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Abstract: Cold ecosystems are experiencing a warming rate that is twice as fast as the global average
and are particularly vulnerable to the consequences of climate change. In mountain ecosystems,
it is particularly important to monitor vegetation to understand ecosystem dynamics, biodiversity
conservation, and the resilience of these fragile ecosystems to global change. Hence, we used satellite
data acquired by Sentinel-2 to perform a comparative assessment of the Normalized Difference
Vegetation Index (NDVI) and the Plant Phenology Index (PPI) in mountainous regions (canton
of Valais-Switzerland in the European Alps) for monitoring vegetation dynamics of four types:
deciduous trees, coniferous trees, grasslands, and shrublands. Results indicate that the NDVI is
particularly noisy in the seasonal cycle at the beginning/end of the snow season and for coniferous
trees, which is consistent with its known snow sensitivity issue and difficulties in retrieving signal
variation in dense and evergreen vegetation. The PPI seems to deal with these problems but tends
to overestimate peak values, which could be attributed to its logarithmic formula and derived high
sensitivity to variations in near-infrared (NIR) and red reflectance during the peak growing season.
Concerning seasonal parameters retrieval, we find close concordance in the results for the start of
season (SOS) and end of season (EOS) between indices, except for coniferous trees. Peak of season
(POS) results exhibit important differences between the indices. Our findings suggest that PPI is
a robust remote sensed index for vegetation monitoring in seasonal snow-covered and complex
mountain environments.

Keywords: NDVI; PPI; grassland; shrubland; mountains; Sentinel-2; phenology

1. Introduction

Cold ecosystems (i.e., arctic and alpine regions) are affected by a warming rate at least
twice higher than the global average and, therefore, are particularly sensitive to climate
change impacts [1–3]. Temperature [4–7] and snow cover duration [7–10] are known as
major limiting factors for vegetation growth in these environments, and both are influenced
by climate change.

Monitoring vegetation productivity and phenology in mountainous areas is essential
for understanding ecosystem dynamics, biodiversity conservation, and the resilience of
these fragile ecosystems to global change [11–14]. Vegetation plays a key role in mountain
ecosystems by providing important services such as habitat for a wide range of plant
and animal species, grazing resources for livestock, regulating water and nutrient cycles
(e.g., quality and quantity), stabilizing soil against erosion or offering recreational op-
portunities for tourism and outdoor activities [15–18]. However, these ecosystems are
particularly vulnerable to climate or land-use/cover (LUC) change [8,19]. Monitoring
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changes in vegetation cover, species composition, and ecosystem structure over time can
help identify emerging threats and guide effective land management strategies, conserva-
tion measures, and restoration efforts to maintain the ecological integrity and functioning
of mountain landscapes [7].

In the Alps, the vegetation seasonal phenological cycle occurs during the snow-free
period [20]. Vegetation phenology refers to the study of recurring events in the life cy-
cle of plants (i.e., budding, flowering, senescence) reflecting the dynamics of terrestrial
ecosystems [21]. Vegetation phenology is particularly sensitive to climate change as well as
land-cover and land-use change [21], inducing various consequences such as phenological
shifts (e.g., change in start, duration, end of season) or change in vegetation productiv-
ity [6,8,21,22], strongly affecting mountainous ecosystems [12,23]. As mentioned by [24],
the length of the growing period is one of the main determining factors of productivity.
In addition, a global vegetation greening trend has been identified since the 1980s [25,26].
In the cold areas, the greening is consistent with the recent temperature increase [26]. Al-
though this trend is well-documented in the Arctic [4,27], there are only a few studies in the
European Alps [8,11,28]. However, there is an incomplete understanding of the mechanistic
links between climate change and these changes in vegetation dynamics [27,29].

Recent technological advancements, in particular remote sensing, offer new possibil-
ities for LUC change [30–33] and vegetation dynamics monitoring, particularly in wide
and complex ecosystems [21,34]. Remote sensing and derived vegetation indices offer the
opportunity to observe vegetation dynamics over large areas and long periods [5,34,35]. De-
pending on their spatial, temporal, and spectral resolutions, different sensors may provide
various opportunities for vegetation monitoring [35]. For global, continental, and national
mapping, the MODerate resolution Imaging Spectroradiometer (MODIS) is extensively
used [8,36,37] due to its 1 to 2 days temporal resolution and 250 to 1000 m spatial resolution
(depending on the spectral band). Landsat satellites are widely used on a regional to na-
tional scale with a spatial resolution of 30 m and a temporal resolution of 16 days [4,11,38].
More recently, Sentinel-2 satellite constellations and their multispectral products offer new
observation possibilities for continental to local mapping with a spatial resolution of 10 m
and a revisit time of 5 days [39], providing new capabilities for more detailed ecosystems
monitoring, such as mountain vegetation dynamics or phenological metrics retrieval at
intra- and inter-annual time steps [34].

Among the different satellite-derived vegetation indices, such as the Enhanced Vegeta-
tion Index (EVI), the Green Normalized Difference Vegetation Index (GNDVI) the kernel
Normalized Difference Vegetation Index (kNDVI), the Chlorophyll Vegetation Index (CVI,)
or the Plant Phenology Index (PPI), the Normalized Difference Vegetation Index (NDVI) is
the most widely used index for assessing vegetation dynamics, specifically in mountain
environments [8,11,35,39–41]. NDVI measures the difference between near-infrared (NIR)
and red light reflectance, providing information on vegetation greenness and photosyn-
thetic activity. It is widely used to monitor vegetation density, health, and productivity
over large areas. However, it suffers from various limitations for vegetation state retrieval,
particularly in seasonal snow-covered environments and coniferous forests [36]. The Plant
Phenology Index (PPI) has been recently developed to overcome these limitations and
improve plant phenology monitoring, notably in Arctic areas, and has shown promising
performances [40,42]. Unlike the NDVI, the PPI is physically based and derived from Beer’s
law, adapted for canopy reflectance. It has an almost linear relationship with the Leaf Area
Index (LAI), making it a powerful proxy for phenological stage identification through
remote sensing [40]. Recent studies have further explored the potential of PPI beyond
Arctic regions, offering new insights into vegetation monitoring in arid ecosystems [43]
and across Europe [39]. To our knowledge, the PPI performance has not been assessed
specifically for complex mountainous environments.

As in Arctic environments, mountain areas, and more specifically, the European Alps,
face a seasonality marked by the presence of snow and low temperatures. Therefore, the
PPI could provide new insights for coping with the limitations of NDVI and enhance the
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monitoring of vegetation in complex environments such as mountain areas. Considering
these factors, the objectives of this paper are to investigate (1) how PPI compares to NDVI
in retrieving phenological metrics in areas characterized by seasonal snow and coniferous
forests, such as mountainous regions, and (2) whether PPI can address some of the known
limitations of NDVI for monitoring vegetation dynamics in such environments. These
aspects will be examined through an initial comparative assessment of phenological metrics
derived from PPI and NDVI for monitoring vegetation dynamics across four vegetation
types—deciduous trees, coniferous trees, grasslands, and shrublands—in European alpine
ecosystems. The findings of this study may provide new perspectives on monitoring
vegetation dynamics in complex environments, potentially linking long-term regional
vegetation trends to annual phenological and growth responses to rising temperatures and
climate stress in diverse topoclimatic conditions. Ultimately, this could aid in forecasting
changes in ecosystem productivity and biodiversity.

2. Materials and Methods
2.1. Study Area

The study area is delimited through the borders of the canton of Valais in Switzerland
(Figure 1). The lowest point is at 372 m at Geneva Lake, and the highest is at 4634 m at
the Dufourspitze. The surface of the area of interest is about 5224.35 km2. The Valais en-
compasses several valleys, with the Rhône Valley being the central one. This mountainous
region is situated in the northwestern European Alps, with several peaks rising above
4000 m. This mountain range shelters the inner Rhône Valley from moist oceanic air masses,
resulting in a steep precipitation gradient from the west (around 1000 mm/year) to the east
(around 600 mm/year) [43–45]. The eastern Rhône Valley is considered one of the driest
and most continental inner alpine valleys and hosts a rich xerothermic flora [44]. Cloud
cover is generally low, while solar radiation is high [45]. As in other mountainous regions,
the Valais is therefore characterized by a high diversity of vegetation types and ecosystems
due to its diverse geographical features [7].
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2.2. Methodology and Implementation

The steps of the implemented methodology are shown in Figure 2. We used the R en-
vironment (https://www.R-project.org/ accessed on 3 August 2023) for image processing
and statistical analysis, TIMESAT 3.3 for time-series processing and phenological metrics
retrieval [46,47], and Google Earth Engine (GEE) [48] and ArcGIS pro 3.1 software for
vegetation cover mapping.
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Figure 2. General Workflow for the comparative assessment of PPI and NDVI for phenological metrics
retrieval. The Vegetation Cover map is produced using Sentinel-2 images and “High Resolution
Layers” from the Copernicus Land Monitoring Service (CLMS). This map is then used together with
pre-processed PPI and NDVI rasters to retrieve PPI and NDVI values per vegetation classes. In a
subsequent step, these values are used to process and retrieve time-series and seasonality parameters
necessary for the analysis.
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2.2.1. Satellite Data Access and Processing

Satellite data have been gathered for the vegetation cover classification and the com-
parison of PPI and NDVI over the Valais territory.

For the vegetation cover classification, we used the Forest Type (https://land.copernicus.eu/
en/products/high-resolution-layer-forest-type/forest-type-2018 accessed on 17 August 2023)
and Grassland (https://land.copernicus.eu/en/products/high-resolution-layer-grassland/
grassland-2018 accessed on 17 August 2023) high-resolution layers of the Copernicus
Land Monitoring Service (CLMS). These data have a resolution of 10 m, characterizing
broadleaf forest, coniferous forest, and grasslands. For mapping shrublands, we followed
the methodology proposed by [49], using Sentinel-2 data in the Google Earth Engine to
compute first the median of the Normalized Anthocyanin Reflectance Index (NARI) and
the Normalized Chlorophyll Reflectance Index (NCRI) for each year between 2017 and 2021
from 1 September to 1 November and then computed the median of the five years. The
detailed methodology is explained in the next section.

All PPI and NDVI Sentinel-2 scenes for the years 2018 to 2022 were downloaded
from the WEkEO platform (https://www.wekeo.eu/ accessed on 10 August 2023), cor-
responding to 4 tiles for covering the Valais region: T32TLS, T32TMS, T32TMR, T32TLR.
There are 73 observations per year at 5-day intervals, beginning on 05-01-2018, resulting in
1460 images per index, 2920 in total. In addition, for each observation date, a quality layer
(i.e., QFLAG2) was downloaded. It corresponds to a bitwise encoded status map, which
indicates if the pixel is water, land, cloud, snow, or shadow [34].

2.2.2. Vegetation Cover

Regarding the vegetation cover classification, three vegetation classes have been
extracted from the High-Resolution Layers of the CLMS: deciduous (broadleaved) and
coniferous trees and grasslands for Valais. The limits of the canton have been obtained from
the swissBOUNDARIES3D product (https://www.swisstopo.admin.ch/en/landscape-
model-swissboundaries3d accessed on 03 August 2023).

To retrieve the shrublands layer, we followed the methodology proposed by [49,50].
All available Sentinel-2 scenes over Valais for the years 2017 to 2021 from 1 September to
1 November have been extracted in GEE. Then, the Sentinel-2 cloud probability product
has been applied on every scene with a threshold of 0.65 to remove the clouds and clouds
shadows. Third, the NARI and NCRI were computed on all scenes, and a median composite
per year was generated. Finally, we computed a median of the 5 years.

The NARI is sensitive to the plant canopy anthocyanin content. Using this index,
ref. [50] developed a methodology to improve the mapping of mountain shrublands. As
they noted, shrublands are dominated in the European Alps by Ericaceae (i.e., Vaccinium
spp. and Rhododendron ferrugineum). These species have the particularity to accumulate
red anthocyanin pigments in the late autumn. This characteristic offers an opportunity to
differentiate Ericaceae shrublands from other vegetation types. Indeed, as demonstrated
by [50], their presence is often underestimated and confounded with grasslands. Therefore,
Sentinel-2 data could be useful to enhance the discrimination of shrublands using the NARI
index that is computed as follows [50]:

NARI =
1

ρ Green − 1
ρ Red−edge

1
ρ Green + 1

ρ Red−edge

(1)

where ρ Green is the reflectance in the Green band, ρ Red-edge is the reflectance of the
Red-edge band.

The NCRI is a normalized adjustment of the canopy chlorophyll content proposed
by [49]. It allows us, in complement to NARI, to discriminate forest from Ericaceae shrub-

https://land.copernicus.eu/en/products/high-resolution-layer-forest-type/forest-type-2018
https://land.copernicus.eu/en/products/high-resolution-layer-forest-type/forest-type-2018
https://land.copernicus.eu/en/products/high-resolution-layer-grassland/grassland-2018
https://land.copernicus.eu/en/products/high-resolution-layer-grassland/grassland-2018
https://www.wekeo.eu/
https://www.swisstopo.admin.ch/en/landscape-model-swissboundaries3d
https://www.swisstopo.admin.ch/en/landscape-model-swissboundaries3d


Remote Sens. 2024, 16, 3894 6 of 17

lands and grasslands. NCRI is calculated using Sentinel-2 band 5 (Red-edge) and band 7
(Red-edge 2) [49]:

NCRI =
1

ρ Red−edge −
1

ρ Red−edge2
1

ρ Red−edge +
1

ρ Red−edge2

(2)

where ρ is the reflectance in the respective Red-edge or Red-edge 2 band.
Following the results of [49], we applied a threshold of >0.325 for the NARI and a

threshold of <0.42 for the NCRI to discriminate among the Ericaceae shrublands.
The resulting shrublands layer has a resolution of 20 × 20 m. This raster layer has

been resampled and reprojected using the nearest neighbor method to correspond to
the 10 × 10 m resolution of the Copernicus High Resolution layers. It is important to
note that this methodology does not allow for the identification of non-Ericaceae ever-
green shrublands like Juniperus and, consequently, results in an incomplete mapping
of shrublands [49,50].

The final vegetation cover map was obtained by attributing the corresponding classes
to each pixel of Valais in a single raster layer.

2.2.3. Vegetation Indices

For vegetation indices images pre-processing, we first mosaicked the four tiles and
extracted the value for our region of interest for PPI, NDVI, and Quality flag (QFLAG2).
Second, following the recommendation of [34], we applied a medium filter by masking the
overlying PPI and NDVI pixel for the QFLAG2 values ranging from 4 to 2048, correspond-
ing to snow, cloud, and shadow filtering with the addition of surrounding pixels.

NDVI
As mentioned before, the NDVI is one of the most widely used remote sensing indices

for vegetation monitoring. As noted by [40], the popularity of this index is due to its
relative robustness against noise and sun-sensor geometry variations and the availability
of long-term time-series at a global scale. The NDVI is calculated following:

NDVI =
ρ NIR − ρ Red
ρ NIR + ρ Red

(3)

where ρ NIR is the reflectance in the near-infrared band and ρ Red is the reflectance
of the red band. The result is used as a proxy of the land surface greenness [8,41]: a
value of −1 indicates a water surface; a value between 0 and 0.2 corresponds to almost
non-vegetated areas; a value close to 1 represents a dense and green vegetation cover.
A healthy vegetation cover tends to have a high absorption of photosynthetically active
radiation, captured in the red band, and a low absorption of low infrared radiation, which
could induce damage to plants due to overheating [51]. This index, however, suffers
from two major limitations [40]: (1) its sensitivity to soil background (e.g., snow) and
(2) its saturation at high vegetation density. In particular, this index shows difficulties in
adequately identifying small amplitude variations, like evergreen coniferous forests [39].

PPI
Ref. [40] have developed a physically-based spectral index to characterize the pheno-

logical dynamics of vegetation: the Plant Phenology Index (PPI). This index has an almost
linear relationship with the green Leaf Area Index (LAI) and is based on the Near-Infrared
(NIR) and Red reflectance values. It follows Beer’s law, modified for canopy reflectance.
PPI has the same unit as LAI (m2·m−2) and is formulated as [39,40,42,52]:

PPI = −K ∗ ln
(

DVImax − DVI
DVImax − DVIs

)
(4)
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where DVI (Difference Vegetation Index) is the difference between NIR and Red reflectance;
DVImax is the maximum canopy DVI of a specific site; DVIs is the soil DVI. K is a gain factor
given by:

K =
1

4 ∗ (dc + 0.5 ∗ (1 − dc)/cos(θs)
*

1 + DVImax
1 − DVImax

(5)

where dc is an instantaneous diffuse fraction of solar radiation when the sun is at zenith
angle θs (obtained from the corresponding scene metadata), calculated as:

dc = 0.0336 + 0.0477/cos(θs) (6)

For further information about the PPI formulation, we refer to the reference paper of [40].

2.2.4. PPI and NDVI Time-Series for Different Vegetation Classes

As noted by [53], time-series of vegetation indices derived from satellite spectral data
are instrumental in monitoring seasonal vegetation development both within a single
season and across multiple years. To facilitate this analysis, they developed the TIMESAT
software package [46,53,54]. TIMESAT is particularly effective for analyzing satellite sensor
data time-series, enabling detailed exploration and retrieval of seasonality parameters such
as the start, peak, and end of the growing season.

To obtain the PPI and NDVI values for each vegetation class and date, we first re-
sampled the vegetation cover map using the nearest neighbor method to match the 10 m
resolution and extent of PPI and NDVI images. Subsequently, we employed the zonal
function of the terra R package [55] to extract the mean PPI and NDVI values for each
vegetation type across all observations.

To further analyze vegetation indices (VIs), we constructed time-series and fitted dou-
ble logistic functions using the TIMESAT 3.3 software [46,47]. Following the methodologies
outlined by [53] and other studies employing TIMESAT [37,56], we first removed spikes
and outliers by applying a median filter with a window size of 1.5. Next, we applied
consistent data ranges for each VI: −1 to 1 for NDVI and 0 to 3 for PPI. Given that noise in
VI data from remote sensing is typically negatively biased, we adapted the upper envelope
with a strength of 3 to reduce the influence of low data values. Finally, we set the season
parameter to 1 to fit one season per year. As [53] noted, the success of fitting functions to
time-series is as much an art as a science, relying heavily on visual examination and the
specific nature of noise and disturbances in the data.

2.2.5. Seasonality Parameters

We also used the TIMESAT software to extract seasonal parameters such as the start
of season (SOS), peak of season (POS), and end of season (EOS). This was achieved by
employing the method based on seasonal amplitude as described by [53]. Accordingly,
SOS and EOS were determined when the fitted curve reached a specific fraction of the
difference between the base level and the POS. Following the PPI calibration by [39], we
applied thresholds of 0.4 for NDVI and 0.25 for PPI to determine SOS and thresholds of 0.5
for NDVI and 0.15 for PPI to determine EOS.

3. Results
3.1. Vegetation Cover Map

The resulting vegetation cover map (Figure 3) and the derived surface and altitude
metrics (Table 1) show specific vegetation patterns for the Valais. Deciduous trees are con-
centrated in valleys at lower altitudes and correspond to a proportion of 9.3% (i.e., 484 km2)
of the entire Valais area. Coniferous trees are mainly located at higher altitudes and cover
13.8% of the canton territory, which corresponds to 722 km2. Grasslands are the most
widespread vegetation class with an 1176 km2 surface area, which is equivalent to 22.5% of
Valais. They are mainly located above the tree line, although they are also present in valleys.
Their mean altitude is above 2000 m. Shrublands are the vegetation class with the higher
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altitude mean (i.e., 2103 m). They also have the smallest surface area with a proportion of
2.5% (i.e., 133 km2) of the entire Valais. Altogether, these four vegetation classes represent
49.1% of the canton, the rest being mainly bare rocks, water, and built-up areas.
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Table 1. Vegetation classes with corresponding area, proportion of Valais territory, and altitude mean.

Land Cover Classes Area [km2] Proportion [%] Mean Altitude [m]

Deciduous trees 484 9.3 1387
Coniferous trees 722 13.8 1558

Grasslands 1176 22.5 2093
Shrublands 133 2.5 2103

Other 2713 51.9 2444

3.2. Vegetation Indices Time-Series

The raw NDVI time-series (Figure 4) are particularly noisy during the winter and
spring, especially for coniferous trees. For deciduous trees, the metrics derived from the
double logistic function indicate a mean NDVI of 0.54 over the entire period, with minimum
and maximum values of 0.22 and 0.82, respectively. Coniferous trees exhibit a mean NDVI
of 0.59, with corresponding minimum and maximum values of 0.23 and 0.80. Grasslands
show a lower mean NDVI of 0.34, with a range from 0.06 to 0.56. Shrublands have a slightly
higher mean NDVI of 0.40, with minimum and maximum values of 0.04 and 0.77. All
vegetation classes exhibit a marked seasonal cycle.

For the PPI results (Figure 5), the raw data also display noise, albeit to a lesser extent,
particularly in the winter and spring. The metrics derived from double logistic functions
show mean PPI values of 0.52 for deciduous trees, 0.35 for coniferous trees, 0.43 for grass-
lands, and 0.41 for shrublands. The paired minimum and maximum values (min/max) are
0.01/1.50 for deciduous trees, 0.06/0.96 for coniferous trees, 0.01/1.13 for grasslands, and
0.01/1.54 for shrublands.
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3.3. Time-Series: By Vegetation Class

In comparing the time-series of vegetation indices (VIs), we observe that the PPI
exhibits a higher amplitude than the NDVI across all vegetation classes (Figure 6). This
difference is less pronounced for coniferous trees. Additionally, PPI peaks are more distinct
for deciduous trees, grasslands, and shrublands. The annual shape of the indices also
differs, with PPI showing a tighter and more elongated pattern. For coniferous trees, PPI
and NDVI display different scaled values.
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A Shapiro test [57] revealed that the time-series data are not normally distributed.
Consequently, we performed a Spearman correlation test [58] for each pair of vegetation
classes [28,38]. The Spearman correlation coefficients (rho) are as follows: 0.91 for deciduous
trees, 0.87 for coniferous trees, 0.93 for grasslands, and 0.96 for shrublands, each with a
p-value less than 0.05.

3.4. Seasonality Parameters Retrieval

The seasonality parameters indicate close concordance between the two indices (PPI
and NDVI) in determining the SOS and EOS for deciduous trees, grasslands, and shrub-
lands (Table 2). The mean differences (PPI−NDVI) for the SOS are 1.4 days for deciduous
trees and grasslands and 4.2 days for shrublands. For the EOS, the mean differences are
−1.4 days for deciduous trees, −9.8 days for grasslands, and −11.8 days for shrublands.
However, for coniferous trees, the differences are more significant, with a mean difference
of 32.8 days for the SOS and −12.2 days for the EOS. Regarding the length of the sea-
son, the divergences are minimal for deciduous trees (−2.8 days), followed by grasslands
(−11.2 days), shrublands (−16 days), and coniferous trees (−45 days). For the POS retrieval,
significant differences are observed across all vegetation classes, with PPI detecting the
peak earlier than NDVI.
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Table 2. Seasonality parameters per vegetation type in day of the year (DOY) for PPI and NDVI and
in day for differences between PPI and NDVI.

LC Classes PPI NDVI Difference

Deciduous trees Year SOS EOS Length POS SOS EOS Length POS SOS EOS Length POS

2018 113 303 190 183 115 310 195 214 −2 −7 −5 −31
2019 125 309 184 198 118 297 179 218 7 12 5 −20
2020 110 295 185 184 109 291 182 197 1 4 3 −13
2021 129 306 177 196 121 308 187 232 8 −2 −10 −36
2022 120 301 181 181 127 315 188 223 −7 −14 −7 −42

Mean 119.4 302.8 183.4 188.4 118 304.2 186.2 216.8 1.4 −1.4 −2.8 −28.4

Coniferous trees Year SOS EOS Length POS SOS EOS Length POS SOS EOS Length POS

2018 121 291 170 188 128 318 190 233 −7 −27 −20 −45
2019 129 307 178 202 92 292 200 221 37 15 −22 −19
2020 107 300 193 189 88 317 229 205 19 −17 −36 −16
2021 124 299 175 198 97 311 214 232 27 −12 −39 −34
2022 126 299 173 186 38 319 281 216 88 −20 −108 −30

Mean 121.4 299.2 177.8 192.6 88.6 311.4 222.8 221.4 32.8 −12.2 −45 −28.8

Grasslands Year SOS EOS Length POS SOS EOS Length POS SOS EOS Length POS

2018 103 303 200 190 111 309 198 217 −8 −6 2 −27
2019 104 303 199 203 101 297 196 218 3 6 3 −15
2020 99 285 186 192 91 301 210 200 8 −16 −24 −8
2021 96 301 205 203 88 307 219 216 8 −6 −14 −13
2022 108 291 183 184 112 318 206 217 −4 −27 −23 −33

Mean 102 296.6 194.6 194.4 100.6 306.4 205.8 213.6 1.4 −9.8 −11.2 −19.2

Shrublands Year SOS EOS Length POS SOS EOS Length POS SOS EOS Length POS

2018 147 294 147 203 144 301 157 226 3 −7 −10 −23
2019 158 295 137 212 157 299 142 228 1 −4 −5 −16
2020 138 288 150 204 120 309 189 214 18 −21 −39 −10
2021 159 291 132 217 158 296 138 230 1 −5 −6 −13
2022 145 285 140 195 147 307 160 223 −2 −22 −20 −28

Mean 149.4 290.6 141.2 206.2 145.2 302.4 157.2 224.2 4.2 −11.8 −16 −18

4. Discussion

The results of this study highlight the potential of the PPI in monitoring vegetation
phenology in mountainous regions. The comparison of PPI and NDVI time-series depicts
a less noisy signal for PPI, particularly during the transition seasons when snow could
be present and for coniferous trees. For the retrieval of seasonality parameters, we found
close concordance between the two indices for the SOS, EOS, and length of season for
deciduous trees, grasslands, and shrublands. However, this is not the case for POS and for
all seasonality parameters for coniferous trees. In the following section, we will discuss
these results relying on existing literature.

4.1. Time-Series of the PPI and NDVI in Mountainous Areas for Different Vegetation Types

Our results suggest that the PPI is a robust remotely sensed proxy for time-series
retrieval and phenological monitoring, which could complement or substitute for NDVI
in mountainous areas. Although NDVI is widely recognized for its ease of processing,
it has notable limitations in snow-covered environments and dense vegetation canopies
such as evergreen forests [36,39,40]. These limitations are evident in the pronounced
noise during winter and at the beginning and end of the growing season (Figure 4). The
length of the growing season is a critical determinant of vegetation productivity [24],
making precise retrieval of the SOS and EOS crucial. NDVI’s sensitivity to snow is
also characterized by high variability at the start and end of the snow season [40]. Ad-
ditionally, NDVI tends to saturate coniferous trees at levels similar to deciduous trees
(approximately 0.8, Figures 4 and 6). [39] reported that NDVI struggles to accurately re-
trieve Gross Primary Production (GPP) for coniferous trees, resulting in a negative correla-
tion for the sites studied.

The PPI appears to mitigate these issues (Figure 5). However, consistent with previous
studies [39,40], the PPI tends to accentuate the signal during the peak growing season
(Figures 5 and 6). This is due to its logarithmic formula, which increases sensitivity to
variations in NIR and red reflectance [39].
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4.2. Seasonality Parameters Retrieval

By using distinct thresholds for seasonality parameter retrieval for both the PPI and
NDVI, we observed close concordance between the two indices for the SOS, EOS, and length
of the season retrieval for deciduous trees, grasslands, and shrublands (Table 2). However,
this concordance does not extend to the POS and all parameters for coniferous trees.

For SOS and EOS retrieval, we adopted a methodology based on amplitude thresh-
olds identified by [39], which demonstrated the best alignment between PPI, NDVI, and
ground-observed phenological stages. This approach yielded similar results between the
two indices (except for conifers). However, [42] previously illustrated in a study aimed
at distinguishing remotely measured plant phenology and snow seasonality that NDVI-
derived land surface phenology correlates better with snow seasonality than with actual
plant phenology, in contrast to PPI, which aligns well with ground phenology observa-
tion and Gross Primary Production (GPP) dynamics. This alignment is attributed to the
linearity between PPI and Leaf Area Index (LAI), as proposed by [39]. They argue that
the performance of Vegetation Indices (VIs) is not solely determined by vegetation change
identification but also by their robustness against background noise. Overall, the use of PPI
demonstrates superior performance for SOS and EOS retrieval in areas with seasonal snow
cover and should, therefore, be prioritized [39,42,56].

Regarding the discrepancies in POS identification, the tendency of PPI to overestimate
seasonal peaks likely exerts an influence. [39] suggest the possibility of applying an outlier
filter to address this issue. For coniferous trees, the high level of noise in the signal and the
plateau observed in NDVI (Figures 4 and 6) are likely attributable to its known difficulties
in retrieving the signal for this vegetation class, consequently influencing all seasonality
parameter retrieval [56]. Therefore, PPI appears to be more reliable for dense coniferous
forests as well.

4.3. Limitations

Enhancing the accuracy (i.e., minimizing the effects of atmospheric perturbation)
of this study could be achieved by utilizing Level-2A Sentinel-2 images (i.e., surface
reflectance) instead of Level-1C (top of atmosphere) imagery. To implement this, we rec-
ommend employing the Sen2cor program [59] to correct atmospheric effects in Level-1C
images. The preprocessing of the substantial volume of images utilized in this study
(n = 2920) posed challenges in terms of computational time and resources. For future inves-
tigations, such as pixel-scaled spatial analysis, considering high-performance computing
is advisable. Recent advancements in data cubes for efficiently processing large volumes
of satellite analysis-ready data offer a promising avenue for reducing preprocessing time,
thereby enabling more comprehensive studies [60–63].

It is pertinent to note that our vegetation mapping method does not facilitate the iden-
tification of evergreen non-Ericaceae shrublands, leading to an incomplete characterization
of this vegetation class and its dynamics. To address this limitation, a time-first approach for
land cover mapping could offer significant advantages [32]. By retrieving dense time-series
data of Sentinel-2 imagery and calculating various indices to monitor the seasonal spectral
signals of different types of vegetation, it becomes possible to discriminate them [64].

Furthermore, while our study primarily focuses on the behavior of four main veg-
etation classes across the entire Valais region, there are avenues for further exploration.
It would be beneficial to (i) incorporate more detailed vegetation types and (ii) evaluate
spatial trends at pixel resolution to gain deeper insights into the vegetation dynamics.

It would also be highly valuable to analyze more in-depth relationships with ground
data, such as eddy covariance GPP derived from FluxTower [65,66], for several locations
across the Alps. [39] demonstrated that PPI is closely related to eddy covariance GPP data
throughout Europe. Unfortunately, there are no data specifically available for the Valais.
The nearest FluxTower is in Torgnon, in the Val d’Aoste (IT). This underscores the need for
more high-quality, spatially distributed ground data in the Alps.
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4.4. Contributions and Perspectives

The primary contribution of this study is to explore the potential of PPI in alpine
regions, characterized notably by seasonal snow cover and the abundance of coniferous
forests. The results are promising, indicating that PPI offers a reliable opportunity for
remote sensing-based phenological and productivity monitoring in these challenging
environments. Furthermore, our study underscores the significance of the recently launched
Sentinel-2 satellite constellation, which provides enhanced possibilities for more accurate
studies with its 10 m resolution and 5-day revisit time, particularly in complex terrain such
as mountainous areas. To advance this research field, we recommend (i) incorporating more
detailed vegetation types, (ii) conducting additional comparisons with specific ground data
tailored to mountain environments, and (iii) performing pixel-resolution analysis to better
understand the impacts of topography in future investigations.

5. Conclusions

In this study, we conducted a comparative assessment of the Plant Phenology In-
dex (PPI) and Normalized Difference Vegetation Index (NDVI) in mountainous regions,
specifically focusing on the European Alps. NDVI and PPI values were extracted from the
MultiSpectral Instrument (MSI) aboard the Sentinel-2 satellite constellation for the years
2018 to 2022.

Regarding seasonal dynamics, NDVI exhibited notable signal noise during the snow
seasons (late autumn to early spring) and for coniferous trees. In contrast, PPI demonstrated
lower noise levels.

In terms of seasonal parameter retrieval, we observed close concordance between the
two indices, with minor discrepancies in start and end-of-season estimation for deciduous
trees, grasslands, and shrublands. However, substantial differences were noted for peak-of-
season estimation and all seasonal parameters pertaining to coniferous trees.

Our findings align with existing literature and offer novel insights into vegetation
monitoring in complex environments. Overall, this study’s primary contribution lies in
exploring the potential of PPI for vegetation dynamics monitoring in mountainous regions
of the European Alps, providing a robust alternative to address NDVI limitations in these
environments characterized by seasonal snow and coniferous forests. As such, the PPI
represents a good candidate for linking long-term regional vegetation trends to year-to-year
phenological and growth responses to climate change across diverse topoclimatic contexts
and life forms in mountainous environments.
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