NDVI or PPI: A (Quick) Comparison for Vegetation Dynamics Monitoring in Mountainous Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology and Implementation
2.2.1. Satellite Data Access and Processing
2.2.2. Vegetation Cover
2.2.3. Vegetation Indices
2.2.4. PPI and NDVI Time-Series for Different Vegetation Classes
2.2.5. Seasonality Parameters
3. Results
3.1. Vegetation Cover Map
3.2. Vegetation Indices Time-Series
3.3. Time-Series: By Vegetation Class
3.4. Seasonality Parameters Retrieval
4. Discussion
4.1. Time-Series of the PPI and NDVI in Mountainous Areas for Different Vegetation Types
4.2. Seasonality Parameters Retrieval
4.3. Limitations
4.4. Contributions and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beniston, M.; Farinotti, D.; Stoffel, M.; Andreassen, L.M.; Coppola, E.; Eckert, N.; Fantini, A.; Giacona, F.; Hauck, C.; Huss, M.; et al. The European Mountain Cryosphere: A Review of Its Current State, Trends, and Future Challenges. Cryosphere 2018, 12, 759–794. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st Century Climate Change in the European Alps—A Review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Geneva, Switzerland, 2021; Volume 2, p. 2391. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 17 August 2023).
- Berner, L.T.; Massey, R.; Jantz, P.; Forbes, B.C.; Macias-Fauria, M.; Myers-Smith, I.; Kumpula, T.; Gauthier, G.; Andreu-Hayles, L.; Gaglioti, B.V.; et al. Summer Warming Explains Widespread but Not Uniform Greening in the Arctic Tundra Biome. Nat. Commun. 2020, 11, 4621. [Google Scholar] [CrossRef]
- Corona-Lozada, M.C.; Morin, S.; Choler, P. Drought Offsets the Positive Effect of Summer Heat Waves on the Canopy Greenness of Mountain Grasslands. Agric. For. Meteorol. 2019, 276–277, 107617. [Google Scholar] [CrossRef]
- Francon, L.; Corona, C.; Roussel, E.; Lopez Saez, J.; Stoffel, M. Warm Summers and Moderate Winter Precipitation Boost Rhododendron Ferrugineum L. Growth in the Taillefer Massif (French Alps). Sci. Total Environ. 2017, 586, 1020–1031. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-59537-1. [Google Scholar]
- Choler, P.; Bayle, A.; Carlson, B.Z.; Randin, C.; Filippa, G.; Cremonese, E. The Tempo of Greening in the European Alps: Spatial Variations on a Common Theme. Glob. Change Biol. 2021, 27, 5614–5628. [Google Scholar] [CrossRef]
- Francon, L.; Corona, C.; Till-Bottraud, I.; Choler, P.; Carlson, B.Z.; Charrier, G.; Améglio, T.; Morin, S.; Eckert, N.; Roussel, E.; et al. Assessing the Effects of Earlier Snow Melt-out on Alpine Shrub Growth: The Sooner the Better? Ecol. Indic. 2020, 115, 106455. [Google Scholar] [CrossRef]
- Wipf, S.; Stoeckli, V.; Bebi, P. Winter Climate Change in Alpine Tundra: Plant Responses to Changes in Snow Depth and Snowmelt Timing. Clim. Chang. 2009, 94, 105–121. [Google Scholar] [CrossRef]
- Carlson, B.Z.; Corona, M.C.; Dentant, C.; Bonet, R.; Thuiller, W.; Choler, P. Observed Long-Term Greening of Alpine Vegetation—A Case Study in the French Alps. Environ. Res. Lett. 2017, 12, 114006. [Google Scholar] [CrossRef]
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Benito Alonso, J.L.; Coldea, G.; Dick, J.; Erschbamer, B.; Fernández Calzado, M.R.; et al. Continent-Wide Response of Mountain Vegetation to Climate Change. Nat. Clim. Chang. 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Steinbauer, M.J.; Grytnes, J.-A.; Jurasinski, G.; Kulonen, A.; Lenoir, J.; Pauli, H.; Rixen, C.; Winkler, M.; Bardy-Durchhalter, M.; Barni, E.; et al. Accelerated Increase in Plant Species Richness on Mountain Summits Is Linked to Warming. Nature 2018, 556, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Anthelme, F.; Dangles, O. Plant–Plant Interactions in Tropical Alpine Environments. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 363–372. [Google Scholar] [CrossRef]
- Boscutti, F.; Casolo, V.; Beraldo, P.; Braidot, E.; Zancani, M.; Rixen, C. Shrub Growth and Plant Diversity along an Elevation Gradient: Evidence of Indirect Effects of Climate on Alpine Ecosystems. PLoS ONE 2018, 13, e0196653. [Google Scholar] [CrossRef] [PubMed]
- Rogora, M.; Frate, L.; Carranza, M.L.; Freppaz, M.; Stanisci, A.; Bertani, I.; Bottarin, R.; Brambilla, A.; Canullo, R.; Carbognani, M.; et al. Assessment of Climate Change Effects on Mountain Ecosystems through a Cross-Site Analysis in the Alps and Apennines. Sci. Total Environ. 2018, 624, 1429–1442. [Google Scholar] [CrossRef]
- Meusburger, K.; Konz, N.; Schaub, M.; Alewell, C. Soil Erosion Modelled with USLE and PESERA Using QuickBird Derived Vegetation Parameters in an Alpine Catchment. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 208–215. [Google Scholar] [CrossRef]
- Ameztegui, A.; Coll, L.; Brotons, L.; Ninot, J.M. Land-Use Legacies Rather than Climate Change Are Driving the Recent Upward Shift of the Mountain Tree Line in the Pyrenees. Glob. Ecol. Biogeogr. 2016, 25, 263–273. [Google Scholar] [CrossRef]
- Vorkauf, M.; Kahmen, A.; Körner, C.; Hiltbrunner, E. Flowering Phenology in Alpine Grassland Strongly Responds to Shifts in Snowmelt but Weakly to Summer Drought. Alp Bot. 2021, 131, 73–88. [Google Scholar] [CrossRef]
- Tang, J.; Körner, C.; Muraoka, H.; Piao, S.; Shen, M.; Thackeray, S.J.; Yang, X. Emerging Opportunities and Challenges in Phenology: A Review. Ecosphere 2016, 7, e01436. [Google Scholar] [CrossRef]
- Asam, S.; Callegari, M.; Matiu, M.; Fiore, G.; De Gregorio, L.; Jacob, A.; Menzel, A.; Zebisch, M.; Notarnicola, C. Relationship between Spatiotemporal Variations of Climate, Snow Cover and Plant Phenology over the Alps—An Earth Observation-Based Analysis. Remote Sens. 2018, 10, 1757. [Google Scholar] [CrossRef]
- Lamprecht, A.; Semenchuk, P.R.; Steinbauer, K.; Winkler, M.; Pauli, H. Climate Change Leads to Accelerated Transformation of High-Elevation Vegetation in the Central Alps. New Phytol. 2018, 220, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, C.; Ellenberg, H. Vegetation of the Alpine and Nival Belts. In Ecology of Central European Non-Forest Vegetation: Coastal to Alpine, Natural to Man-Made Habitats: Vegetation Ecology of Central Europe, Volume II; Leuschner, C., Ellenberg, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 271–431. ISBN 978-3-319-43048-5. [Google Scholar]
- Filippa, G.; Cremonese, E.; Galvagno, M.; Isabellon, M.; Bayle, A.; Choler, P.; Carlson, B.Z.; Gabellani, S.; Morra di Cella, U.; Migliavacca, M. Climatic Drivers of Greening Trends in the Alps. Remote Sens. 2019, 11, 2527. [Google Scholar] [CrossRef]
- Keenan, T.F.; Riley, W.J. Greening of the Land Surface in the World’s Cold Regions Consistent with Recent Warming. Nat. Clim. Chang. 2018, 8, 825–828. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.A.; et al. Complexity Revealed in the Greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef]
- Obuchowicz, C.; Poussin, C.; Giuliani, G. Change in Observed Long-Term Greening across Switzerland—Evidence from a Three Decades NDVI Time-Series and Its Relationship with Climate and Land Cover Factors. Big Earth Data 2023, 8, 1–32. [Google Scholar] [CrossRef]
- Piccinelli, S.; Francon, L.; Corona, C.; Stoffel, M.; Slamova, L.; Cannone, N. Vessels in a Rhododendron ferrugineum (L.) Population Do Not Trace Temperature Anymore at the Alpine Shrubline. Front. Plant Sci. 2023, 13, 1023384. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, G.; Rodila, D.; Külling, N.; Maggini, R.; Lehmann, A. Downscaling Switzerland Land Use/Land Cover Data Using Nearest Neighbors and an Expert System. Land 2022, 11, 615. [Google Scholar] [CrossRef]
- Thomas, I.N.; Giuliani, G. Exploring Switzerland’s Land Cover Change Dynamics Using a National Statistical Survey. Land 2023, 12, 1386. [Google Scholar] [CrossRef]
- Giuliani, G. Time-First Approach for Land Cover Mapping Using Big Earth Observation Data Time-Series in a Data Cube—A Case Study from the Lake Geneva Region (Switzerland). Big Earth Data 2024, 8, 435–466. [Google Scholar] [CrossRef]
- Chatenoux, B.; Richard, J.-P.; Small, D.; Roeoesli, C.; Wingate, V.; Poussin, C.; Rodila, D.; Peduzzi, P.; Steinmeier, C.; Ginzler, C.; et al. The Swiss Data Cube, Analysis Ready Data Archive Using Earth Observations of Switzerland. Sci. Data 2021, 8, 295. [Google Scholar] [CrossRef]
- Smets, B.; Cai, Z.; Eklundh, L.; Tian, F.; Bonte, K.; Van Hoost, R.; Van De Kerchove, R.; Adriaensen, S.; De Roo, B.; Jacobs, T.; et al. High Resolution Vegetation Phenology and Productivity (HR-VPP), Daily Raw Vegetation Indices; Copernicus Land Monitoring Service (CLMS), European Environment Agency: Copenhagen, Denmark, 2023; p. 39.
- Xie, Y.; Sha, Z.; Yu, M. Remote Sensing Imagery in Vegetation Mapping: A Review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Jönsson, A.M.; Eklundh, L.; Hellström, M.; Bärring, L.; Jönsson, P. Annual Changes in MODIS Vegetation Indices of Swedish Coniferous Forests in Relation to Snow Dynamics and Tree Phenology. Remote Sens. Environ. 2010, 114, 2719–2730. [Google Scholar] [CrossRef]
- Stanimirova, R.; Cai, Z.; Melaas, E.K.; Gray, J.M.; Eklundh, L.; Jönsson, P.; Friedl, M.A. An Empirical Assessment of the MODIS Land Cover Dynamics and TIMESAT Land Surface Phenology Algorithms. Remote Sens. 2019, 11, 2201. [Google Scholar] [CrossRef]
- Poussin, C.; Massot, A.; Ginzler, C.; Weber, D.; Chatenoux, B.; Lacroix, P.; Piller, T.; Nguyen, L.; Giuliani, G. Drying Conditions in Switzerland—Indication from a 35-Year Landsat Time-Series Analysis of Vegetation Water Content Estimates to Support SDGs. Big Earth Data 2021, 5, 445–475. [Google Scholar] [CrossRef]
- Tian, F.; Cai, Z.; Jin, H.; Hufkens, K.; Scheifinger, H.; Tagesson, T.; Smets, B.; Van Hoolst, R.; Bonte, K.; Ivits, E.; et al. Calibrating Vegetation Phenology from Sentinel-2 Using Eddy Covariance, PhenoCam, and PEP725 Networks across Europe. Remote Sens. Environ. 2021, 260, 112456. [Google Scholar] [CrossRef]
- Jin, H.; Eklundh, L. A Physically Based Vegetation Index for Improved Monitoring of Plant Phenology. Remote Sens. Environ. 2014, 152, 512–525. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote Sensing of Leaf Water Content in the near Infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Jin, H.; Jönsson, A.M.; Bolmgren, K.; Langvall, O.; Eklundh, L. Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index. Remote Sens. Environ. 2017, 198, 203–212. [Google Scholar] [CrossRef]
- Abdi, A.M.; Boke-Olén, N.; Jin, H.; Eklundh, L.; Tagesson, T.; Lehsten, V.; Ardö, J. First Assessment of the Plant Phenology Index (PPI) for Estimating Gross Primary Productivity in African Semi-Arid Ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 249–260. [Google Scholar] [CrossRef]
- Dengler, J.; Widmer, S.; Staubli, E.; Babbi, M.; Gehler, J.; Hepenstrick, D.; Bergamini, A.; Billeter, R.; Boch, S.; Rohrer, S.; et al. Dry Grasslands of the Central Valleys of the Alps from a European Perspective: The Example of Ausserberg (Valais, Switzerland). Hacquetia 2019, 18, 155–177. [Google Scholar] [CrossRef]
- Rigling, A.; Bigler, C.; Eilmann, B.; Feldmeyer-Christe, E.; Gimmi, U.; Ginzler, C.; Graf, U.; Mayer, P.; Vacchiano, G.; Weber, P.; et al. Driving Factors of a Vegetation Shift from Scots Pine to Pubescent Oak in Dry Alpine Forests. Glob. Change Biol. 2013, 19, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Bayle, A.; Carlson, B.Z.; Nicoud, B.; Francon, L.; Corona, C.; Lavorel, S.; Choler, P. Uncovering the distribution and limiting factors of Ericaceae-dominated shrublands in the French Alps. Front. Biogeogr. 2024, 6, e61746. [Google Scholar] [CrossRef]
- Bayle, A.; Carlson, B.Z.; Thierion, V.; Isenmann, M.; Choler, P. Improved Mapping of Mountain Shrublands Using the Sentinel-2 Red-Edge Band. Remote Sens. 2019, 11, 2807. [Google Scholar] [CrossRef]
- Carlson, B. Understanding Spatial Patterns of Diversity and Productivity in Alpine Plant Communities: Application of High-Resolution Imagery in the French Alps. Ph.D. Thesis, Université Grenoble Alpes, Grenoble, France, 2016. [Google Scholar]
- Smets, B.; Cai, Z.; Eklundh, L.; Tian, F.; Bonte, K.; Van Hoost, R.; Van De Kerchove, R.; Adriaensen, S.; De Roo, B.; Jacobs, T.; et al. High Resolution Vegetation Phenology and Productivity (HR-VPP), Daily Raw Vegetation Indices: Algorithm Theoretical Base Document (ATBD); Copernicus Land Monitoring Service (CLMS), European Environment Agency: Copenhagen, Denmark, 2023; p. 75.
- Eklundh, L.; Jönsson, P. TIMESAT for Processing Time-Series Data from Satellite Sensors for Land Surface Monitoring. In Multitemporal Remote Sensing; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-47035-1. [Google Scholar]
- Eklundh, L.; Jönsson, P. TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics. In Remote Sensing Time Series: Revealing Land Surface Dynamics; Kuenzer, C., Dech, S., Wagner, W., Eds.; Remote Sensing and Digital Image Processing; Springer International Publishing: Cham, Switzerland, 2015; pp. 141–158. ISBN 978-3-319-15967-6. [Google Scholar]
- Hijmans, R.J.; Bivand, R.; Dyba, K.; Pebesma, E.; Sumner, M.D. Terra [R Package]. Available online: https://cran.r-project.org/web/packages/terra/index.html (accessed on 2 October 2023).
- Karkauskaite, P.; Tagesson, T.; Fensholt, R. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for Start-of-Season Trend Analysis of the Northern Hemisphere Boreal Zone. Remote Sens. 2017, 9, 485. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples)†. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Wissler, C. The Spearman Correlation Formula. Science 1905, 22, 309–311. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, International Society for Optics and Photonics, Warsaw, Poland, 4 October 2017; Volume 10427, p. 1042704. [Google Scholar]
- Giuliani, G.; Chatenoux, B.; Bono, A.D.; Rodila, D.; Richard, J.-P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: Lessons Learned from the Swiss Data Cube (SDC) on Generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 1–18. [Google Scholar] [CrossRef]
- Giuliani, G.; Camara, G.; Killough, B.; Minchin, S. Earth Observation Open Science: Enhancing Reproducible Science Using Data Cubes. Data 2019, 4, 147. [Google Scholar] [CrossRef]
- Sudmanns, M.; Augustin, H.; Killough, B.; Giuliani, G.; Tiede, D.; Leith, A.; Yuan, F.; Lewis, A. Think Global, Cube Local: An Earth Observation Data Cube’s Contribution to the Digital Earth Vision. Big Earth Data 2022, 7, 831–859. [Google Scholar] [CrossRef]
- Dhu, T.; Giuliani, G.; Juárez, J.; Kavvada, A.; Killough, B.; Merodio, P.; Minchin, S.; Ramage, S. National Open Data Cubes and Their Contribution to Country-Level Development Policies and Practices. Data 2019, 4, 144. [Google Scholar] [CrossRef]
- Simoes, R.; Camara, G.; Queiroz, G.; Souza, F.; Andrade, P.R.; Santos, L.; Carvalho, A.; Ferreira, K. Satellite Image Time Series Analysis for Big Earth Observation Data. Remote Sens. 2021, 13, 2428. [Google Scholar] [CrossRef]
- Papale, D. Ideas and Perspectives: Enhancing the Impact of the FLUXNET Network of Eddy Covariance Sites. Biogeosciences 2020, 17, 5587–5598. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 Dataset and the ONEFlux Processing Pipeline for Eddy Covariance Data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
Land Cover Classes | Area [km2] | Proportion [%] | Mean Altitude [m] |
---|---|---|---|
Deciduous trees | 484 | 9.3 | 1387 |
Coniferous trees | 722 | 13.8 | 1558 |
Grasslands | 1176 | 22.5 | 2093 |
Shrublands | 133 | 2.5 | 2103 |
Other | 2713 | 51.9 | 2444 |
LC Classes | PPI | NDVI | Difference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Deciduous trees | Year | SOS | EOS | Length | POS | SOS | EOS | Length | POS | SOS | EOS | Length | POS |
2018 | 113 | 303 | 190 | 183 | 115 | 310 | 195 | 214 | −2 | −7 | −5 | −31 | |
2019 | 125 | 309 | 184 | 198 | 118 | 297 | 179 | 218 | 7 | 12 | 5 | −20 | |
2020 | 110 | 295 | 185 | 184 | 109 | 291 | 182 | 197 | 1 | 4 | 3 | −13 | |
2021 | 129 | 306 | 177 | 196 | 121 | 308 | 187 | 232 | 8 | −2 | −10 | −36 | |
2022 | 120 | 301 | 181 | 181 | 127 | 315 | 188 | 223 | −7 | −14 | −7 | −42 | |
Mean | 119.4 | 302.8 | 183.4 | 188.4 | 118 | 304.2 | 186.2 | 216.8 | 1.4 | −1.4 | −2.8 | −28.4 | |
Coniferous trees | Year | SOS | EOS | Length | POS | SOS | EOS | Length | POS | SOS | EOS | Length | POS |
2018 | 121 | 291 | 170 | 188 | 128 | 318 | 190 | 233 | −7 | −27 | −20 | −45 | |
2019 | 129 | 307 | 178 | 202 | 92 | 292 | 200 | 221 | 37 | 15 | −22 | −19 | |
2020 | 107 | 300 | 193 | 189 | 88 | 317 | 229 | 205 | 19 | −17 | −36 | −16 | |
2021 | 124 | 299 | 175 | 198 | 97 | 311 | 214 | 232 | 27 | −12 | −39 | −34 | |
2022 | 126 | 299 | 173 | 186 | 38 | 319 | 281 | 216 | 88 | −20 | −108 | −30 | |
Mean | 121.4 | 299.2 | 177.8 | 192.6 | 88.6 | 311.4 | 222.8 | 221.4 | 32.8 | −12.2 | −45 | −28.8 | |
Grasslands | Year | SOS | EOS | Length | POS | SOS | EOS | Length | POS | SOS | EOS | Length | POS |
2018 | 103 | 303 | 200 | 190 | 111 | 309 | 198 | 217 | −8 | −6 | 2 | −27 | |
2019 | 104 | 303 | 199 | 203 | 101 | 297 | 196 | 218 | 3 | 6 | 3 | −15 | |
2020 | 99 | 285 | 186 | 192 | 91 | 301 | 210 | 200 | 8 | −16 | −24 | −8 | |
2021 | 96 | 301 | 205 | 203 | 88 | 307 | 219 | 216 | 8 | −6 | −14 | −13 | |
2022 | 108 | 291 | 183 | 184 | 112 | 318 | 206 | 217 | −4 | −27 | −23 | −33 | |
Mean | 102 | 296.6 | 194.6 | 194.4 | 100.6 | 306.4 | 205.8 | 213.6 | 1.4 | −9.8 | −11.2 | −19.2 | |
Shrublands | Year | SOS | EOS | Length | POS | SOS | EOS | Length | POS | SOS | EOS | Length | POS |
2018 | 147 | 294 | 147 | 203 | 144 | 301 | 157 | 226 | 3 | −7 | −10 | −23 | |
2019 | 158 | 295 | 137 | 212 | 157 | 299 | 142 | 228 | 1 | −4 | −5 | −16 | |
2020 | 138 | 288 | 150 | 204 | 120 | 309 | 189 | 214 | 18 | −21 | −39 | −10 | |
2021 | 159 | 291 | 132 | 217 | 158 | 296 | 138 | 230 | 1 | −5 | −6 | −13 | |
2022 | 145 | 285 | 140 | 195 | 147 | 307 | 160 | 223 | −2 | −22 | −20 | −28 | |
Mean | 149.4 | 290.6 | 141.2 | 206.2 | 145.2 | 302.4 | 157.2 | 224.2 | 4.2 | −11.8 | −16 | −18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charrière, D.; Francon, L.; Giuliani, G. NDVI or PPI: A (Quick) Comparison for Vegetation Dynamics Monitoring in Mountainous Area. Remote Sens. 2024, 16, 3894. https://doi.org/10.3390/rs16203894
Charrière D, Francon L, Giuliani G. NDVI or PPI: A (Quick) Comparison for Vegetation Dynamics Monitoring in Mountainous Area. Remote Sensing. 2024; 16(20):3894. https://doi.org/10.3390/rs16203894
Chicago/Turabian StyleCharrière, Dimitri, Loïc Francon, and Gregory Giuliani. 2024. "NDVI or PPI: A (Quick) Comparison for Vegetation Dynamics Monitoring in Mountainous Area" Remote Sensing 16, no. 20: 3894. https://doi.org/10.3390/rs16203894
APA StyleCharrière, D., Francon, L., & Giuliani, G. (2024). NDVI or PPI: A (Quick) Comparison for Vegetation Dynamics Monitoring in Mountainous Area. Remote Sensing, 16(20), 3894. https://doi.org/10.3390/rs16203894