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Abstract: The rapid development of sensor technology has made multi-modal remote sensing data
valuable for land cover classification due to its diverse and complementary information. Many
feature extraction methods for multi-modal data, combining light detection and ranging (LiDAR)
and hyperspectral imaging (HSI), have recognized the importance of incorporating multiple spatial
scales. However, effectively capturing both long-range global correlations and short-range local
features simultaneously on different scales remains a challenge, particularly in large-scale, complex
ground scenes. To address this limitation, we propose a multi-scale graph encoder–decoder network
(MGEN) for multi-modal data classification. The MGEN adopts a graph model that maintains global
sample correlations to fuse multi-scale features, enabling simultaneous extraction of local and global
information. The graph encoder maps multi-modal data from different scales to the graph space and
completes feature extraction in the graph space. The graph decoder maps the features of multiple
scales back to the original data space and completes multi-scale feature fusion and classification.
Experimental results on three HSI-LiDAR datasets demonstrate that the proposed MGEN achieves
considerable classification accuracies and outperforms state-of-the-art methods.

Keywords: LiDAR; hyperspectral image; multi-modal data fusion; graph model; deep learning

1. Introduction

Remote sensing image classification plays a significant role in fields like land cover moni-
toring and forest management [1,2]. The hyperspectral image (HSI) stands out for its exceptional
ability to differentiate materials based on the unique spectral signatures [3,4]. However, in
real-world applications, different objects may display similar or even identical spectral
signatures due to environmental influences under certain conditions [5]. Conversely, the
same type of object may exhibit varying spectral characteristics due to noise, temperature
fluctuations, and other factors [6] during the imaging process [7]. As a result, relying solely
on HSI for analysis poses certain limitations when confronted with complex ground details
in large-scale scenes [8].

Facing the limitation of single-modality data, integrating multi-modal images has
demonstrated significantly greater advantages across various research fields [9–11]. For
instance, light detection and ranging (LiDAR) data [12], acquired by emitting laser beams
and analyzing the reflected signals to determine precise distances, provides valuable
altitude information over large areas through sensor scanning, which derives various tasks
such as 3D instance segmentation [13] and point cloud segmentation [14]. Combining
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LiDAR with HSI data collected from the same area is beneficial to partly overcome the
limitations of single-modal information, substantially enhancing land cover classification
accuracy [15,16]. Unlike natural images, remote sensing images often contain more intricate
information, with variations in the positions of similar land cover features, making it crucial to
extract global information from multi-modal remote sensing data [17]. In recent years, numerous
scholars have explored this challenge using a variety of deep learning models. These models can
be generally categorized into three types, including convolutional neural network (CNN)-based
methods, transformer-based methods, and graph-based methods [18–21].

In the CNN-based methods, various strategies have been developed to capture global
information from multi-modal data. For example, Song et al. [22] introduced a two-stream
deep CNN in their hashing-based deep metric learning method to separately extract and
then fuse spectral-spatial features, and enhanced classification accuracy with a unique loss
function that incorporates both semantic and metric losses. Wang et al. [23] optimized
traditional CNN by pyramid convolutions with different kernel sizes to extract features at
different scales and subsequently used effective feature recalibration modules to enhance
the multi-scale spatial-spectral features. Zhao et al. [24] proposed a hierarchical random
walk network, which utilized the predicted distribution of dual-tunnel CNN to serve as
a global prior on the fusion of HSI and LiDAR data and employed a pixel-wise affinity
branch as pixel priors to enforce spatial consistency in the deeper layers of networks.
Feng et al. [25] designed a dynamic scale hierarchical fusion network based on CNN,
which dynamically selected and integrated features across scales to address the high-
dimensional problem of multiscale features. It used spatial attention for shallow feature
fusion and modal attention for deep fusion to improve classification accuracy. Wang
et al. [26] introduced a nearest neighbor-based contrastive learning network (NNCNet) by
introducing self-supervised contrastive learning and a bilinear attention fusion module
to CNN-based joint classification for interpreting ground objects at a more precise level.
Xue et al. [27] augmented the attentional feature fusion module on the basis of CNN,
and a global average pooling layer was designed to enhance the representation of global
information in features. Gao et al. [28] proposed an adaptive multiscale spatial–spectral
enhancement network (AMSSE-Net) based on CNN to fuse features from HSI and LiDAR
data to improve classification performance. With the property that the convolution kernel
shares the feature channels within the group, the involution operator was introduced
in the network to enhance the correlation of spectral dimensions. Besides, dynamically
assigned weights were utilized to guide the selection of the optimal model, which is
determined by the joint loss across the three feature fusion methods (maximum, adaptive
addition and concat). Mohla et al. [29] devised deeper networks for multimodality features
extraction, incorporating two spatial attention modules and one modality attention module.
With a higher number of network layers, deeper convolutional layers can obtain larger
receptive fields, corresponding to larger regions of the original image, achieving extensive
feature perception. However, blindly stacking numerous convolutional layers may increase
network depth and training difficulty, leading to a higher risk of overfitting.

Besides CNN, the transformer has attracted significant attention in computer vision
due to its remarkable ability to model global relationships among samples in the visual
domain [30,31]. In deep networks based on transformers, images often need to be serialized
and input to the network in the form of image block sequences. In Ref. [32], a cross-modal
enhanced CNN and transformer module was incorporated into a dual-branch feature
fusion network to enhance interactive information from multi-source data both locally
and globally, thereby enabling the robust integration of diverse features. Zhao et al. [33]
proposed a novel dual-branch method combining a hierarchical CNN and a transformer
network to enhance multisource data fusion and improve classification accuracy, with a
cross-token attention fusion encoder that leverages CNN’s spatial extraction capabilities
and the transformer’s long-range dependency modeling. Song et al. [34] designed a height
information-guided hierarchical fusion-and-separation network, in which the transformer
and CNN were introduced in the dual-structure feature encoders to encode the spectral
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and spatial information, while deformable convolution-based modules were employed in
feature fusion-and-separation blocks for modality-shared and modality-specific feature
extraction. Yang et al. [35] selected HSI bands based on LiDAR data by introducing a
cross-attention mechanism from the transformer architecture to reduce the redundancy of
HSI and improve the classification accuracy. Zhang et al. [36] proposed a local information
interaction transformer (LIIT) model to capture and fuse multi-modal data dynamically.
A dual-branch transformer was designed in LIIT to fully extract the sequence features,
and a local-based multisource feature interactor was developed to coordinate local spatial
features with the global-based transformer. Ni et al. [37] introduced a multiscale head
selection transformer (MHST) network to capture nonredundant features across multiple
dimensions of data. An adaptive global feature extraction module was designed in MHST,
which leveraged head selection pooling within the transformer to dynamically reduce
token redundancy. Sun et al. [38] introduced a morphological feature enhancement module
and a transformer-based deep dilated convolution module in the encoder enabling efficient
integration of data features. Feng et al. [39] proposed a spectral-spatial-elevation fusion
Transformer framework (S2EFT) adopting the Patch as the input of the transformer for
taking full advantage of sequence data and spatial features. Additionally, Zhao et al. [40]
used a CNN with residual connections to extract features from multi-modal data, then the
features were serialized to execute further feature learning by integrating the transformer
with Fourier transform, ultimately predicting the categories of land objects for classification
tasks. While the transformer-based classification methods excel at extracting global features,
images need to be serialized into image blocks to accommodate the structural characteristics
of the transformer, resulting in the capture of global information to be converted into the
extraction of associations between image blocks, which will potentially lead to insufficient
extraction of local information within each image block.

Compared to CNNs, graph models inherently possess an advantage in modeling and
extracting global information. In a topological graph, any two nodes can be connected
by associating node features to establish edges, and the relationship between features
among nodes is characterized by the weights of edges, thus overcoming the limitations
of the two-dimensional structure of images. For example, Feng et al. [41] developed a
multi-branch dual-channel graph convolutional network to remove the redundant infor-
mation for integrating spectral–elevation–spatial features. Cai et al. [42] constructed an
undirected weighted graph with modality-specific tokens in their multimodal fusion net-
work to address the problem of long-distance dependencies. Wan et al. [43] segmented
HSI into regions, with each segmented region serving as a node, to establish a complete
topological graph by associating regions with each other. After that, they designed a
dynamic graph convolutional network for feature learning, continuously updating the
connection relationships between edges during training. Cai et al. [44] employed prin-
cipal component analysis to reduce the HSI dimensionality. The principal components
were input into CNN for feature extraction, and the features were taken as a series of
graph nodes to establish a topological graph. Then the graph CNNs were subsequently
employed for feature extraction, with cross-attention added to guide the features. Sha
et al. [45] adopted graph attention networks for feature extraction from the topological
graph constructed with HSI, ensuring that the features included both spatial and spectral
characteristics. The aforementioned graph-based methods are effective in modeling global
information, yet they face two main challenges. Firstly, these methods are still restricted
to feature extraction within a single modality, without considering the fusion of global
information from multiple modalities. Secondly, these methods still have limited capability
in capturing local information. For instance, Sha et al. [45] directly converted pixels in
images into the nodes of the topological graph, disregarding the local spatial information
in the original images, while Wan et al. [43] used superpixel segmentation to retain certain
spatial information which was highly sensitive to the scale of segmentation.

To address the mentioned issues, a multi-scale graph encoder–decoder network
(MGEN) is proposed for multi-modal data classification. The MGEN is capable of ex-
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tracting multi-modal image information at multiple scales, achieving local-global infor-
mation fusion and robust feature representation. Specifically, MGEN consists of a graph
encoder, graph feature extraction module and graph decoder, each module comprises three
hierarchical levels of information.

In the graph encoder, unsupervised region segmentation is carried out on the images
of two modalities through the segmentation algorithm, dividing spatial regions according
to the semantic information of the images, and aggregating pixels from the original images
to generate a series of superpixels. The superpixels are then transformed into the graph
space, generating nodes and edges of the topological graph based on superpixel features
and adjacency relationships, and the topological graphs with variety scales are generated by
controlling the number of regions in superpixel segmentation. In the graph feature extrac-
tion module, different network branches are adopted to extract features from multi-scale
topological graphs, incorporating the multiscale short- and long-range graph convolutional
network (MSLGCN) [46] to extract features. In the graph decoder, the features are mapped
from graph nodes back to the original pixels, and feature alignment is performed at the
pixel scale, followed by multi-scale feature fusion. Finally, a classifier constructed from
fully connected networks predicts pixel categories to obtain a category map.

The main contributions of this work are summarized as follows:

1. A multi-scale graph encoder–decoder network is proposed for the classification of
remote sensing multi-modal data. This network is able to extract features from the
graph space with multiple scales, achieving multi-level fusion of multi-modal global
and local information.

2. Graph encoder and graph decoder are proposed for extracting modality-independent
multi-scale features, while simultaneously measuring the direct similarity between
short-range and long-range samples in multi-modal images to enhance
feature discriminability.

3. Experiments on remote sensing multi-modal datasets are conducted, revealing that
the proposed MGEN achieves comparable performance with state-of-the-art methods.

The remaining parts of the paper are organized as follows. Section 2 describes the
proposed network in detail. The experimental results and analyses are shown in Section 3.
Then, the effects of parameters in the network are discussed in Section 4. Finally, Section 5
summarizes some concluding remarks.

2. Methodology

This section details the proposed MGEN. Section 2.1 introduces the network architec-
ture of MGEN, Section 2.2 introduces the graph encoder, Section 2.3 details the multi-scale
graph features extraction, and Section 2.4 describes the graph decoder.

2.1. Network Architecture

The framework of the proposed MGEN in this paper is shown as Figure 1. The network
performs feature extraction within three different scales, each of which involves the fusion
process of HSI and LiDAR data. During the feature extraction process at each scale, images
of HSI and LiDAR are mapped into graph space with a variety of scale transformations.
Then, graph convolutional networks are employed to extract features from the encoded
topological graphs, and a graph decoder is adopted to reconstruct the features consistent
with the original data size. Finally, the reconstructed multi-scale features are fused to
generate multi-modal features which are subsequently inputted into a classifier to derive a
class map.
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Figure 1. Overall framework of the proposed MGEN for multi-modal data classification.

2.2. Graph Encoder

The structure of the graph encoder in the MGEN is illustrated in Figure 2. The HSI
and LiDAR images are represented as XH ∈ RH×W×C and XL ∈ RH×W×1, respectively,
where H and W denote the pixel height and width of the images, and C represents the
number of spectral bands in the HSI. To preserve the spatial neighborhood information of
the original images, unlike some existing methods that directly construct topological graphs
from images, we perform unsupervised image segmentation to divide images into multiple
adjacent regions, and each region serves as a node in the topological graph. Considering
the excellent performance of simple linear iterative clustering (SLIC) [47] in unsupervised
segmentation, SLIC is adopted here to perform region segmentation on HSI and LiDAR
images to generate superpixels. The number of superpixels, denoted as n, can be expressed
as follows:

n =

⌈
H × W

λ

⌉
(1)

where λ is the scale parameter for controlling the number of superpixels. The λ in three
scales are denoted with λ1, λ2, and λ3. Let S = {Si}n

i = 1 denote the set of all superpixels

in the image, where Si =
{

xi
j

}Ni

j = 1
is the ith superpixel, xi

j is the jth original pixel in

Si, and Ni is the number of original pixels contained in the superpixel. Relation matrices
QH ∈ Rn×C and QL ∈ R1×C are accordingly generated by SLIC, where each element
in QH and QL records the assignment of each pixel in the image to a certain suprepixel.
Specifically, each row in QH corresponds to a origin HSI pixel, each column corresponds
to a superpixel generated by SLIC. When the ith pixel is assigned to the jth superpixel,
QH

ij = 1, otherwise QH
ij = 0. The elements in QL are determined similarly.

Then, we transform all superpixels into nodes of topological graph, each node cor-
responds to a superpixel Si. To complete the construction of the topological graph, it is
necessary to obtain the feature matrices VH and VL for HSI and LiDAR, respectively, as
well as the adjacency matrices AH and AL representing the connectivity between nodes.
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Figure 2. Structure of the graph encoder.

2.2.1. Node Feature Extraction

The original data from HSI and LiDAR may contain redundant information and
noise, which negatively influence feature extraction. To mitigate these influence factors,
we preprocess the pixels by a 1 × 1 CNN. Then, according to the results of superpixel
segmentation, pixel information is further integrated into node features of the topological
graph. Specifically, the output of the lth convolutional layer in the node feature network
structure is as follows:

X(l) = σ
(

W(l) ∗ BN
(

X(l−1)
)
+ b(l)

)
(2)

where ∗ denotes the convolution operator, X(l−1) is the input to the lth layer, BN(·) is batch
normalization operation, σ(·) is the activation function, and W(l) and b(l), respectively,
denote the learnable parameters and biases of this convolutional layer. Since the convo-
lutional kernel size is 1 × 1, the size of the network output remains the same as the input
after the convolution operation. The X(l) = {x̃i} from Equation (2) is still a pixel-level
feature, where x̃i represents the feature of the ith pixel rather than the node-level features
of the topological graph. To achieve transformation of the feature levels while preserving
the spatial information of the original image, feature aggregation based on superpixels is
required. If Vk represents the feature of the kth node, the feature aggregation method is
shown as follows:

Vk =
1

Nk

Nk

∑
j = 1

x̃j (3)

where Nk represents the number of pixels in the superpixel corresponding to node Vk.
The feature aggregation method with average value helps alleviate the impact of outlier
pixels with inaccurate segmentation. Combining all node feature vectors yields the node
feature matrix V = [V1, V2, · · · , Vk, · · · , Vm], where m is the number of nodes. Thereby,
node feature matrices VH and VL for HSI and LiDAR data can be obtained through the
process above.

2.2.2. Adjacency Matrices

After defining the node features V, it is also necessary to establish the connectivity
of edges according to the relationship between nodes, generating adjacency matrix A. To
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maximize the preservation of spatial information contained in the original image, we utilize
the adjacency between superpixels to determine A. Generating an adjacency matrix based
on spectral similarity is a common way for hyperspectral image; however, calculating
vertex-wise similarity imposes a significant computational burden. Therefore, the proposed
MGEN constructs the adjacency matrix using spatial relationships within the image. In
other words, the edge between every two spatially adjacent superpixels is weighted to
1, while the weight of all other edges is set to 0, indicating no edge adjacency. Thus, the
adjacency matrix can be expressed as follows:

Aij =

{
1, if Si and Sj are adjacent
0, otherwise.

(4)

where Aij is the element located at (i, j) in the adjacency matrix A. With the method above,
we can obtain the adjacency matrices AH and AL for HSI and LiDAR data, respectively.

2.3. Multi-Scale Graph Features Extraction

To extract multi-modal data features from different scales, a multi-branch graph
convolutional network is adopted for multi-scale feature extraction after graph encoding.
For each branch, the same depth network is used for feature extraction. The process of
feature extraction is elaborated below.

2.3.1. Graph Convolution

After obtaining the node feature matrix V and adjacency matrix A of the topological
graph, graph neural networks can be employed for feature extraction. We can obtain the
degree matrix D based on the adjacency matrix A. The degree matrix D is a diagonal
matrix, and its elements on the diagonal can be calculated as Dii = ∑j Aij. Thereon, the
Laplacian matrix of the topological graph is derived as follows:

L = D − A (5)

The Laplacian matrix contains crucial information in the topological graph, thus
allowing the transformation from graph analysis problems into Laplacian matrix analysis
problems. The Laplacian matrix is normalized as Lnorm = D−1/2LD−1/2 [48], which is a
real symmetric positive semidefinite matrix and can be factorized as follows:

Lnorm = I − D−1/2AD−1/2 = UΛUT (6)

where U ∈ Rn×n and Λ ∈ Rn×n represent the matrix of eigenvectors and the diagonal
matrix of eigenvalues, respectively. All eigenvectors are mutually orthogonal, and the
elements λi on the diagonal of Λ are the eigenvalues. So the convolutional operations on
the graph can be defined as follows:

V(l+1) = UgθUTV(l) (7)

where V(l) is the input node features, V(l+1) is the output node features, and diagonal ma-
trix gθ represents the parameters to be learned. To reduce computational complexity during
convolution gθ can be considered as a function of Λ [49], and the Kth order Chebyshev
polynomial TK(·) is used to approximate gθ as follows:

gθ(Λ) ≈
K

∑
k = 0

θkTK

(
Λ̃
)

(8)

where Λ̃ = 2Λ
λmax

− I. Generally, it is enough to take K = 1. As T0

(
Λ̃
)

= 1, T1

(
Λ̃
)

= Λ̃,
it could be the following:

gθ(Λ) = θ0 + θ1Λ̃ (9)
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If λmax ≈ 2, θ = θ0 = −θ1, the convolutional operations in Equation (7) are
redefined as follows:

V(l+1) = U
(

θ0 + θ1Λ̃
)

UTV(l) = θ
(

I + D− 1
2 AD− 1

2

)
V(l) (10)

2.3.2. Long-Range and Short-Range Attention Graph Convolution Module

Considering the large sizes of the multi-modal images will make it difficult to simulta-
neously take into account the relationships between distant nodes and nearby nodes, we
adopt here the MSLGCN proposed by Zhu et al. [46] to cope with the adjacency information
over different ranges. An attention mechanism is incorporated into the graph convolution
process by MSLGCN to separately extract relations of long-range nodes and short-range
nodes in a targeted manner. In the network, the convolution operation consists of two
sub-modules to extract local and global features, each of which employs different adjacency
matrices for the relations of long-range nodes and short-range nodes to achieve distinct
feature learnings.

An attention matrix M is defined to characterize the range relations between nodes
in the topological graph. If the feature of the ith node is represented as V(i), the element
located at (i, j) in the attention matrix M is as follows:

M(i, j) =
1

1 + e−FC(V(i))·FC(V(j))
(11)

where FC is a fully connected network, · is matrix multiplication. The values of M(i, j)
indicate the similarity between the ith and jth nodes. Based on the attention matrix M, the
adjacency matrices Ãl for representing long-range node relations and Ãs for short-range
node relations can be expressed as follows:

Ãl(i, j) =

{
M(i, j), i ̸= j

M(i, j) + 1, i = j

Ãs(i, j) =

{
M(i, j)·(A(i, j) + I(i, j)), i ̸= j

M(i, j)·(A(i, j) + I(i, j)) + 1, i = j

(12)

Note that self-connection operation is added to the adjacency matrix by A + I here to
preserve the own features of the node in convolution. Correspondingly, the self-connection
degree matrix D̃ has D̃(i, i) = ∑j(A(i, j) + I(i, j)). From the definition of adjacency matrix
above, we obtain the attention weights with long-range and short-range as Cl and Cs:

Cl = D̃
−1/2

ÃlD̃
−1/2

+ I

Cs = D̃
−1/2

ÃsD̃
−1/2

+ I
(13)

According to the analysis above and combining the results of long-range and short-
range feature extraction, the propagation rule for the final graph convolutional network
layer is as follows:

V(l+1) = FC
[
σ
(

ClFC
(

V(l)
))

, σ
(

CsFC
(

V(l)
))]

(14)

where FC(·) denotes a fully connected layer, [·, ·] represents feature concatenation operation,
and σ(·) is the activation function.

The network consists of branches in three scales, each of which yields features V(l+1)
H

and V(l+1)
L for both HSI and LiDAR images.

2.4. Graph Decoder

After completing the multi-scale feature extraction, fusing the features of every scale
is demanded. Furthermore, aiming at the final class map, the features are mapped back



Remote Sens. 2024, 16, 3912 9 of 22

to the pixel level to obtain pixel-level features and the class information of each pixel.
Therefore, we propose a graph decoder to achieve multi-scale multi-modal feature fusion
and pixel-level feature mapping.

Here, we let V(l+1)
H1 , V(l+1)

H2 , V(l+1)
H3 represent the HSI features at three scales, while

V(l+1)
L1 , V(l+1)

L2 , V(l+1)
L3 represent the LiDAR features. Each matrix contains the node features

that have been segmented into superpixels, which need to be mapped back to the original
image size, denoted as PH1, PL1, PH2, PL2, PH3 and PL3. The correspondence between pixel
and superpixel is recorded in relation matrices QH and QL. Therefore, mapping superpixel
features back to the original image size can be operated by

PH1 = QH1V(l+1)
H1

PL1 = QL1V(l+1)
L1

PH2 = QH2V(l+1)
H2

PL2 = QL2V(l+1)
L2

PH3 = QH3V(l+1)
H3

PL3 = QL3V(l+1)
L3

(15)

where QH1 and QL1 denote the relation matrices corresponding to scale 1. The features of
other scales 2 and scale 3 are generated in a similar manner. When the features from all
three scales are generated, the fused feature F is defined by

F = FC(FC([PH1 ⊗ PL1, PH2 ⊗ PL2, PH3 ⊗ PL3])) (16)

where [·, ·, ·] is the concatenation operation of multiple features, and ⊗ is the multiplication
by elements. The function FC(·) denotes a fully connected layer. After feature fusion, the
final features containing multiple scales are processed by the softmax function to predict
the class for each pixel, which is defined by

Y =
eFi

∑c
j = 1 eFj

(17)

where Y is the class vectors output from the network. Fi and Fj denotes the ith and jth
element of F, respectively. c is the number of classes in the dataset. The softmax function
defined by Equation (17) and the two fully connected layers in Equation (16) make up a
typical softmax classifier [50]. The loss function of the network adopts the cross-entropy
loss, which is commonly used in classification tasks.

3. Results
3.1. Datasets

To verify the effectiveness of the proposed MGEN in multi-modal data classification,
we conducted experiments on existing remote-sensing HSI and LiDAR datasets. Three
datasets are encompassed in the experiments to ensure data diversity, namely the Trento
dataset [51], Missouri University and University of Florida dataset (MUUFL) [52,53], and
the Houston dataset [54]. Detailed information about the datasets is presented below.

3.1.1. Trento Dataset

The Trento dataset was captured in rural areas surrounding the city of Trento, Italy,
containing HSI and LiDAR images. The HSI consists of 600 × 166 pixels and includes
63 spectral bands ranging from 420.89 nm to 989.09 nm, with a spectral resolution of 9.2 nm
and spatial resolution of 1 m. The LiDAR is a single-channel image containing altitudes
corresponding to the ground positions, with the same dimensions as the HSI. The annotated
information in the dataset consists of six classes. Approximately 10% of the labeled pixels



Remote Sens. 2024, 16, 3912 10 of 22

are used for training, while the remaining 90% are used for testing. Detailed information
about the dataset and the number of samples for each class is presented in Table 1.

Table 1. The number of training and testing samples for each class on Trento dataset.

No. Class Train Test All

1 Apple trees 404 3630 4034
2 Buildings 291 2612 2903
3 Ground 48 431 479
4 Woods 913 8210 9123
5 Vineyard 1051 9450 10,501
6 Roads 318 2856 3174

Total 3025 27,189 30,214

3.1.2. MUUFL Dataset

The MUUFL dataset is a co-registered aerial HSI-LiDAR dataset. The two modal
images in this dataset were acquired simultaneously during an aerial flight in November
2010, located in Mississippi, USA. The image dimensions are 325 × 220 pixels. The HSI
contains 64 spectral bands, while the LiDAR image is a single-channel image with altitude
information. The labeled pixels in the dataset include 11 classes. We randomly selected
10% of annotated pixels for training, while the remaining annotated pixels were used for
testing. Further details about this dataset are provided in Table 2.

Table 2. The number of training and testing samples for each class on MUUFL dataset.

No. Class Train Test All

1 Trees 2325 20,921 23,246
2 Grass ground 427 3843 4270
3 Mixed ground 689 6193 6882
4 Dirt and sand 183 1643 1826
5 Road 669 6018 6687
6 Water 47 419 466
7 Buildings 224 2009 2233
8 Shadow 624 5616 6240
9 Sidewalk 139 1246 1385
10 Yellow curb 19 164 183
11 Cloth panels 27 242 269

Total 5373 48,314 53,687

3.1.3. Houston Dataset

The Houston dataset originates from the Data Fusion Contest initiated by the IEEE
Geoscience and Remote Sensing Society (GRSS) in 2013. The HSI and LiDAR in this dataset
were captured around the University of Houston and its surrounding neighborhoods with
a spatial resolution of 2.5 m and a dimension of 349 × 1905 pixels. The HSI consists of
144 spectral bands covering a wavelength range from 380 to 1050 nm, and the single-
channel LiDAR image indicates the altitude on the corresponding position. The annotation
information in the dataset includes 15 classes. The number of training and testing samples
for each class, along with other detailed information, are provided in Table 3.

Table 3. The number of training and testing samples for each class on Houston dataset.

No. Class Train Test All

1 Healthy grass 126 1125 1251
2 Stressed grass 126 1128 1254
3 Synthetic grass 70 627 697
4 Trees 125 1119 1244
5 Soil 125 1117 1242
6 Water 33 292 325
7 Residential 127 1141 1268
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Table 3. Cont.

No. Class Train Test All

8 Commericial 125 1119 1244
9 Road 126 1126 1252
10 Highway 123 1104 1227
11 Railway 124 1111 1235
12 Parking lot 1 124 1109 1233
13 Parking lot 2 47 422 469
14 Tennis court 43 385 428
15 Running Track 66 594 660

Total 1510 13,519 15,029

3.2. Experimental Settings

The experimental environment is based on the Linux Ubuntu operating system. The
PyTorch 1.7.0 deep learning framework with Python 3.6 is adopted to construct the network.
The learning rate is set to 10−4 and the maximum number of epochs is set to 500 in training.
Three scales in MGEN are set as λ1 = 100, λ2 = 120, and λ3 = 70, which will be detailed in
the parameter analysis. In terms of evaluation metrics, besides the classification accuracy
for each class, we also utilize Overall Accuracy (OA), Average Accuracy (AA) and Kappa
coefficient. OA represents the proportion of correctly classified samples to the total number
of samples, while AA indicates the average of the classification accuracies for each class, and
the Kappa coefficient measures the agreement between predicted and actual classifications.

3.3. Comparative Methods

In order to assess the performance of the proposed MGEN, various existing methods
are selected as compared methods in the experiments, including Support Vector Machine
(SVM), Laplacian Embedding (LE), Spatial Spectral Schrodinger Eigenmap (SSSE) [55],
Contextual CNN (CCNN) [56], 3D CNN [57], Two-Branch CNN (TBCNN) [58], and Hier-
archical Random Walk Network (HRWN) [59]. The characteristics of these methods are
outlined below:

• SVM: This is a widely used supervised learning algorithm that maps image data into
a high-dimensional feature space and identifies the optimal boundary to maximize
separation between different classes.

• LE: It classifies hyperspectral images by reducing dimensionality and preserving local
structure to better reveal relationships between pixels.

• SSSE: It combines Laplacian embedding and Schrodinger eigenmaps to extract spectral
features and maintain important contextual details.

• CCNN: This method integrates spectral data with contextual information, allowing it
to capture local relationships and preserve spatial structures.

• 3D CNN: The method processes multi-band data by directly performing 3D convolu-
tion operations, collecting spatial and spectral information simultaneously.

• TBCNN: The method harnesses image information by using two parallel convolutional
branches to separately extract spectral and spatial features.

• HRWN: It utilizes a hierarchical structure combined with a random walk algorithm
to incorporate local and global relationships, enhancing both spatial coherence and
classification accuracy.

3.4. Experimental Results and Analysis

The comparative experimental results are exhibited in Tables 4–6 and Figures 3–5.
The tables present the statistical accuracy of each class and three accuracy metrics. The
figures display the class maps plotted in various colors, enabling a visual comparison of
each method’s classification results with the ground truth, which highlights the accuracy of
the methods.
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Table 4. Classification results of the proposed MGEN and other compared methods on Trento dataset.

Class No. SVM LE SSSE CCNN 3D CNN TBCNN HRWN MGEN

1 81.90% 60.22% 100.00% 100.00% 99.97% 53.83% 99.19% 100.00% *
2 96.94% 98.12% 99.08% 94.80% 96.53% 98.53% 93.79% 98.74%
3 96.29% 93.04% 97.68% 96.06% 90.49% 98.73% 97.00% 99.07%
4 99.67% 99.00% 99.84% 100.00% 100.00% 100.00% 99.91% 100.00%
5 94.70% 89.96% 99.92% 99.95% 100.00% 99.95% 98.68% 100.00%
6 94.78% 90.76% 97.06% 97.13% 98.73% 99.86% 98.70% 98.53%

OA 94.74% 89.64% 99.49% 99.12% 99.38% 88.36% 98.60% 99.71%
AA 94.05% 88.52% 98.93% 97.99% 97.62% 91.82% 97.88% 99.39%

Kappa 92.97% 86.09% 99.32% 98.82% 99.17% 84.95% 98.13% 99.61%

* The maximum accuracy of each category is displayed in bold. The same mark is applied to the subsequent tables
as well.

Table 5. Classification results of the proposed MGEN and other compared methods on MUUFL dataset.

Class No. SVM LE SSSE CCNN 3D CNN TBCNN HRWN MGEN

1 95.21% 92.58% 98.03% 97.81% 96.54% 97.16% 96.79% 97.21%
2 64.87% 71.95% 93.08% 83.35% 99.15% 85.71% 69.81% 95.23%
3 83.87% 78.14% 93.25% 90.02% 46.90% 81.15% 95.14% 93.96%
4 71.09% 74.13% 91.66% 81.86% 85.80% 92.25% 93.21% 97.71%
5 91.86% 90.13% 96.91% 94.84% 94.42% 90.00% 93.79% 91.24%
6 91.41% 73.51% 95.23% 87.83% 89.31% 98.33% 95.98% 96.76%
7 43.40% 67.99% 91.94% 91.39% 92.19% 94.57% 84.80% 96.03%
8 92.82% 79.31% 96.97% 96.96% 94.48% 97.25% 98.57% 96.49%
9 18.38% 45.02% 58.67% 72.02% 76.71% 85.54% 84.86% 84.32%

10 78.05% 3.66% 1.22% 32.73% 25.63% 56.67% 85.37% 71.30%
11 66.53% 87.19% 94.21% 83.88% 62.40% 95.93% 88.65% 98.75%

OA 85.46% 83.87% 94.90% 93.35% 88.48% 92.56% 92.60% 95.36%
AA 72.50% 69.42% 82.83% 82.97% 78.50% 88.60% 89.73% 92.64%

Kappa 80.61% 78.69% 93.24% 91.18% 84.85% 90.14% 91.89% 93.89%

Table 6. Classification results of the proposed MGEN and other compared methods on the Hous-
ton dataset.

Class No. SVM LE SSSE CCNN 3D CNN TBCNN HRWN MGEN

1 93.33% 90.40% 95.47% 73.45% 86.23% 88.85% 91.09% 99.73%
2 98.05% 95.57% 93.97% 94.77% 99.91% 96.50% 95.65% 98.58%
3 98.72% 98.41% 99.52% 99.52% 97.45% 100.00% 99.86% 100.00%
4 99.20% 94.92% 96.69% 99.91% 98.13% 99.55% 100.00% 100.00%
5 99.55% 95.40% 100.00% 94.90% 100.00% 99.64% 98.03% 100.00%
6 90.75% 85.27% 97.95% 88.01% 88.36% 99.59% 100.00% 97.94%
7 91.59% 83.51% 97.46% 97.63% 79.49% 97.46% 96.74% 97.72%
8 91.96% 89.31% 94.10% 86.52% 96.25% 100.00% 98.29% 98.03%
9 84.55% 69.16% 93.43% 64.51% 56.08% 88.13% 97.11% 90.48%

10 94.02% 53.24% 98.19% 99.37% 75.54% 89.72% 84.00% 100.00%
11 90.82% 77.77% 100.00% 98.65% 83.72% 91.21% 93.33% 100.00%
12 85.39% 54.40% 89.81% 73.51% 93.15% 76.66% 79.89% 98.92%
13 23.46% 15.60% 94.79% 44.08% 50.95% 100.00% 92.76% 99.29%
14 97.40% 90.95% 100.00% 92.73% 96.62% 100.00% 97.42% 100.00%
15 97.81% 92.46% 100.00% 99.83% 99.49% 100.00% 95.51% 99.16%

OA 91.26% 79.53% 96.38% 88.08% 87.08% 93.29% 93.50% 98.52%
AA 89.11% 79.09% 96.76% 87.16% 86.76% 95.15% 94.65% 98.66%

Kappa 90.53% 77.81% 96.09% 87.09% 86.02% 92.73% 92.97% 98.39%
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Figure 3. Visualized classification results of proposed MGEN and compared methods on Trento dataset.

Figure 4. Visualized classification results of proposed MGEN and compared methods on MUUFL dataset.
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Figure 5. Visualized classification results of proposed MGEN and compared methods on Houston dataset.

Taking Trento as the tested dataset, the experimental results of the proposed MGEN
and other compared methods are shown in Table 4. It can be seen that our MGEN achieves
the highest accuracy among all methods for three metrics: OA at 99.71%, AA at 99.39%,
and Kappa at 99.61%. Among the six classes, MGEN achieves the highest accuracy in each
of first five classes, namely Apple trees, Buildings, Ground, Woods, and Vineyards. In the
sixth class, Roads, the accuracy of MGEN (98.53%) is slightly lower than that of TBCNN
(99.86%). SSSE achieves the best classification performance among the compared methods,
second only to ours, with an OA of 99.49%, AA of 98.93%, and Kappa of 99.32%.

On the Trento dataset, the visualized classification results of each method are shown in
Figure 3. It can be seen that the class maps predicted by the proposed MGEN are closest to
the ground truth, with clearer contours of each area and fewer isolated misclassified pixels.
Specifically, for the classes “Apple Tree”, “Tree”, and “Vineyard”, which have densely
clustered sample distributions, the MGEN attains a fully unerring classification, showcasing
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the network’s prominent ability to capture fine local features. Meanwhile, for classes with
more dispersed spatial distributions and larger positional spans, such as “Building” and
“Ground”, our proposed method still achieves almost perfect recognition, which can be
attributed to its strong capability to integrate global information. Overall, MGEN excels in
extracting both local and global features, leading to improved classification performance.

The classification results of all methods on the MUUFL dataset are shown in Table 5.
We can see that our proposed MGEN achieves favorable results with an OA of 95.36%, an
AA of 92.64%, and a Kappa of 93.89%. The dataset comprises a total of 11 classes, and our
MGEN reaches the highest accuracy among all methods in three classes: Dirt and sand,
Water, and Buildings. Compared to the baseline method SVM, MGEN improves OA by
9.9%, AA by 20.14%, and Kappa by 13.28%. It is noteworthy that many methods exhibit
remarkably lower accuracy in the 10th class compared to others. This discrepancy might be
due to the limited number of annotated pixels in this class, with only 19 pixels available
for training after partitioning the dataset, significantly fewer than other classes. Despite
such conditions, MGEN achieves a relatively high single-class prediction accuracy (71.30%),
second only to the HRWN method.

Figure 4 illustrates the visualized class predictions of all methods on the MUUFL
dataset. It can be observed that the predicted class map of the proposed MGEN closely
resembles the ground truth, with relatively pure color blocks for each class and a small
number of misclassified pixels. Particularly, the edges of categories like “Building” are
accurately delineated in the subplot of MGEN, displaying much clearer contours. On the
contrary, the boundaries generated by comparative methods appear to lack smoothness and
exhibit some scattered misclassified pixels within the regions. This reveals that our MGEN
outperforms other classification methods in fine feature representation and extraction. It
effectively captures intricate details in complex scenes, leading to more precise classification.

On the Houston dataset, the classification results of the MGEN and other compared
methods are presented in Table 6, demonstrating that our proposed network achieves
high-level accuracy as well. The OA reaches 98.52%, the AA reaches 98.66%, and the Kappa
is 98.39%, all of which are the highest among all the methods. In the total of 15 classes,
the proposed MGEN results the best accuracy in nine classes individually (Healthy grass,
Synthetic grass, Trees, Soil, Residential, Highway, Railway, Parking lot 1, Tennis court),
indicating an excellent discriminative ability of MGEN across various types of land cover.
Better than other compared methods, the SSSE method performs an excellent accuracy in
five classes second only to our proposed MGEN, achieving an OA of 96.38%.

The visualized results of class predictions for all methods on the Houston dataset are
shown in Figure 5, illustrating that the prediction results of MGEN are closer to the class
map of ground truth, with fewer misclassified pixels, thereby achieving higher accuracy
compared to other methods. Notably, samples of “Parking lot 2”, colored in purple, present
a challenge for many comparative methods due to their spectral similarity to “Parking lot
1”, leading to frequent misclassifications and confusion. As a result, some of these methods
struggle to achieve high classification accuracy for this class. Despite all this, our network
still exhibits an impressive accuracy (99.29%). This can be ascribed to the excellent ability of
MGEN to extract deep-seated spectral features of land cover with multiple scales in graph
space, which enables effective differentiation between the samples with spectrally similar
but distinct classes, thereby demonstrating the superior discriminative capability of MGEN
in addressing challenging classification cases.

In summary, the experimental results on Trento, MUUFL, and Houston demon-
strate that MGEN consistently outperforms other state-of-the-art methods across multiple
datasets. Traditional machine learning methods, like SVM and LE, struggle to handle the
high-dimensional and complex nature of multi-modal data, especially when compared to
deep learning-based methods. The experimental results show that SVM performs signifi-
cantly worse across all metrics. For example, on the MUUFL dataset, SVM achieved an OA
of only 85.46%, which is nearly 10% lower than MGEN’s OA of 95.36%. Methods using
single-scale feature extraction such as TBCNN and 3D CNN are restricted by their ability
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to adapt to the varying scales of objects within large remote sensing scenes, which can
be observed in datasets like the MUUFL and Houston datasets, where objects can range
from small, narrow roads to large, complex forests or urban areas. Compared to them, the
multi-scale graph-based structure of MGEN captures both local and global spatial features
effectively, resulting in clearer classification boundaries and fewer misclassifications. This
is particularly evident in complex scenes where objects vary greatly in size and structure,
such as the dense Parking lots 1 and 2 surrounded by Roads and Trees on the Houston
dataset (Figure 5). Other graph-based methods like SSSE and HRWN, despite their global
feature modeling capabilities, struggle to integrate multi-scale representations, limiting
their ability to process features on smaller scales. This weakness leads to suboptimal per-
formance when handling datasets that contain both large-scale (e.g., Trees) and small-scale
objects (e.g., Cloth panels). The results on the MUUFL dataset highlight this issue, where
MGEN outperformed HRWN with an accuracy on the class “Cloth panel” of 98.75% versus
HRWN’s 88.65%.

4. Discussion
4.1. Parameter Analysis

In our proposed network, three branches with different numbers of superpixels are
utilized to segment the image over the spatial dimension, facilitating deep feature extraction
from multi-modal data. As shown in Equation (1), the segmentation scale parameter λ in
each branch affects the extraction of graph features, which in turn, influences the accuracy
of land cover classification. Therefore, in this section, we will examine the impact of λ in
three scales on classification accuracy.

Following the previously described experimental settings and taking the MUUFL
dataset as an example, we conduct multiple experiments to evaluate the land cover classifi-
cation accuracy of the proposed MGEN on multi-modal remote sensing images. The λ in
Equation (1) controls the size of superpixels, which is crucial to determining the scale of
feature extraction. When λ is small, ground objects may be over-segmented into multiple
superpixels. When λ is large, superpixels may combine too many different land cover
classes. In order to determine a coarse value range for λ, experiments are conducted on the
MUUFL dataset. The results are shown in Figure 6. Specifically, the OA, AA and kappa
curves across different values of λ, ranging from 10 to 200, are shown in the figure. The
accuracies improve with increasing λ up to a value of 40. At λ = 70, OA reaches a local
maximum. For values of λ greater than 150, no significant improvement in accuracy is
observed. Local maxima of OA occur at λ = 70, 100, 120, and 150. The curve of AA and
Kappa exhibit similar trends.

Figure 6. Experimental results of using a single scale with different values of λ.
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Based on the observation of a single scale, the values of λ corresponding to these local
maximum points, i.e., {70, 100, 120, 150}, are chosen for further investigation to find out the
best combination of λ for different scales. We denote the λ in Equation (1) of Scale 1, Scale
2, and Scale 3, respectively, as λ1, λ2, and λ3. Figure 7 presents the classification results for
three metrics, with all other parameters held constant while varying only the three scale
parameters. λ1 is assigned one of the candidate values {70, 100, 120, 150}, and λ2, as well as
λ3, is also set within the same range. In the figure, OA, AA, and Kappa are represented
by blue, orange, and green, respectively, with the intensity of the colors indicating the
magnitude of the values. The three rows of subfigures correspond to different values of λ1,
and each subfigure in the 4 × 3 grid (4 values of λ1 and 3 metrics) shows the classification
results obtained by MGEN with a fixed λ1 while varying the values of λ2 and λ3.

Figure 7. Classification accuracy results of the proposed MGEN with different scale parameters on
MUUFL dataset. OA, AA, and Kappa are displayed by colors of blue, orange, and green, respectively,
with the intensity of the colors indicating the magnitude of the values.
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Figure 7 demonstrates that when the scale parameters in the multi-branch network are
set to identical values, the classification accuracy tends to decrease, which can be attributed
to the difficulty in fully utilizing the advantages of the multi-scale feature extraction at a
single scale. In contrast, when the number of superpixels in the three branches is set to
λ1 = 100, λ2 = 120, and λ3 = 70, the classification metrics, depicted in the darkest colors of
the figure, achieve their highest values: OA = 95.36%, AA = 92.64% and Kappa = 93.89%.
Although other scale values also yield good classification accuracy, these specific settings
optimize the performance of MGEN for land cover classification. Considering the actual
size of land cover, the approximate size of 70 for a superpixel tends to correspond to a scale
that emphasizes finer spatial details, allowing the model to capture small-scale features like
Sidewalk and Road curbs. When the superpixel size comes to 120, the scale emphasizes
larger context features, providing essential context for moderately sized objects such as
Buildings or clusters of Trees. This multi-scale combination allows MGEN to capture
local features while simultaneously considering larger, global patterns, improving the
model’s ability to classify both small-scale features (e.g., Roads, Yellow curb) and large-
scale features (e.g., forests, water bodies). Consequently, these scale values were used in
the comparative experiments of the last section to maximize the classification capabilities
of the proposed MGEN.

4.2. Ablation Study

As shown in Figure 1, MGEN utilizes a multi-branch network with various scales
for superpixel segmentation to extract graph features. To demonstrate the benefits of
multi-scale branches in classification tasks, an ablation study is conducted here to assess
the contributions of different superpixel segmentations. Using the MUUFL dataset as an
example, we separately execute single-branch, two-branch, three-branch and four-branch
networks in the experiments, with scale parameters λ1, λ2, λ3 and λ4 set to 100, 120, 70 and
150 according to the analysis in Section 4.1. All other parameters in experiments are kept
the same as previously mentioned.

The experimental configurations of the ablation study are exhibited in the first five
columns of Table 7, where ✓and χ indicate the presence or absence of the corresponding
branches, respectively. The table also reports the classification results for the three experi-
ments, including the accuracy metrics of AA, OA and Kappa. In general, as the number of
branches increases, the classification accuracy is obviously improved. The multi-branch
classification network with three different scales, compared to the two-scale and single-
scale networks, raised the OA by 1.78% and 5.43%, respectively. Assuming a single-branch
network as the baseline, it can be seen that AA is progressively incremented by 4.94%,
1.66% and 0.49% along with the three increases in branching. Kappa likewise rose from
86.89% on a single-branch network to 91.71% on a double-branch one, before reaching
93.89% on a triple-branch one. It is evident that the proposed MGEN with multiple scales,
like 3- or 4-scale, significantly outperforms the 1- or 2-scale models. This is attributed to the
ability of multi-scale superpixel segmentation to fully leverage spatial-spectral information,
and subsequently excavate deep-seated features in the multi-modal data from diverse
levels. The land cover features obtained by the simultaneous introduction of three or more
branches resulted in a significant improvement in the classification accuracy, yielding the
best results in the ablation study of our proposed MGEN.

Table 7. Ablation study of the proposed MGEN with different branches on MUUFL dataset.

No. Scale 1 Scale 2 Scale 3 Scale 4 OA AA Kappa

1 ✓ χ χ χ 89.93% 86.01% 86.89%
2 ✓ ✓ χ χ 93.58% 90.98% 91.71%
3 ✓ ✓ ✓ χ 95.36% 92.64% 93.89%
4 ✓ ✓ ✓ ✓ 95.22% 93.13% 92.90%



Remote Sens. 2024, 16, 3912 19 of 22

As shown in the last two rows of Table 7, the three-branch network achieves higher
accuracies across all metrics compared to those with fewer branches, but the addition
of an extra scale in the fourth experiment does not significantly enhance classification
performance. This indicates that the classification accuracy of the proposed MGEN does
not continuously improve with the addition of more branches. This outcome is likely due
to the fact that the fourth scale parameter λ4 = 150 is excessive, making it difficult to
capture key information from each superpixel. Moreover, segmenting the image using
three scales already provides sufficient information for the graph model, and there is no
evidence that adding more scales boosts classification performance. Thus, the three-scale
strategy used in the previous experiments is validated as reasonable.

In this section, we also discuss the effectiveness of the proposed long- and short-range
attention graph convolution module in MGEN. As described in Section 2.3.2, the module
integrates convolution strategies for both short-range and long-range nodes, enabling
local and global feature extraction, respectively. Table 8 lists the classification accuracies
obtained by various strategies on the MUUFL dataset, including a long-range branch solely,
a short-range branch solely, and a combination of both branches. The three experiments
used the completed framework of MGEN with all parameters consistent with previous
settings, except for the long- and short-range strategies. The experimental results in Table 8
demonstrate that the combined strategy achieves much higher accuracies in OA, AA,
and Kappa, outperforming either branch, especially the OA of the third experiment is
improved by 1.25% and 3.44% compared to the short-range and long-range strategies,
respectively. This can be attributed to the increased weight of features extracted by the
short-range branch when nodes of the same class are highly concentrated, effectively
leveraging local information. Vice versa, the attention weights of the long-range nodes
are enhanced, inclining to exploit global information. Therefore, the MGEN, with the
introduction of the long-range and short-range attention graph convolution module, is
capable of extracting more comprehensive feature information from multi-modal data,
thereby improving classification accuracy.

Table 8. Ablation study of the proposed MGEN with long- or short-range strategies.

No. Long-Range Short-Range OA AA Kappa

1 ✓ χ 91.92% 89.15% 89.81%
2 χ ✓ 94.11% 90.73% 92.36%
3 ✓ ✓ 95.36% 92.64% 93.89%

5. Conclusions

In this paper, we propose a multi-scale graph encoder–decoder network for multi-
modal data classification, to address the challenge of integrating local-global information
in remote sensing HSI and LiDAR images. Graph encoders are employed in the multiple
branches to map multi-modal images with a variety of scales into the graph space, allowing
for feature learning in the graph space. Subsequently, graph decoders are adopted to fuse
multi-scale features and map them back to the original space for pixel-level classification.
Specifically, the image is first segmented into a series of superpixels by the SLIC algorithm
in a graph encoder, with each superpixel treated as a node in the graph space. By controlling
the fineness of the segmentation algorithm, superpixels with different scales are generated.
Based on the multi-scale superpixels, CNNs are employed for feature learning of the graph
nodes to complete the mapping from images to topological graphs. Then, multi-branch
graph CNNs are used for graph feature extraction. The graph decoder is responsible
for fusing multi-scale features and mapping them to the original data scale to generate
classification results. Experimental results on three HSI-LiDAR datasets demonstrate that
the proposed MGEN achieves superior performance, surpassing many state-of-the-art
multi-modal data classification methods.
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