Monitoring Coastal Evolution and Geomorphological Processes Using Time-Series Remote Sensing and Geospatial Analysis: Application Between Cape Serrat and Kef Abbed, Northern Tunisia
Abstract
:1. Introduction
- -
- Understand the trend of shoreline changes over the period of 1985–2023 using multisensory remote sensing data and field observations.
- -
- Identify the geomorphological processes and rates of shoreline changes, including both erosion and accretion patterns.
- -
- Explore how the remote sensing and geospatial analysis techniques employed in this study can be extended to other coastal regions in Tunisia or the broader Mediterranean basin to develop a comprehensive understanding of regional coastal dynamics.
2. Materials and Methods
2.1. The Study Area
2.1.1. The Study Area Location
2.1.2. Wind and Hydrodynamic Characteristics
2.2. Data and Methods
Remote Sensing Data
2.3. Methodology
2.3.1. Coastal Area Change Detection Based on Coastline Monitoring
Coastline Extraction
Coastline Change Detection
- The net shoreline movement (NSM) characterizing the distance (m) between the oldest and the youngest shorelines for each transect, indicating the total movement between the two shoreline positions.
- The end-point rate (EPR) is a measure of the rate of shoreline change. It is calculated as the ratio of the distance of shoreline movement to the time elapsed between the oldest and the most recent shoreline measurements. The EPR indicates the yearly rate of shoreline shifting, with a positive value representing a shifting towards the sea and a negative value representing a shifting towards the land.
- Linear Regression Rate (LRR), which is calculated using the least squares regression line from all shoreline positions along each transect.
2.3.2. Dune System Mapping
3. Results
3.1. Main Coastline Changes
3.2. Seasonal Evolution of the Coastal Area
3.3. Coastal Dune and Vegetation Systems
3.4. Geomorphological Process near Tombolo
4. Discussion
4.1. Geomorphic Process in the Coastal Areas
4.1.1. Effect of Current and Wind in Dunes near River Mouths
4.1.2. Dune Accumulation
4.2. Wind Effects in the Cliff of Cap Serrat
4.3. Waves Erosion and Deposition
4.4. Uncertainties of Coastline Change Estimation
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Fu, J.; Zhang, S.; Zhao, X. Coastline Information Extraction Based on the Tasseled Cap Transformation of Landsat-8 OLI Images. Estuar. Coast. Shelf Sci. 2019, 217, 281–291. [Google Scholar] [CrossRef]
- Oueslati, A.; Aroui, O.E.; Sahtout, N. Sur La Grande Vulnérabilité Du Lido Du Complexe Lagunaire de Ghar El Melh et de Ses Terres Humides (Tunisie Septentrionale): Érosion, Risque de Maritimisation et Menaces Sur Le Terroir Original Ramli. Mediterranee 2015, 125, 65–73. [Google Scholar] [CrossRef]
- Slim, H.; Trousset, P.; Paskoff, R.; Oueslati, A.; Bonifay, M.; Lenne, J. Le Littoral de La Tunisie, Étude Géoarchéologique et Historique. J. Mediterr. Geogr. 2005, 104, 134. [Google Scholar] [CrossRef]
- Rouvier, H.; Solignace, L.J.M. Nappe de charriage en Tunisie septentrionale: Preuves et conséquences paléogéographiques. Tunis 1973, 26, 33–47. [Google Scholar]
- Mohamed auld Dah; Abdelhamid Khaldi; Mohamed Nejib Rejeb; Belgacem Henchi Essai de Végétalisation de Dunes Littorales: Cas Du Complexe Dunaire d’Eghirane (Mogods, Tunisie). Sci. Et Chang. Planétaires/Sécheresse 2005, 16, 255–260.
- Dolan, R.; Hayden, B.; Heywood, J. A New Photogrammetric Method for Determining Shoreline Erosion. Coast. Eng. 1978, 2, 21–39. [Google Scholar] [CrossRef]
- Paskoff, R.; Sanlaville, P. Les Côtes de la Tunisie: Variations du Niveau Marin Depuis le Tyrrhénien Travail; Collection de la Maison de l’Orient méditerranéen; Maison de l’Orient: Lyon, France, 1983; ISBN 978-2-903264-04-8. [Google Scholar]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The Coasts of Our World: Ecological, Economic and Social Importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Sun, S.; Mu, L.; Feng, R.; Chen, Y.; Han, W. Quadtree Decomposition-Based Deep Learning Method for Multiscale Coastline Extraction with High-Resolution Remote Sensing Imagery. Sci. Remote Sens. 2024, 9, 100112. [Google Scholar] [CrossRef]
- Cooper, H.M.; Zhang, C.; Davis, S.E.; Troxler, T.G. Object-Based Correction of LiDAR DEMs Using RTK-GPS Data and Machine Learning Modeling in the Coastal Everglades. Environ. Model. Softw. 2019, 112, 179–191. [Google Scholar] [CrossRef]
- Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R. Assessment and Integration of Conventional, RTK-GPS and Image-Derived Beach Survey Methods for Daily to Decadal Coastal Monitoring. Coast. Eng. 2011, 58, 194–205. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Zhou, Y.; Abdalla, A. Creep-Induced Subsidence along Coastal Louisiana with GPS Measurements and Finite Element Modeling. Geoenergy Sci. Eng. 2024, 238, 212840. [Google Scholar] [CrossRef]
- Madani, A. Assessment and Evaluation of Band Ratios, Brovey and HSV Techniques for Lithologic Discrimination and Mapping Using Landsat ETM+; and SPOT-5 Data. Int. J. Geosci 2014, 05, 5–11. [Google Scholar] [CrossRef]
- Prieto-Campos, A.; Díaz-Cuevas, P.; Fernandez-Nunez, M.; Ojeda-Zújar, J. Methodology for Improving the Analysis, Interpretation, and Geo-Visualisation of Erosion Rates in Coastal Beaches—Andalusia, Southern Spain. Geosciences 2018, 8, 335. [Google Scholar] [CrossRef]
- Dar, I.A.; Dar, M.A. Prediction of Shoreline Recession Using Geospatial Technology: A Case Study of Chennai Coast, Tamil Nadu, India. J. Coast. Res. 2009, 256, 1276–1286. [Google Scholar] [CrossRef]
- Kang, Y.; He, J.; Wang, B.; Lei, J.; Wang, Z.; Ding, X. Geomorphic Evolution of Radial Sand Ridges in the South Yellow Sea Observed from Satellites. Remote Sens. 2022, 14, 287. [Google Scholar] [CrossRef]
- Ge, X.; Sun, X.; Liu, Z. Object-Oriented Coastline Classification and Extraction from Remote Sensing Imagery. In Proceedings of the Remote Sensing of the Environment: 18th National Symposium on Remote Sensing of China, Wuhan, China, 20–23 October 2012. [Google Scholar]
- Husband, E.; East, H.K.; Hocking, E.P.; Guest, J. Honduran Reef Island Shoreline Change and Planform Evolution over the Last 15 Years: Implications for Reef Island Monitoring and Futures. Remote Sens. 2023, 15, 4787. [Google Scholar] [CrossRef]
- Liu, H.; Jezek, K.C. Automated Extraction of Coastline from Satellite Imagery by Integrating Canny Edge Detection and Locally Adaptive Thresholding Methods. Int. J. Remote Sens. 2004, 25, 937–958. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Mohanty, P.C.; Shetty, S.; Mahendra, R.S.; Nayak, R.K.; Sharma, L.K.; Rama Rao, E.P. Spatio-Temporal Changes of Mangrove Cover and Its Impact on Bio-Carbon Flux along the West Bengal Coast, Northeast Coast of India. Eur. J. Remote Sens. 2021, 54, 525–537. [Google Scholar] [CrossRef]
- Nazeer, M.; Waqas, M.; Shahzad, M.I.; Zia, I.; Wu, W. Coastline Vulnerability Assessment through Landsat and Cubesats in a Coastal Mega City. Remote Sens. 2020, 12, 749. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Kaufman, L.; Woodcock, C.E. From Imagery to Ecology: Leveraging Time Series of All Available Landsat Observations to Map and Monitor Ecosystem State and Dynamics. Remote Sens. Ecol. Conserv. 2016, 2, 152–170. [Google Scholar] [CrossRef]
- Pradhan, B.; Rizeei, H.; Abdulle, A. Quantitative Assessment for Detection and Monitoring of Coastline Dynamics with Temporal RADARSAT Images. Remote Sens. 2018, 10, 1705. [Google Scholar] [CrossRef]
- Scardino, G.; Mancino, S.; Romano, G.; Patella, D.; Scicchitano, G. An Integrated Approach between Multispectral Satellite Images and Geophysical and Morpho-Topographic Surveys for the Detection of Water Stress Associated with Coastal Dune Erosion. Remote Sens. 2023, 15, 4415. [Google Scholar] [CrossRef]
- Castro, I.J.; Dias, J.M.; Lopes, C.L. Assessing Shoreline Changes in Fringing Salt Marshes from Satellite Remote Sensing Data. Remote Sens. 2023, 15, 4475. [Google Scholar] [CrossRef]
- Fabris, M.; Balin, M.; Monego, M. High-Resolution Real-Time Coastline Detection Using GNSS RTK, Optical, and Thermal SfM Photogrammetric Data in the Po River Delta, Italy. Remote Sens. 2023, 15, 5354. [Google Scholar] [CrossRef]
- Conlin, M.P.; Adams, P.N.; Palmsten, M.L. On the Potential for Remote Observations of Coastal Morphodynamics from Surf-Cameras. Remote Sens. 2022, 14, 1706. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Feng, S.; Peng, B.; Huang, L.; Fatholahi, S.N.; Tang, L.; Li, J. An Overview of Shoreline Mapping by Using Airborne LiDAR. Remote Sens. 2023, 15, 253. [Google Scholar] [CrossRef]
- Shlien, S.; Smith, A. A Rapid Method to Generate Spectral Theme Classification of LANDSAT Imagery. Remote Sens. Environ. 1975, 4, 67–77. [Google Scholar] [CrossRef]
- Ciecholewski, M. Review of Segmentation Methods for Coastline Detection in SAR Images. Arch. Comput. Methods Eng. 2024, 31, 839–869. [Google Scholar] [CrossRef]
- Yan, J.; Wang, M.; Su, F.; Wang, T.; Xiao, R. Construction of Knowledge Rule Sets for the Classification of Land Cover Information for the Coastal Zone of Peninsular Malaysia. Eur. J. Remote Sens. 2020, 53, 293–308. [Google Scholar] [CrossRef]
- Kassouk, Z.; Thouret, J.-C.; Gupta, A.; Solikhin, A.; Liew, S.C. Object-Oriented Classification of a High-Spatial Resolution SPOT5 Image for Mapping Geology and Landforms of Active Volcanoes: Semeru Case Study, Indonesia. Geomorphology 2014, 221, 18–33. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef]
- Rajawat, A.S.; Chauhan, H.B.; Ratheesh, R.; Rhode, S.; Bhanderi, R.J.; Mahapatra, M.; Kumar, M.; Yadav, R.; Abraham, S.P.; Singh, S.S.; et al. Assessment of Coastal Erosion along Indian Coast on 1: 25,000 Scaleusing Satellite Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL–8, 119–125. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Zheng, F.; Wang, H.; Yang, H. An Overview of Coastline Extraction from Remote Sensing Data. Remote Sens. 2023, 15, 4865. [Google Scholar] [CrossRef]
- Daud, S.; Milow, P.; Zakaria, R.M. Analysis of Shoreline Change Trends and Adaptation of Selangor Coastline, Using Landsat Satellite Data. J. Indian Soc. Remote Sens. 2021, 49, 1869–1878. [Google Scholar] [CrossRef]
- Surf Forecast in Cap Serrat Including Swell, Period, Wind and Tides in Cap Serrat for the Next Few Days. Available online: https://tides4fishing.com/tn/tunisia/cap-serrat/forecast/surf (accessed on 21 July 2019).
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Sayre, R.; Noble, S.; Hamann, S.; Smith, R.; Wright, D.; Breyer, S.; Butler, K.; Van Graafeiland, K.; Frye, C.; Karagulle, D.; et al. A New 30 Meter Resolution Global Shoreline Vector and Associated Global Islands Database for the Development of Standardized Ecological Coastal Units. J. Oper. Oceanogr. 2019, 12, S47–S56. [Google Scholar] [CrossRef]
- Morhange, C. H. Slim, P, Trousset, R, Paskoff et A. Oueslati, et al., Le littoral de la Tunisie, étude géoarchéologique ethistorique. Mediterranee 2005, 134, 308. [Google Scholar]
- Surf Forecast in Cap Serrat Including Swell, Period, Wind and Tides in Cap Serrat for the Next Few Days. Available online: https://tides4fishing.com/ (accessed on 9 March 2019).
- Potić, I. Simple ETM+ Gap Fill Techniques Review. Environment 2015, 3, 31–37. [Google Scholar]
- Potere, D. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive. Sensors 2008, 8, 7973–7981. [Google Scholar] [CrossRef]
- Goodchild, M.F. The Use Cases of Digital Earth. Int. J. Digit. Earth 2008, 1, 31–42. [Google Scholar] [CrossRef]
- Yıldırım, C. Geomorphology of Horseshoe Island, Marguerite Bay, Antarctica. J. Maps 2020, 16, 56–67. [Google Scholar] [CrossRef]
- Zhao, Y.; Diao, C.; Augspurger, C.K.; Yang, Z. Monitoring Spring Leaf Phenology of Individual Trees in a Temperate Forest Fragment with Multi-Scale Satellite Time Series. Remote Sens. Environ. 2023, 297, 113790. [Google Scholar] [CrossRef]
- Kaut, R.J.; Thomas, G.S. The Tasselled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Purdue, Indiana, 21–23 June 1977. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0-an ArcGIS Extension for Calculating Shoreline Change; US Geological Survey: Asheville, NC, USA, 2009.
- Thinh, N.A.; Hens, L. A Digital Shoreline Analysis System (DSAS) Applied on Mangrove Shoreline Changes along the Giao Thuy Coastal Area (Nam Dinh, Vietnam) during 2005–2014. J. Sci. Earth 2017, 39, 87–96. [Google Scholar] [CrossRef]
Landsat Sensor | Used Bands | Pixel Size | Seasonal Evolution | ||||
---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Fall | Considered Period | |||
Landsat 5 L5 TM | 1 to 5 and 7 | 30 m | 5 | 11 | 15 | 6 | From 1985 to 1998 |
Landsat 7 L7 ETM+ | 2, 3, 5 | 30 m | 4 | 7 | 8 | 7 | From 1999 to 2013 |
Landsat 8 L8 OLI | 2 to 7 | 30 m | 3 | 4 | 7 | 3 | From 2014 to 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassouk, Z.; Ayari, E.; Deffontaines, B.; Ouaja, M. Monitoring Coastal Evolution and Geomorphological Processes Using Time-Series Remote Sensing and Geospatial Analysis: Application Between Cape Serrat and Kef Abbed, Northern Tunisia. Remote Sens. 2024, 16, 3895. https://doi.org/10.3390/rs16203895
Kassouk Z, Ayari E, Deffontaines B, Ouaja M. Monitoring Coastal Evolution and Geomorphological Processes Using Time-Series Remote Sensing and Geospatial Analysis: Application Between Cape Serrat and Kef Abbed, Northern Tunisia. Remote Sensing. 2024; 16(20):3895. https://doi.org/10.3390/rs16203895
Chicago/Turabian StyleKassouk, Zeineb, Emna Ayari, Benoit Deffontaines, and Mohamed Ouaja. 2024. "Monitoring Coastal Evolution and Geomorphological Processes Using Time-Series Remote Sensing and Geospatial Analysis: Application Between Cape Serrat and Kef Abbed, Northern Tunisia" Remote Sensing 16, no. 20: 3895. https://doi.org/10.3390/rs16203895
APA StyleKassouk, Z., Ayari, E., Deffontaines, B., & Ouaja, M. (2024). Monitoring Coastal Evolution and Geomorphological Processes Using Time-Series Remote Sensing and Geospatial Analysis: Application Between Cape Serrat and Kef Abbed, Northern Tunisia. Remote Sensing, 16(20), 3895. https://doi.org/10.3390/rs16203895