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Abstract: Millimeter-wave radars are widely used in various environments due to their excellent
detection capabilities. However, the detection performance in severe weather environments is still
an important research challenge. In this paper, the propagation characteristics of millimeter-wave
radar in a rainfall environment are thoroughly investigated, and the modeling of the millimeter-wave
radar echo signal in a rainfall environment is completed. The effect of rainfall on radar detection
performance is verified through experiments, and an anti-rain clutter interference method based on a
convolutional neural network is proposed. The method combines image recognition and classification
techniques to effectively distinguish target signals from rain clutter in radar echo signals based on
feature differences. In addition, this paper compares the recognition results of the proposed method
with VGGnet and Resnet. The experimental results show that the proposed convolutional neural
network method significantly improves the target detection capability of the radar system in a rainfall
environment, verifying the method’s effectiveness and accuracy. This study provides a new solution
for the application of millimeter-wave radar in severe weather conditions.

Keywords: millimeter-wave radars; rain clutter; convolutional neural network

1. Introduction

With the continuous progress of science and technology, millimeter-wave radar has
made remarkable development, especially in the fields of automobiles and unmanned
aerial vehicles [1-4]. For example, millimeter-wave radar is used for wingtip distance
measurement of high-speed coaxial helicopters, as mentioned in reference [3], and it is
also applied in target detection and autonomous driving [1,2,4], among others. Millimeter-
wave radar has demonstrated unique advantages in detection and imaging [5], and is
gradually becoming an indispensable part of modern radar systems by virtue of its unique
technical characteristics and wide application potential. However, it is due to the diversity
of the application environment that millimeter-wave radar is affected by various kinds of
interference in the process of practical application.

A rainfall environment, as a typical severe weather condition, has a significant impact
on millimeter-wave radar. At present, the effect of rain clutter on millimeter-wave radar in
rainfall environments is still an important research topic [6]. Due to the large differences
in the distribution characteristics of raindrops around the globe, no uniform standard
has been formed to model the signals under rainfall environments. This paper analyses
the main effects of rainfall environments on millimeter-wave radar signals based on CST
electromagnetic simulation, and these effects are specifically divided into two parts: the
rain clutter signals generated by the reflection of raindrops, and the attenuation of the trans-
mitted signals by the rainfall environment. Therefore, reducing the impact of rain clutter
on the detection performance of millimeter-wave radar has become an important issue.
However, effective methods to address this problem are still very scarce. In reference [7], a
method based on two-dimensional filtering is proposed to counteract the interference of
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rain clutter. And after referring to some other radar anti-jamming methods [8,9], this paper
chooses to use a convolutional neural network (CNN) for anti-rain clutter.

The development of CNNs dates back to the 1990s when they were first proposed
by Yann LeCun et al. [10]. The earliest LeNet-5 model achieved remarkable success in
handwritten digit recognition tasks. As computational power increased and datasets
expanded, CNNs saw a major breakthrough in the mid-2000s. In 2012, AlexNet marked
the arrival of the deep learning era by significantly improving the accuracy of image
classification in the ImageNet competition [11]. In recent years, network architectures such
as VGGnet, ResNet, EfficientNet and MobileNetV3 have continued to push the frontiers
of the technology [12-15], and CNNs are now widely used in computer vision, natural
language processing, and other fields [16-19]. The combination of millimeter-wave radar
and CNNs opens up new applications in the field of image recognition, especially in
target detection and recognition in complex environments. In reference [20], millimeter-
wave radar is applied to multi-person action recognition; reference [21] uses it for target
detection; while reference [22] explores its application in trajectory recognition. These
studies demonstrate the potential and advantages of combining millimeter-wave radar
with CNNSs in a variety of tasks. This paper, on the other hand, applies CNNs to anti-
interference processing of millimeter-wave radar. Initially, VGGNet was used for this task,
but its recognition performance was not satisfactory. Therefore, an attempt was made to
combine the VGGNet with other network structures, and the results show that this attempt
was a remarkable success as the recognition performance was significantly improved.

In this paper, a CNN method is used for the anti-rain clutter process, and it is compared
with VGGnet and Resnet to demonstrate the accuracy of anti-rain clutter. Such a study
helps to improve the ranging measure capability of millimeter-wave radar in complex
environments and provides more reliable technical support for practical applications.

2. Triangular Wave Linear Frequency Modulation Signal

The triangular wave linear frequency modulation signal is a continuous wave signal
used in millimeter-wave radar. Due to its favorable spectral characteristics and controllable
frequency variation patterns, this signal is commonly employed for applications such as
measuring range and velocity or spectrum analysis. This study uses the triangular wave
linear frequency modulation signal for ranging purposes. Figure 1 illustrates a schematic
diagram of target detection using the triangular wave linear frequency modulation signal.
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Figure 1. Schematic diagram of target detection using the triangular wave linear frequency modula-
tion signal.
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In Figure 1, f;(t) denotes the transmitted signal frequency, f(t) represents the echo
signal frequency, fy is the center frequency, AF,;; indicates the modulation bandwidth, and
fi(t) is the beat frequency. Figure 1 shows that within one modulation period T}, the beat
frequency f;(t) of the triangular wave frequency modulation detection system is divided
into four intervals. Intervals 1 and 3 are irregular, while intervals 2 and 4 are regular. The
beat frequency f;(t) remains stationary in the regular regions, whereas in the irregular
regions, it changes linearly. In practical applications, only the signals within the regular
regions are considered, and those within the irregular regions are excluded.

The frequency modulation slope of the triangular wave frequency modulation detec-
tion system is given by:

AF,  2AF,
Tw/2 T
Within a modulation period Ty, there are two segments in f;(¢): the rising segment

fi+, and the falling segment f; . Given the delay T = 2R /¢, the expressions for f;; and f;_
can be derived as follows:

krp =

M

4AF,R
fiv=fi—fr=kp-1—fa= Tm — fa ()
mc
4AF,R
fie=fr—fi=kp-t+fa= Tm + fa ®)
mC
Adding Equations (2) and (3) gives the distance R between the target and the detector.
R = CTm fl++fl— (4)

~ 4AF, 2

In the experimental setup shown in Figure 2a, the equipment used includes a 24 GHz
triangular wave linear frequency modulation detector, a portable power supply, an oscillo-
scope, and a corner reflector placed 8 m from the detector. Signal sampling is performed at
a rate of 100 MHz, and the sampling result is shown in Figure 2b. Using Equation (4) to
measure the range; the result is 8.08 m, with the error being within an acceptable range.
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Figure 2. Field experiment and result of range measurement. (a) Field experiment scene of range
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measurement. (b) Result of range measurement.
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3. Rain Clutter Signal
3.1. Signal Propagation in Rainfall Environments

The raindrop size distribution refers to the number of raindrops of different sizes
in a unit volume at various rainfall rates, also known as the raindrop spectrum. It is a
crucial parameter for studying radio wave propagation in rainfall environments. Due to
varying conditions globally, the distribution of rainfall also differs. The most commonly
used raindrop spectra are the negative exponential Marshall-Palmer (M-P) distribution and
the Weibull distribution. In this study, the distribution model used is the M-P distribution.

Based on their measurements and incorporating data from Laws and Parsons, Marshall
and Palmer proposed the M-P distribution model, which can be expressed as:

N(D) = Noe AP (@)

In Equation (5):
No = 8000 (m > - mm™) (6)
A=41P % (mm ) )

D is the raindrop diameter, Py is the rainfall rate, and N (D) represents the number of
raindrops per cubic meter.

This paper uses CST2019 software to simulate signal propagation under rainy condi-
tions to study its characteristics in a rainfall environment. Figure 3a shows the schematic
diagram of the signal propagation modeling in a rainy environment in CST. Figure 3b
depicts the raindrop modeling in CST. In the electromagnetic simulation, the number of
raindrops required for space 8 m x 4 m x 4 m is calculated using the M-P model, as shown
in Equation (5). These raindrops are then randomly distributed in space. A plane wave is
transmitted from plane ABCD, and probes are placed at points O and P to receive the signal.

(@)

(b)

Figure 3. CST simulation analysis. (a) Schematic diagram. (b) CST model diagram.

The results of the CST electromagnetic simulation are shown in Figure 4. Figure 4a
presents the signal received by the probe at point O. It is evident from the figure that, in
addition to the transmitted signal, the probe also receives signals reflected by raindrops.
Figure 4b shows the signal received by the probe at point P. The transmitted signal is
noticeably attenuated, and raindrops scatter some additional signal later. Combining the
results from both figures, it can be concluded that in a rainfall environment, the impact on
signal propagation consists of two main parts: first, the reflection of the signal by raindrops,
and second, the attenuation of the signal due to the rainfall environment.
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Figure 4. Results of CST simulation analysis. (a) Result of point O. (b) Result of point P.

3.2. The Influence of the Rainfall Environment on Signals
3.2.1. Attenuation Under a Rainfall Environment

In the signal propagation process through a rainfall environment, in addition to
atmospheric losses, the presence of raindrops causes additional attenuation of the signal.
The radar equation for a target under the influence of a rainfall environment can be
expressed as:

252
Pr _ PtG?’A g 6_0'46A (8)
(471)°R4Lg

In Equation (8), P; is the power of the transmitter, G is the antenna gain, A is the
operating wavelength, R is the radar range, ¢ is the radar cross-section, and A is the
rain attenuation along the electromagnetic wave propagation path, which equals the rain
attenuation rate g (dB/Km) multiplied by the path length A = 9gR, and Lg represents
the radar’s losses. According to the empirical formula provided by the International
Telecommunication Union (ITU):

TR = kPg )

In Equation (9), the coefficients k and « are derived by fitting the curve to a power-law
coefficient through discrete calculations.

k= {kH +ky + (kg —ky) cos? w cos ZT} /2 (10)

x = |:kH06H + kyay + (kHlXH — kvoév) cos? w cos 27} /2k (11)

The parameters ky, kv, a7, and ay can be obtained from the parameter tables provided
by the ITU. w represents the path inclination angle, and T represents the polarization
inclination angle. The ky, ky, apy, and ay parameters for two typical frequencies, 24GHz
and 35GHz, are shown in Table 1.

Table 1. The ky, kv, ay, and ay parameters for 24GHz and 35GHz.

f kH kV XH Xy

24GHz 0.1425 0.1404 1.0101 0.9561
35GHz 0.3374 0.3224 0.9074 0.8761
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3.2.2. Reflected Signal Under a Rainfall Environment

In addition to direct attenuation, raindrops also cause reflection of the signal. When
millimeter-wave signals encounter raindrops, some of the energy is reflected into space,
creating what is known as rain clutter. These reflected signals may differ in phase from the
original signal, leading to interference.

The actual conditions in a rain zone are very complex, with raindrops of various sizes
distributed throughout. When a target is within the radar detection range in the rain zone,
the receiver picks up rain clutter. We assume there is a small volume element dV within
a small region at a beam axis tilt angle 6, an azimuth angle ¢, and a distance L from the
antenna. This volume element contains a small area dS perpendicular to the incident wave
direction, with a radial depth dL. We then let dQ) be the solid angle of the area element.
Since the volume element is small enough to ensure that all scattered energy reaches the
antenna simultaneously, dV = L2dOdL can be derived. The radar-received rain scatter
energy can be expressed as:

P,G2)\?

_ DPG*A%L
(47)°L4

dp, = 0, ¢)|*nrdV =
; 1£(6, 9)["1r (a2

£(0, 9)[*rd Q2 (12)

Assuming the effective radial depth of the beam is hp /2, the effective echo distance
from the radar is L ~ L4+hp/2. hp = ct, where 7 represents the pulse width, and c is the
speed of light. The reflected echo energy from rain with a Gaussian-shaped antenna can be
expressed as:

P — PthAthGgmyR
" 10247212 1n2

In Equation (13), g = fODMAX Q;j(D)N(D)dD represents the volumetric reflectivity of
raindrops, which is the backscatter cross-section. D denotes the diameter of the raindrops.
Q;j(D) is the backscatter cross-section of particles calculated using Mie theory. N(D)dD
represents the drop size distribution spectrum for raindrops with a diameter of D ~ D +dD.

(13)

3.2.3. Signal Modeling and Simulation in Rainfall Environments

First, we model the raindrop spectrum. Using Equation (5), we calculate the number
of raindrops within a space 20 m x 20 m x 20 m for a given rainfall rate. Since rainfall
distribution in space is random, we distribute these raindrops randomly. We generate
three random arrays X [n], Y1 [n] and Z; [n] for the X, Y, and Z coordinates, respectively, of
the raindrops. Based on these coordinates, we perform raindrop spectrum modeling in
the simulation.

In the laboratory, the triangular wave linear frequency modulation detector has a
conical detection range. To simulate the actual situation, as shown in Figure 5, the de-
tector’s conical detection range is set to 20 m, matching the detector’s actual detection
distance. In the simulation, this conical range accurately reflects the detector’s real-world
operating conditions.

After setting the radar’s detection range, raindrops are assessed based on their position
within the radar beam’s effective coverage. Raindrops within this range will reflect radar
signals. The reflected signal energy from raindrops is calculated using Equation (13), where
R represents the sum of the backscattering cross-sections of raindrops within the same
range. In this study, the backscattering cross-section of each raindrop is computed individ-
ually. Consequently, the reflected signals from all raindrops within the detection range are
generated independently and then summed to obtain the overall rain clutter signal.
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Figure 5. Raindrop spectrum modeling under 1.2 rainfall rate.
In the simulation environment described in this paper, the radar is located at the vertex
of the cone, where the cone’s range represents the effective coverage area of the radar beam,

and the target is positioned at the origin of the coordinate axis [0,0,0]. The simulated
detector parameters are shown in Table 2, and the simulation results are shown in Figure 6.

Table 2. The simulated detector parameters.
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Figure 6. The results of simulation in rainfall environment. (a) Time-domain diagram. (b) Frequency-
domain diagram. (c) Spectrogram.

From the time-domain simulation results in Figure 6a, it can be observed that the
time-domain waveform of the rain clutter signal is chaotic and exhibits a complex temporal
variation pattern. The frequency-domain simulation results in Figure 6b show that the
signal’s frequency spectrum is predominantly concentrated in the low-frequency range,
indicating that the signal’s frequency components are stronger in the low-frequency do-
main. Additionally, the time-frequency plot in Figure 6¢ provides a clear view of the
signal’s energy distribution, where the energy blocks represent the ratio of signal energy
to the maximum energy value, helping us understand the signal’s energy distribution
characteristics in both time and frequency domains.
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3.3. Signal Measurement in a Rainfall Environment

To explore the characteristics of rain clutter signals in the rainfall environment, actual
signal detection experiments were conducted, which also helped verify the accuracy of the
simulation results. A large umbrella was added to the experimental equipment shown in
Figure 2a to prevent the equipment from becoming wet and causing short circuits. This
ensured the experimental process’s reliability and the data’s accuracy.

The experimental setup is shown in Figure 7. A triangular waveform linear frequency
modulation detector was used in an open environment to collect signals from a rain-affected
area. The measured signals from the rainfall environment are displayed in Figure 8.
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Figure 8. The rain clutter signals collected from the experiment. (a) Time-domain diagram
(b) Frequency-domain diagram. (c) Spectrogram.

From the actual measured signal results from the experiment, it can be observed that
the time-domain signal is very similar to the simulated signal, both exhibiting relatively
chaotic signals with no apparent patterns. In the frequency-domain analysis, the signal
energy is concentrated within 10 MHz, a fact corroborated by the spectrogram, which
shows similar energy distribution to the simulated signal. However, a significant difference
between the actual and simulated signals is that the simulated signal includes only signals
from within a 20 m range, resulting in a zero-signal component beyond 10 MHz in the
frequency spectrum. In contrast, the actual measurements, while still primarily within the
10 MHz range, also detect some weak signals beyond 10 MHz, indicating the presence of
certain signal components in the higher frequency range.

The range measurement experiment was conducted by moving the detector from a
starting point 30 m from the angle reflector towards a distance of 5 m, while collecting
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signals in rainfall environments. The signals were then subsequently processed using
a computer to measure the range using Equation (4). The schematic diagram of the
experiment is illustrated in Figure 9a, and the actual experimental scene is shown in
Figure 9b, while the measurement results are presented in Figure 9c. Assuming a range
threshold of 9 m, the threshold is triggered when the measured distance is less than 9 m.
The results indicate that measurements affected by rain clutter are uncertain and may lead
to premature triggering of the range threshold. Therefore, it can be concluded that range
measurements in rainfall environments are influenced to some extent, and it is necessary
to propose a method to resist the influence of rain clutter on the triangular wave linear
frequency modulation detector.
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Figure 9. Range measurement experiment under a rainfall environment. (a) Schematic diagram.
(b) Scene. (c) Range measurement results.

The ranging results shown in Figure 9c indicate that when the corner reflector is within
the range of 20-30 m, it is not within the effective detection range of the triangular wave
linear frequency-modulated detector, resulting in chaotic ranging results. However, when
the corner reflector enters the effective range of the detector, although the ranging results
exhibit some instability, the overall trend remains correct. Therefore, this study proposes
a recognition method based on convolutional neural networks (CNNSs) to distinguish
whether the corner reflector is within the detection range of the detector. If the corner
reflector is identified as being within the effective range of the detector, normal ranging
processing will be carried out; conversely, if the recognition result indicates that it is outside
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the effective range of the detector, no ranging processing will be performed. This approach
can effectively enhance the accuracy and reliability of the ranging measurements.

4. Convolutional Neural Network for Anti-Rain Clutter
4.1. Dataset

To perform image recognition using a CNN, it is essential to identify feature images
that can easily distinguish between rain clutter and mixed signals. In this paper, the one-
dimensional echo signal is converted into a two-dimensional spectrogram by short-time
Fourier transform (STFT). This conversion not only provides richer feature information, but
also effectively enhances the distinguishability of the signal, thus laying a solid foundation
for the subsequent classification and identification work. By analysing the spectrogram, we
can better understand the changing pattern of the signal in the rainfall environment, which
provides support for improving the recognition accuracy. The mathematical expression of
STFT is represented in Equation (14):

H(t f) = /_ i 2t — D)h(t)e @) dr (14)

In Equation (14), f is the frequency, t is the time. With the change in time ¢, the window
function is shifted on the time axis to obtain the result of the short-time Fourier transform.
From the above analysis, once the window function is selected, its shape is fixed, and the
corresponding frequency resolution can be determined. The short-time Fourier transform
is equivalent to the projection of each segment of the function on the window function,
which reduces the spectral leakage of each segment and improves the resolution of the
spectral curve.

The spectrograms of the target signal in a non-rain environment, the rain clutter signal
in a rain environment, and the mixed signal consisting of rain clutter and target signal
are shown in Figure 10. These spectrograms illustrate the characteristics under different
environmental and signal conditions, which facilitate the training and recognition tasks of
the CNN.
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Figure 10. The spectrograms under different environmental and signal conditions from the experi-
ment. (a) The target signal in a non-rain environment. (b) The rain clutter signal in a rain environment.
(c) The mixed signal in a rain environment.

From Figure 10a, it can be observed that the spectrogram of the target signal is rela-
tively clean, with the signal’s distribution and energy in the frequency domain being highly
concentrated. Figure 10b shows that spectrogram of the rain clutter signal is primarily
concentrated in the low-frequency region, with its energy distribution being relatively
dispersed. In contrast, Figure 10c illustrates that the spectrogram of the mixed signal is also
concentrated in the low-frequency area. However, unlike the rain clutter signal, the mixed
signal has higher energy in the region where the target is located, while the energy in other
regions is lower. These characteristics indicate that, although the mixed signal overlaps



Remote Sens. 2024, 16, 3907

11 of 17

with the rain clutter signal in the frequency domain, the differences in energy distribution
provide valuable information for distinguishing between the signals.

The spectrograms of signals exhibit distinct characteristics under different conditions,
which allows for the differentiation of signals using image recognition techniques. There-
fore, it is necessary to generate a large number of spectrograms of signals under various
conditions to build a dataset. However, due to the uncontrollable nature of rainfall environ-
ments, simulation is chosen for generating the dataset in bulk. This approach enables the
production of a substantial number of spectrograms in a controlled environment, thereby
ensuring the quality and diversity of the dataset.

To highlight the characteristics of the signal under different conditions, a thresholding
method is applied to the signal energy during dataset creation. When the signal energy
exceeds 50% of the maximum value, this portion of the signal energy is retained, whereas
when the signal energy is below 50%, it is set to zero, as shown in Equation (15).

0.5 03 0.1 0.7 o5 0 --- 0 0.
02 0.6 0.3 0.8 0O 06 --- 0 08
: : S B O S O S (15)
09 0.6 05 0.8 09 0.6 05 0.8
04 0.1 03 0.6 0 o --- 0 06

Additionally, based on subsequent training results, the presence of axis and energy
grids has been found to reduce the accuracy of signal recognition. Therefore, during
dataset creation, it is necessary to remove the axis and energy grids to improve signal
recognition performance. Therefore, after performing thresholding and removing the axis
and energy grids, the spectrograms of the signals under different conditions obtained from
the simulation are shown in Figure 11.

@)

(b) ()

Figure 11. The spectrograms under different environmental and signal conditions from the simulation
after performing thresholding. (a) The target signal in a non-rain environment. (b) The rain clutter
signal in a rain environment (c) The mixed signal in a rain environment.

As shown in Figure 11a, the spectrogram of the target signal after threshold processing
exhibits a relatively concentrated and organized energy distribution. In contrast, the rain
clutter signal in Figure 11b shows a more dispersed energy distribution. Conversely, the
mixed signal in Figure 11c has a concentrated frequency-domain energy but with a less
organized energy distribution. These features provide clear criteria for distinguishing
between the target signal and rain clutter signal, laying a foundation for subsequent
identification efforts.

Batch-generated spectrograms, as shown in Figure 11, were used to create a dataset for
subsequent image recognition. This dataset consists of a total of about 3600 spectrograms,
including 1200 target signals, 1200 rain clutter signals, and 1200 mixed signals. For each
type of signal, 960 images are designated for the training set and 240 images for the test set.
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4.2. The Structure of the CNN

The CNN structure used in this study is based on LeNet and incorporates features from
the VGG16 network for enhancement. This modification aims to merge the advantages
of both classic networks to improve the network’s expressive power and classification
accuracy. Through this structural optimization, it is expected to achieve more efficient
and accurate data processing and feature extraction. The network structure includes
convolutional layers, pooling layers, fully connected layers, and activation layers.

e  Convolutional Layer: Extracts local features from the input data. The convolutional
layer applies a convolutional kernel by sliding it over the input data and performing
the convolution operation, thus generating feature maps. This operation can capture
local patterns in the input image, such as edges, corners, or textures. The study
employs 30 convolutional kernels of size 5 x 5;

e  Pooling Layer: Reduces the spatial dimensions of the feature maps, thereby decreasing
the computational load and memory usage while retaining important features. Pooling
operations typically use either max pooling or average pooling, which select the
maximum value or the average value from a local region, respectively. The choice
made in this study is max pooling;

e  Fully Connected Layer: Integrates and classifies the features extracted by the convo-
lutional and pooling layers. The fully connected layer flattens the output from the
previous layers into a one-dimensional vector and connects each neuron to all neurons
in the preceding layer, facilitating the final decision-making or prediction;

e Activation Layer: Introduces non-linearity to the network, enabling it to learn and
represent complex functions. Common activation functions include ReLU (Rectified
Linear Unit), Sigmoid, and Tanh. The activation function performs a non-linear
transformation on the output of each neuron. The activation function used in this
study is ReLU.

Figure 12 illustrates the structure of the CNN used in this study. First, the color
image with three channels is converted into a single-channel grayscale image. Next,
the network employs 30 convolutional kernels of size 5 x 5 to extract features from the
image. To introduce non-linearity, prevent gradient vanishing, and reduce overfitting,
the ReLU activation function is applied to the data output from the convolutional layers.
Subsequently, a max pooling layer is used to reduce the spatial dimensions of the feature
maps, thereby decreasing computational load and memory usage. Finally, the network
integrates and classifies the features extracted by the convolutional and pooling layers
through two fully connected layers. An additional ReLU activation function is included
between these two fully connected layers to further enhance the network’s representational
capability and performance. The final recognition result is determined by comparing the
maximum value among the three candidate results.

5 220x220x30 55x55x30
o | s o P —
50x50 4x4
1x1x3 1x1x100

Result

-

Softmax

4—-4— Affine2 I ReLU |w@= Affinel |

Figure 12. The structure of the CNN.
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During the training process, the output image sizes of each layer as well as the required
amounts of weight parameters and bias variables are detailed in Table 3. Table 3 provides
a comprehensive list of the output image dimensions, the number of weight parameters,
and the number of bias parameters for each layer. The size of the output image for each
layer varies according to the size of the convolutional kernels, the stride, and the pooling
operations. The number of weight parameters is determined by the quantity and size
of the convolutional kernels, while the number of bias parameters equals the number of
convolutional kernels. These data provide a complete understanding of the network’s
computational complexity and storage requirements, which aids in further optimization
and adjustment of the network structure.

Table 3. The structural parameters of the CNN.

The Output Image Dimensions Weights Bias
Input 3 x 224 x 224 0 0
Gray 1 %224 x 224 0 0
Convolution 220 x 220 x 30 750 30
ReLU1 220 x 220 x 30 0 0
Maxpooling 55 x 55 x 30 0 0
Affinel 1x1x100 9,075,000 100
ReLU2 1x1x100 0 0
Affine2 1x1x3 300 3

4.3. Model Training and Result Comparison
The complete steps for image recognition and classification using CNN are as follows:

1.  Generate the spectrograms preprocessed with feature enhancement as shown in
Figure 11 by using simulation. Then, normalize the image pixels to 224 x 224.

2. Classify the simulated dataset, using 80% for the training set and 20% for the test set.

3. Construct a CNN model as shown in Figure 12; choose the cross-entropy loss function,
and select the stochastic gradient descent optimization algorithm

4. Train the model and optimize it with gradient descent, setting the learning rate to
0.00001 and the batch size to 3. Stop training when the loss function stabilizes.

5. Evaluate the model performance on the test set by calculating metrics such as accuracy,
precision, recall and so on.

The above steps are used to train the CNN model and keep optimizing the model
parameters through step 3. The loss values of the model as the number of model training
times (epochs) increases are shown in Figure 13.

50

40

30

loss

20

10

0 10 20 30 40 50 60
epochs

Figure 13. The loss of the CNN model.
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As can be seen in Figure 13, the model parameters stabilize after more than 15 epochs.
Therefore, recognition performance is subsequently validated on the test set using these
stable parameters and the results are plotted as a confusion matrix. Further, these results
are compared with the performance of the VGGNet model and the Resnet model. The
results of the confusion matrix are shown in Figure 14.

Confusion matrix Confusion matrix
e 219 200 e 240 200

150 150

rain 239

rain
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Predicted Labels
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target 50 target 243 50

3 Q X . . X
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(b) (©

Figure 14. The results of the confusion matrix under different CNN models. (a) The confusion matrix
under the VGGnet model. (b) The confusion matrix under the Resnet model. (c¢) The CNN confusion
matrix under the model used in this paper.

The recognition results of the test set are displayed in the confusion matrix in Figure 14.
As can be seen from the figure, the VGGNet model and the Resnet model have significantly
more recognition error results than the CNN used in this paper. Despite the better performance
of the CNN used in this paper, two mixed signals are still misidentified as rain clutter. The
reason for this analysis may be due to the excessive energy of the rain clutter, which leads to
recognition errors. By comparing the computational metrics and training time for 20 epochs
in Table 4, it can be seen that the CNN model used in this paper outperforms the VGG
network and the Resnet network in most of the metrics. Therefore, it can be concluded that
the modified CNN is significantly better than the VGG network and the Resnet network in
terms of recognition accuracy. Therefore, the modified CNN will be selected for subsequent
practical applications.

Table 4. The metrics of the model performance on the test set under different models.

VGGnet Resnet CNN of This Paper

Mix

Rain Target Mix Rain Target Mix Rain Target

Precision
Recall
Specificity
Time(s)

0.938 0.947 0.992 0.986 0.913 0.996 0.984 0.988 1.0

0.938 0.951 0.988 0.901 0.988 1.0 0.988 0.984 1.0

0.969 0.973 0.996 0.994 0.953 0.998 0.992 0.994 1.0
101,988.78 5022.14 260.67

5. Application to Anti-Rain Clutter

After determining the optimal parameters of the model, it was applied to the ranging
measure task of the triangular wave linear frequency modulation detector in the rainfall
environment. The echo signal received by the detector was recognised. When the recogni-
tion result was rain clutter, the signal was not subjected to the ranging measure process;
conversely, when the recognition result showed that the signal contains the target signal,
the signal was ranged. The ranging measure results after anti-interference processing are
shown in Figure 15. When the signal is recognized as containing the target signal five times
in a row, it is judged that the target is already within the detection range of the detector
which is reflected in the figure as yellow lines.
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Figure 15. The ranging result after recognition.

When the CNN model recognised the echo signal from the triangular wave linear
frequency modulation detector as a rain clutter signal, the system did respond to the
signal. Specifically, the system did not output the range threshold before the yellow line in
Figure 15, and started outputting the range threshold only after the yellow line judgement
condition. As can be seen from the results, the system successfully and correctly outputs
the range threshold at nine meters. This validates the effectiveness of using the recognition
method for anti-rain clutter.

6. Conclusions

The purpose of this paper is to investigate the anti-interference method of millimeter-
wave radar in severe weather environments such as rainfall environments. The influence
of a rainfall environment on the millimeter-wave radar signal is studied based on the
electromagnetic simulation by CST. Subsequently, according to the effect of the rainfall
environment on the signal, we complete the signal detection model under the rainfall envi-
ronment and conduct a simulation of the echo signal for the CNN model dataset production.
We then combine this with experimental measurements to study the rainfall environment
on the triangular wave linear frequency modulation detector ranging performance and use
the CNN recognition to classify the echo signal. Ignoring the results of rain clutter signals,
we then start the output of the distance threshold when it is in the part that contains the
target signal. The recognition results of the CNN network are compared with VGGnet. The
comparative analysis validates the accuracy of the CNN model used in this paper. The
final results validate the effectiveness of using the CNN model in this paper to classify
signals in a rainfall environment for anti-interference effects. This study provides new
ideas and solutions for an anti-interference method for millimeter-wave radar when it
faces interference from a bad weather environment, which is important for improving the
anti-interference capability of radar systems. At the same time, this study also provides
a valuable reference for future related research and promotes further in-depth discussion
and development of anti-interference technology.
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