution types of sea clutter under complex sea conditions and their corresponding
parameters, with specific results illustrated in Figure 4.

Figure 4a,b depict the confusion matrix heatmaps of the sea clutter amplitude distribution
classification task under HH and VV polarization, respectively. Class 3 represents the Pareto
distribution, class 2 represents the K distribution, class 1 represents the Weibull distribution,
and class 0 represents the Log-normal distribution. Taking the correct identification of HH-
polarized sea clutter samples following the Pareto distribution as an example, the percentage
on the right of the cell indicates a precision of 98.85%, the percentage at the bottom indicates a
recall of 98.59%, the middle number indicates a count of 12,643 sea clutter samples, and the
percentage below the number represents its proportion in the total test samples, at 62.93%.
Although the data of HH-polarized sea clutter K distribution are sparse, accounting for less
than 5%, they still perform well in the classification task, with a precision of 88.42%. Pareto
distribution data are the most abundant and show the best performance, with precision
exceeding 95% for the other distributions as well. In VV polarization mode, with an increase
in K distribution data, the classification precision significantly improves to 96.26%, while the
Pareto distribution continues to perform the best with a precision of 97.57%, and the precision
for the other distributions remains around 95%.

Figure 4c,d show scatter density plots of the sea clutter amplitude distribution shape
parameter prediction results under HH and VV polarization, respectively. The horizontal
axis represents the amplitude distribution shape parameters on the test set, and the vertical
axis represents the values predicted by the MT1DCNN model. The shape parameters of the
four distributions are mainly concentrated between 0 and 3, with only a few data points
from the K and Pareto distributions exceeding this range, and the data density decreases
with increasing values. Additionally, although VV polarization mode has more data points
with shape parameter values exceeding 3 compared to HH polarization, resulting in a
slightly higher MAE of 0.09 and RMSE of 0.359, the R2 values remain relatively close and
at a high level. Figure 4e,f display the results of the scale parameter predictions. The R2

value for the scale parameter of the sea clutter amplitude distribution predicted by the
MT1DCNN model in HH polarization mode reaches 0.796, while for VV polarization the
R2 value for the scale parameter is 0.658.

Overall, the MT1DCNN model demonstrates reliable performance in predicting both
amplitude distribution types and corresponding parameters under various sea conditions.
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parameter of HH polarization. (d) Shape parameter of VV polarization. (e) Scale parameter of HH
polarization. (f) Scale parameter of VV polarization.
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4.4. Ablation Analysis and Impact Study of Input Features in the MT1DCNN Model

To improve the prediction accuracy, the method designed in this study integrates
multiple features. We conducted a series of ablation experiments to thoroughly investigate
the specific impact of each feature on the overall prediction performance. The experimental
results are detailed in Tables 4 and 5 where AS represents the amplitude statistical features.

Table 4. The influence of different features on the predictive performance of MT1DCNN under HH
polarization.

Features F1 Score MAE RMSE R2

Histogram 95.75% 0.194 1.119 0.811
PDF 95.33% 0.207 1.178 0.801

CCDF 96.65% 0.125 0.811 0.863
Histogram + AS 96.67% 0.124 0.721 0.878

Histogram + PDF 95.79% 0.178 1.112 0.812
Histogram + PDF + CCDF 97.03% 0.109 0.723 0.878

Histogram + PDF + CCDF + AS 97.40% 0.092 0.746 0.906

Table 5. The influence of different features on the predictive performance of MT1DCNN under VV
polarization.

Features F1 Score MAE RMSE R2

Histogram 95.99% 0.236 1.327 0.863
PDF 95.83% 0.243 1.347 0.861

CCDF 95.98% 0.185 1.272 0.868
Histogram + AS 95.87% 0.185 1.284 0.867

Histogram + PDF 95.96% 0.235 1.305 0.865
Histogram + PDF + CCDF 96.15% 0.177 1.281 0.868

Histogram + PDF + CCDF + AS 96.74% 0.154 1.071 0.881

The results indicate that, among long-sequence features, the CCDF has the greatest
impact, particularly in the prediction of sea clutter amplitude distribution parameters,
where it shows a clear advantage. Additionally, the performance of the CCDF is comparable
to that of histograms + AS. Under VV polarization, AS does not significantly improve
the accuracy of predicting sea clutter amplitude distribution types, but it has a more
pronounced effect on the distribution parameters. As the number of features increases,
the prediction accuracy of the model improves, but the computational cost also increases.
Specifically, the test sets for HH polarization and VV polarization contain 20,090 and 19,313
data points, respectively. When all features are used as network inputs, the corresponding
testing times are 0.46 s and 0.44 s, respectively.

4.5. Comparative Analysis of Sea Clutter Amplitude Distribution Type and Parameter
Prediction Results
4.5.1. Comparative Analysis of the Prediction Results of the MT1DCNN Model and the
Traditional Method

In the process of estimating the parameters of the actual sea clutter amplitude distri-
bution and using these parameters as dataset labels, we employed the MLE method. The
predictive performance of MT1DCNN is directly influenced by the parameter estimation
methods used to generate the training dataset. As shown in Figure 5, MT1DCNN not only
achieves overall performance comparable to that of MLE but also slightly outperforms
MLE in fitting the tails of certain data distributions. We randomly selected two sets of data
for further analysis, and the results are shown in Figure 6. Under the same distribution,
MT1DCNN provides more accurate predictions for the tail regions, and after extensive
training it can adaptively select the most suitable distribution type based on the actual data.
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Although this deviates from the labels that we artificially set, it is more in line with the
actual situation.
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The above models were trained using the same sea clutter dataset. Figure 7 illus-
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4.5.2. Comparative Analysis of the Prediction Results of the MT1DCNN Model and Other
Deep Learning Models

To assess the effectiveness of MT1DCNN, we improved the fully connected artificial
neural network proposed by Ma [27] by increasing the number of hidden layers and neurons
to accommodate more complex data, termed the baseline model (DNN7), and compared
it with our proposed method. DNN7 consists of seven hidden layers, each containing
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128 neurons, with parameter sharing in five of the hidden layers, and with the input limited
to histogram features. To evaluate the role of additional long-sequence and supplementary
features, we augmented DNN7 with these features and adjusted the network structure,
resulting in DNN7-AF. The number of hidden layers remained unchanged, but the number
of neurons in the first three layers was increased. To study the impact of task assistance, we
removed the task assistance module from MT1DCNN, denoted as MT1DCNN-NT.

The above models were trained using the same sea clutter dataset. Figure 7 illustrates
the F1 scores and loss variation curves on the validation set for the four models under
HH-polarized sea clutter, while Figure 8 shows the results for VV-polarized sea clutter.
Additionally, Table 6 presents the F1 scores and various regression metrics on the test set
under HH polarization, and Table 7 provides the corresponding results for VV polarization.
Combined with Tables 6 and 7, it can be observed that our proposed new features exhibit
significant improvements compared to the single histogram feature, in both HH and
VV polarization.
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Table 6. Prediction results for sea clutter amplitude distribution in HH polarization radar across
different models.

Models F1 Score MAE RMSE R2

DNN7 93.65% 0.269 1.125 0.786
DNN-AF 95.64% 0.169 0.855 0.876

MT1DCNN-NT 97.33% 0.121 0.765 0.901
MT1DCNN 97.40% 0.092 0.746 0.906

Table 7. Prediction results for sea clutter amplitude distribution in VV polarization radar across
different models.

Models F1 Score MAE RMSE R2

DNN7 92.81% 0.329 1.354 0.810
DNN-AF 93.50% 0.277 1.291 0.828

MT1DCNN-NT 96.88% 0.202 1.174 0.857
MT1DCNN 96.74% 0.154 1.071 0.881

The sea clutter amplitude distribution joint prediction performance of DNN7-AF is
superior to that of DNN7. Specifically, the F1 scores for amplitude distribution classification
tasks improved by 1.99% and 0.69%, respectively, and the R2 values for parameter prediction
tasks increased by 0.09 and 0.018, respectively. MT1DCNN-NT showed F1 scores very
close to those of MT1DCNN, but the latter demonstrated more pronounced advantages in
parameter prediction tasks.

Due to the heavy-tailed characteristics of K distribution and Pareto distribution, their
parameters can simulate each other within a certain range, making them more difficult to
distinguish in classification compared to other distribution types. In the VV polarization
dataset, the proportion of K distribution to Pareto distribution is approximately 5.8 times
higher than in the HH polarization dataset, indicating higher classification difficulty in VV
polarization. Therefore, under the same model conditions, HH polarization consistently
outperforms VV polarization in all performance metrics. However, MT1DCNN-NT signifi-
cantly reduces this gap, reducing the F1 score difference between HH and VV polarization
from about 2% to about 0.5% compared to DNN7-AF.

Tables 8 and 9 provide a more detailed display of the F1 scores for the four distribution
types across different models. In HH polarization mode, K distribution data are sparse,
resulting in consistently lower F1 scores compared to other distributions. In VV polarization
mode, despite the K distribution having more data than the Log-normal and Weibull
distributions, the F1 scores of the DNN7 and DNN-AF models for K distribution remain
the lowest. However, our proposed 1D CNN provides a deeper understanding of the
characteristics of the four distributions. The F1 score for HH-polarized sea clutter K
distribution improved by approximately 10%, a significant increase compared to other
distributions. In VV polarization mode, this metric increased by about 6%, surpassing
both the Log-normal and Weibull distributions, with the distribution with the fewest data
(Log-normal distribution) also showing a considerable improvement.

Table 8. Comparison of F1 scores across various models for each distribution under HH polarization.

Models Log-Normal Weibull K Pareto

DNN7 93.42% 88.88% 78.17% 96.23%
DNN-AF 94.35% 93.61% 79.72% 97.72%

MT1DCNN-NT 96.31% 95.36% 90.02% 98.67%
MT1DCNN 96.57% 95.62% 89.03% 98.72%
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Table 9. Comparison of F1 scores across various models for each distribution under VV polarization.

Models Log-Normal Weibull K Pareto

DNN7 90.26% 91.62% 89.73% 94.84%
DNN-AF 91.63% 92.70% 90.45% 95.33%

MT1DCNN-NT 95.23% 94.90% 96.40% 97.89%
MT1DCNN 94.59% 94.56% 96.42% 97.81%

These results indicate that, compared to fully connected networks, 1D CNNs can
more effectively extract information from long-sequence features, even in the presence of
imbalanced samples, thereby learning deeper differences between different distributions.

Furthermore, task assistance also plays a crucial role. Despite MT1DCNN not achiev-
ing the highest F1 score on the VV polarization test set, as observed from Figures 7 and 8,
after basic model training, MT1DCNN and MT1DCN-NT showed comparable performance
in classification tasks, suggesting that they reach similar levels. However, in parameter
prediction tasks, MT1DCNN consistently outperforms MT1DCN-NT, with an increase in
MAE of approximately 0.03 for HH polarization radar sea clutter amplitude distribution
parameters, and approximately 0.05 for VV polarization. To further investigate the specific
performance of task assistance, these two parameters were separately analyzed, as shown
in Tables 10 and 11.

Table 10. Comparison of sea clutter amplitude distribution parameter prediction performance among
models under HH polarization.

Parameters Models MAE RMSE R2

Shape

DNN7 0.468 1.551 0.714
DNN7-AF 0.280 1.161 0.840

MT1DCNN-NT 0.188 1.032 0.873
MT1DCNN 0.149 1.010 0.880

Scale

DNN7 0.069 0.350 0.729
DNN7-AF 0.057 0.340 0.745

MT1DCNN-NT 0.053 0.322 0.771
MT1DCNN 0.035 0.305 0.796

Table 11. Comparison of sea clutter amplitude distribution parameter prediction performance among
models under VV polarization.

Parameters Models MAE RMSE R2

Shape

DNN7 0.515 1.645 0.796
DNN7-AF 0.418 1.544 0.821

MT1DCNN-NT 0.272 1.337 0.865
MT1DCNN 0.239 1.369 0.862

Scale

DNN7 0.144 0.979 0.200
DNN7-AF 0.135 0.973 0.211

MT1DCNN-NT 0.132 0.985 0.192
MT1DCNN 0.068 0.647 0.658

As the sea clutter amplitude characteristics vary, the shape parameters of the K distri-
bution and Pareto distribution exhibit consistent trends, while their scale parameters show
opposite trends. Specifically, the shape parameter of the K distribution increases alongside
its scale parameter, indicating a certain linear relationship between them. In contrast, the
scale parameter of the Pareto distribution decreases as the shape parameter increases, with
the reduction rate gradually diminishing, demonstrating a nonlinear relationship.

Therefore, predicting parameters for both the K distribution and Pareto distribution
poses significant challenges. This is also why, as shown in Table 11, the prediction perfor-
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mance of scale parameters in the VV-polarized sea clutter amplitude parameter prediction
task is relatively poorer. Under these challenging conditions, compared to other models,
MT1DCNN achieves an approximately 0.45 increase in R2 value for scale parameter predic-
tion, representing an improvement of more than 200%. This underscores the significant
role of task assistance methods in enhancing the accuracy of scale parameter predictions,
while improvements in shape parameter predictions are equally notable.

5. Discussion

This study departed from the traditional method of obtaining experimental data from
simulated data and instead extracted a dataset for training purposes from actual radar
measurement data. Despite its similarity to real-world scenarios, this approach faces several
imbalances among the collected data samples: firstly, there is an imbalance in the quantities
of samples among the four distribution types; secondly, even within the same distribution
type, the density of parameter values varies across different ranges. Furthermore, although
the MLE method offers high accuracy in parameter estimation, it involves significant
computational complexity and does not yield closed-form solutions when dealing with K
distribution and Pareto distribution.

In Section 4.1, a crucial measure was implemented by setting upper limits on the shape
parameters of the K distribution and Pareto distribution. This decision was motivated by
concerns that outliers could potentially bias the model training. The effectiveness of this
measure was evident in subsequent analyses, as particularly highlighted in Table 11, where
the MT1DCNN model achieved the lowest MAE of 0.239 for predicting VV-polarized sea
clutter amplitude shape parameters compared to other models, albeit with slightly higher
RMSE than the MT1DCNN-NT model. This discrepancy arises because RMSE is more
sensitive to extreme errors, whereas MAE remains relatively robust and is less affected by
individual extreme values. This phenomenon aligns with the higher data density observed
in Figure 3d for VV-polarized sea clutter Pareto distribution shape parameters in the higher
numerical range.

In real marine environments, variations in sea clutter amplitude characteristics are
primarily concentrated within lower ranges of shape parameters. Even slight adjustments
in these parameters within this range can significantly alter the probability density dis-
tribution of sea clutter amplitudes. Conversely, as shape parameters increase to higher
numerical ranges, such as in the K and Pareto distributions, significant fluctuations in
shape parameters yield relatively moderate changes in the probability density distribution
of sea clutter amplitudes, indicating a weakened influence of shape parameter changes
within this range. Therefore, a model capable of providing more accurate predictions in re-
gions with smaller shape parameters is particularly important. Although the MT1DCNN’s
predictions in the higher value range may not be as precise as in the lower value range (as
reflected by a higher RMSE), in the region where the characteristics of sea clutter amplitude
vary the most actively—namely, the region with lower shape parameters—the MT1DCNN
demonstrates its position as the optimal model with the lowest MAE. This also reflects the
robust predictive capability of the MT1DCNN model when handling complex data.

In future work, we plan to adopt a more targeted approach by selecting the optimal
parameter estimation method for each specific distribution, rather than relying on a single
method. Additionally, we aim to reduce the number of parameters while refining them to
maintain the model’s prediction accuracy and enhance the real-time performance of the
radar system.

6. Conclusions

In this study, a series of features, including the PDF, CCDF, and several statistical
features, were extracted from the raw sea clutter data for the prediction of sea clutter
amplitude distribution types and parameters. Additionally, a new criterion, the TEIC,
was proposed to discriminate the optimal fitting distribution of sea clutter. Based on this
criterion, actual sea clutter data were annotated for training deep learning networks. The
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MT1DCNN model was also introduced to jointly predict the types of sea clutter amplitude
distributions (Log-normal, Weibull, K, and Pareto distribution) and their corresponding
parameters (shape and scale parameters). Furthermore, considering that the description of
sea clutter amplitude distribution characteristics depends on both distribution type and
parameters, a task assistance mechanism was utilized to transfer the results of the classifi-
cation tasks to the parameter prediction tasks for more accurate prediction of amplitude
distribution parameters. The experimental results show that the prediction accuracy of
sea clutter amplitude distribution types and parameters under HH and VV polarization
was improved to some extent. Compared to the baseline method, the F1 score for the
HH polarization radar sea clutter amplitude distribution type increased by 3.75%, and the
RMSE decreased by 0.379; the F1 score under VV polarization increased by 3.93%, and
the RMSE decreased by 0.283. These results indicate that this method exhibits optimal
performance in predicting sea clutter amplitude characteristics under complex marine
conditions, providing technical support for radar target detection. In the future, integrating
data from different periods and regions, or combining radar data with other types of remote
sensing data, such as optical satellite images and SAR images, could further enhance the
classification accuracy and expand the application scope of this method.
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