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Abstract: Remote sensing image fusion technology integrates observational data from multiple
satellite platforms to leverage the complementary advantages of the different types of remote sensing
images. High-quality fused remote sensing images provide detailed information on surface radiation,
climate, and environmental conditions, thereby supporting governmental policies on environmental
changes. Improving the quality and quantitative accuracy of fused images is a crucial trend in
remote sensing image fusion research. This study investigates the impact of atmospheric correction
and five widely applied fusion techniques on remote sensing image fusion. By constructing four
fusion frameworks, it evaluates how the choice of fusion method, the implementation of atmospheric
correction, the synchronization of atmospheric parameters, and the timing of atmospheric correction
influence the outcomes of remote sensing image fusion. Aerial flights using remote sensors were
conducted to acquire atmospheric parameter distribution images that are strictly synchronous with
the remote sensing images. Comprehensive and systematic evaluations of the fused remote sensing
images were performed. Experiments show that for the remote sensing images used, selecting the
appropriate fusion method can improve the spatial detail evaluation metrics of the fused images by
up to 2.739 times, with the smallest deviation from true reflectance reaching 35.02%. Incorporating
synchronous atmospheric parameter distribution images can enhance the spatial detail evaluation
metrics by up to 2.03 times, with the smallest deviation from true reflectance reaching 5.4%. This
indicates that choosing an appropriate fusion method and performing imaging-based synchronous
atmospheric correction before fusion can maximize the enhancement of spatial details and spectral
quantification in fused images.

Keywords: remote sensing; synchronous atmospheric correction; image fusion; quality evaluation;
quantification

1. Introduction

Advancements in space technology have significantly increased both the diversity
and quantity of remote sensors, resulting in an abundant array of remote sensing image
resources [1]. Achieving both a multispectral and a wide instantaneous field of view
in remote sensing images is challenging while maintaining a high signal-to-noise ratio.
This limitation implies that a single remote sensor often cannot simultaneously capture
images with both high spatial resolution and multispectral resolution [2]. Remote sensing
image fusion technology integrates images with different spatial and spectral resolutions
to produce a composite image that combines both high spatial and multispectral resolution.
This technique enables the fused image to present detailed information with enhanced
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spatial clarity and spectral richness [3]. High-quality, quantitative remote sensing image
fusion must not only achieve high spatial and multispectral resolution but also ensure
accurate spectral quantification. This means that the pixel values must be computable
to derive physical information about the Earth’s surface, such as radiance or reflectance,
within the response wavelength range of the sensor. Quantitative fusion of panchromatic
and multispectral color remote sensing images have widespread applications, offering
reliable foundations for research in areas such as land cover change [4], terrestrial ecosystem
monitoring [5], and the monitoring and classification of forests and crops [6,7]. Additionally,
government agencies can leverage these high-quality fused images to develop policies
that address environmental changes and ensure the sustainable management of land
resources [8].

To achieve the quantitative fusion of remote sensing images, researchers have under-
taken significant efforts. For example, in 2011 [9], an improved additive wavelet transform
was introduced for fusion, capable of preserving both radiometric and geometric infor-
mation. In 2012 [10], a multisensor image fusion method based on a hidden Markov tree
and a pulse-coupled neural network (PCNN) was proposed. This method uses a PCNN
to select the maximum value for low-pass coefficients and a saliency-based rule for direc-
tional coefficients, addressing minor distortions in structural components. In 2013 [11], the
authors proposed a fusion method based on variational wavelets, which perform well with
highly heterogeneous data. In 2014 [12], the authors explored contourlet representation and
introduced an adjustable contourlet transform for effective fusion, averaging the low-pass
coefficients and selecting the absolute maximum value for directional coefficients. This
method corrects minor structural distortions and radiometric blurring. In 2015 [13], a
region division strategy was used in the shearlet domain for pansharpening, applying
region-correlation-based fusion rules to all decomposed coefficients. Significant spatial
enhancement was observed as a result of these region-based rules. In 2016 [14], a pan-
sharpening method in the shearlet domain was proposed, considering regional correlation
metrics and applying local-region-based fusion rules to approximation coefficients and
gradient-based fusion rules to directional coefficients. The results demonstrate that this
method effectively preserves structural and radiometric information. In 2018, [15] con-
ducted the spatiotemporal fusion study using deep convolutional neural networks (CNNs)
in the context of massive remote sensing data. In 2019, [16] presented a region-based fusion
scheme for combining panchromatic, multispectral, and synthetic aperture radar images.
Temporal data fusion and high spatial methods were used to generate synthetic Landsat
imagery by combining Landsat and MODIS data. In 2021 [17], a new region-based fusion
method combining non-subsampled contourlet transform (NSCT) and particle swarm
optimization (PSO) was proposed. This method applies a maximum-based rule to the
approximation layer, separates band-pass coefficients into smooth regions, and uses PSO
for edge regions and a maximum-based rule for separated components. It performs well in
spatial enhancement and mitigates minor blurring effects.

In recent years, deep-learning-based fusion methods have been categorized into three
types based on the supervisory paradigms employed during the training process: unsu-
pervised, self-supervised, and supervised approaches [18]. Supervised methods utilize
ground truth values to guide the training processes, while unsupervised approaches con-
struct loss functions by constraining the similarity between the fusion results and the
source images. Self-supervised algorithms are commonly associated with the AutoEncoder
(AE)-based framework. In 2020, [19] introduced the pansharpening generative adversarial
network (Pan-GAN), the first method to explore the unsupervised fusion of multispectral
and panchromatic images. This approach incorporates two discriminators that create
adversarial relationships between the fusion result and the two source images, each as-
sessing the fidelity of spectral and spatial information, respectively. Ref. [20] introduced
a semantic-aware real-time image fusion network (SeAFusion) in the same year. This
study employs a cascading approach that integrates a fusion module with a semantic
segmentation module, allowing semantic loss to guide high-level semantic information
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to flow back to the fusion module. Additionally, it proposes methods such as gradient
residual dense block (GRDB) to bridge the gap between image fusion and high-level vision
tasks. The concept of self-supervised edge-attention guidance for image fusion (EAGIF)
was proposed in [21], utilizing a coarse-to-fine deep architecture to learn multiscale fea-
tures from multimodal images. It also designs an edge-guided attention mechanism based
on these multiscale features to focus the fusion process on common structures, thereby
enhancing detail recovery while attenuating noise. Supervised fusion methods, as pro-
posed in [22–25], illustrate the advancements that deep learning has contributed to image
fusion techniques. In 2017, [22] proposed the pansharpening deep network architecture
(PanNet), which employs residual learning to shift network training to the high-frequency
domain. This approach allows the network to focus on learning high-frequency structural
information, thereby enhancing the spatial quality of the fusion results. Ref. [23] proposed
the super-resolution-guided progressive pansharpening neural network (SRPPNN), which
incorporates two specific structural designs: a super-resolution module and progressive
learning. These features enable the network to continuously capture spatial details at
various scales and progressively integrate them into the upsampled multispectral images.
Ref. [24] proposed the gradient projection-based pansharpening neural network (GPPNN),
which investigates generative models for panchromatic and multispectral images. This
approach explores the spatial and spectral degradation processes and uses them as priors
to guide the optimization of neural networks, thereby enhancing fusion performance. In
2022, [25] introduced GTP-PNet, which employs a specialized transformation network
(TNet) to model the spectral degradation process. This method establishes a more accurate
nonlinear regression relationship between multispectral and panchromatic images in the
gradient domain. The nonlinear regression relationship is used as a prior to constrain the
preservation of spatial structures, thereby ensuring a balance between spectral and spatial
information.

The research discussed above primarily focuses on improving fusion results through
various approaches, including advancements in image decomposition methods [9,11,12,14],
the establishment of stringent criteria for selecting fusion coefficients [10,13,17], enhanc-
ing the accuracy of nonlinear spectral fitting [22,25], and optimizing detail and spectral
quantitative guidance [19–21,23,24]. However, there are still some problems in quantitative
remote sensing image fusion. The information in remote sensing images represents a
combination of atmospheric and surface data. Atmospheric effects not only reduce contrast
and blur detail textures in panchromatic images [1], but also distort spectral information
and decrease the quantitative accuracy of multispectral color images [26]. As a result, the
fused images obtained under these conditions exhibit blurred spatial details and errors in
color spectral information, failing to meet the requirements for quantitative remote sensing
image fusion. Most research considers atmospheric information as part of remote sensing
image data and employs mathematical methods to develop updated and more efficient
fusion algorithms. However, the impact of atmospheric effects is often overlooked. This
neglect prevents significant improvements in the spatial detail and spectral quantification
of fused images. Additionally, aerosol observation methods are relatively limited, and
aerosols exhibit strong spatiotemporal heterogeneity [27]. This results in aerosol parameters
that often do not align temporally and spatially with the remote sensing images, leading to
residuals in atmospheric correction results [28].

The primary objective of this study is to explore methods for obtaining highly syn-
chronous aerosol optical depth (AOD) and column water vapor (CWV) measurements and
integrating these atmospheric parameters as source images for fusion with panchromatic
and multispectral remote sensing images. This approach aims to mitigate the impact of
atmospheric effects on the quantitative fusion of remote sensing images. The study exam-
ines the interaction between atmospheric correction and five widely used fusion methods:
principal component analysis (PCA) [3], intensity-hue-saturation (IHS) [29], Laplacian
pyramid (LP) [30], discrete wavelet transform (DWT) [4], and non-subsampled contourlet
transform (NSCT) [31]. It investigates how factors such as the choice of fusion methods,
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atmospheric correction, the synchronization of atmospheric parameters, and the timing
of atmospheric correction affect the quality of fused remote sensing images. The findings
provide a valuable reference for establishing robust quantitative fusion processes. The
data for this study were obtained from airborne flight experiments involving multiple
remote sensors, enabling a systematic comparison of spatial detail and spectral quantitative
accuracy in the fused images.

2. Materials and Methods
2.1. Image Fusion

This study employed five classic and widely used pixel-level remote sensing image
fusion techniques, including the IHS and PCA fusion methods based on spatial domain
techniques, as well as the LP, DWT, and NSCT fusion methods based on transform domain
techniques. To ensure that the fused images achieved spectral quantitative accuracy and
spatial resolution, and to enhance the comparability of different fusion methods, the fusion
rules should ideally extract spatial details from the panchromatic images while deriving
spectral information from the multispectral images [3].

2.1.1. Spatial-Domain-Based Image Fusion

The spatial domain techniques were based on the projection of a multispectral image
into another space using a transformation that separates the spatial structure from the
spectral information in different components. Then, the component containing the spatial
structure was replaced with the panchromatic image. A greater correlation between the
replaced component and the panchromatic image produces less distortion [32].

IHS and PCA are two commonly used spatial domain methods for image fusion.
PCA-based image fusion calculates and combines the principal components of the original
images to reduce data dimensionality and extract image information. While PCA effectively
preserves the overall information of the image, it may lead to color distortion. In contrast,
the IHS transformation decomposes a color image into three components: intensity, hue,
and saturation, and performs fusion on the intensity component. The IHS method is
effective in preserving color information but is prone to a loss of image details.

The fusion rules for the IHS and PCA methods follow the principle of component
substitution, as illustrated in Figure 1; Image_P represents the panchromatic image, while
Image_M denotes the multispectral image. The specific steps for fusion are as follows:
(1) Perform PCA/IHS transformation on the R, G, and B bands of the multispectral image.
(2) Conduct histogram matching between the first principal component or intensity compo-
nent obtained from the PCA/IHS transformation and the panchromatic image, replacing
the first principal component or intensity component with the histogram-matched panchro-
matic image. (3) Finally, apply the inverse PCA/IHS transformation to generate the fused
image, designated as Image_F.
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2.1.2. Transform-Domain-Based Image Fusion

Transform domain fusion methods involve the multiscale decomposition of images,
generating low-frequency subband coefficients that contain most of the spectral information
and high-frequency subband coefficients that capture most of the spatial details. LP, DWT,
and NSCT are three classical transform domain fusion methods, with their primary differ-
ence lying in the level of image decomposition. The LP fusion method is relatively simple,
employing Gaussian pyramid decomposition to express images at multiple scales and
resolutions. However, LP exhibits insufficient directional decomposition and is prone to
matrix artifacts. The DWT fusion method decomposes images into different scales and res-
olutions using two-dimensional separable discrete wavelets, offering good time-frequency
analysis capabilities; however, DWT representation is not sparse. In contrast, NSCT itera-
tively decomposes images using the non-subsampled Laplacian pyramid (NSP) to generate
images at various scales, followed by further multidirectional decomposition through
the non-subsampled directional filter bank (NSDFB). As a result, NSCT provides image
decomposition with multiscale, multidirectional, and translation-invariant properties.

Although the three fusion methods differ in their approaches and levels of image de-
composition, the resulting subband coefficients can all be categorized into high-frequency and
low-frequency. To ensure the comparability of the fused images, the multiscale decomposition
level was uniformly set to three, meaning that the image underwent three iterations of scale de-
composition. For low-frequency, the fusion rule involved retaining the low-frequency subband
coefficients of the decomposed multispectral image. For high-frequency, to avoid artifacts and
ensure a smooth transition between spatial details and spectral information, a fusion rule based
on a matching degree was applied [33]. This rule was determined by the salience and matching
degree of the high-frequency subband coefficients.

Figure 2 illustrates the fusion processes for the LP, DWT, and NSCT methods. The
specific steps for fusion are as follows: (1) Perform LP/DWT/NSCT decomposition on
the panchromatic and multispectral color images to obtain the subband coefficients for
each image, with the R, G, and B channels of the multispectral color image decomposed
separately. (2) Apply a matching degree-based fusion rule to combine the high-frequency
subband coefficients that share the same decomposition scale and direction, resulting in
the high-frequency subband coefficients of the fused image. The low-frequency subband
coefficients from the color image are retained as the low-frequency subband coefficients
of the fused image. (3) Reconstruct the fused high-frequency and low-frequency subband
coefficients and perform the inverse LP/DWT/NSCT transformation to obtain the fused
image, designated as Image_F.
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2.1.3. Fusion of Images and Atmospheric Parameters

The purpose of fusing atmospheric parameters (AOD and CWV) with panchromatic
and multispectral remote sensing images was to perform atmospheric correction, thereby
mitigating or even eliminating atmospheric effects. The fusion rules were determined by the
6S atmospheric radiative transfer model [34,35], which establishes a representation of visible
and near-infrared band reflectance in relation to the ground bidirectional reflectance distri-
bution function (BRDF) at the top of the atmosphere, as shown in Equations (1) and (2):

ρTOA = ρ0 + Tg

[
ABρS + ACρ + ADρ′ + CDρ +

(B + C)(A + D)S(ρ)2

1 − Sρ

]
(1)

A = e−τ/µV , B = e−τ/µS , C = td(µS), D = td(µV) (2)

where the variable ρTOA represents the reflectance observed at the top of the atmosphere.
ρ0 denotes the atmospheric path radiance reflectance, while ρS represents the surface target
reflectance. S is the hemisphere reflectance in the downward direction of the lower atmo-
sphere. µS corresponds to the cosine of the solar zenith angle, and µV is the cosine of the
satellite zenith angle. The terms B and C signify the atmospheric transmittance for direct
solar radiation and atmospheric diffuse radiation reaching the ground, respectively. Simi-
larly, A and D represent the atmospheric transmittance for the direct reflectance from the
ground to the sensor and the atmospheric transmittance for the diffuse radiation reaching
the sensor from the ground. τ represents the atmospheric optical thickness. Additionally, ρ,
ρ′, and ρ stand for the hemisphere reflectance scattered by the atmosphere to the ground,
the ground hemisphere reflectance scattered back into the atmosphere, and the ground
hemisphere reflectance after two scattering events through both the atmosphere and the
ground, respectively. These variables are dependent on atmospheric optical parameters and
surface reflection characteristics. Tg represents the absorption by atmospheric components
such as ozone and water vapor in the visible and near-infrared spectra. It is evident that to
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determine the ground reflectance ρS, a series of intermediate parameters must be obtained.
Among these, A, B, C, D, S, Tg, and ρ0 are solely related to atmospheric conditions and are
calculated by the 6S model based on AOD and CWV. ρ, ρ′, and ρ are related to image pixels
and are determined by the 6S model using the BRDF model.

To facilitate the rapid fusion of atmospheric parameter distribution images with
remote sensing images, an atmospheric correction lookup table (LUT) was established [36].
The principle of the LUT is to pre-compute and store the results of radiative transfer
models under various conditions, enabling quick lookup and application during actual
processing. The parameters setting of 6S model are shown in the Table 1. A range of values
was defined for observation geometry, AOD, and CWV, with step values set to iterate
through the specified parameter values. The 6S model was then run iteratively, traversing
through predefined parameter settings to generate a lookup table for parameters a, b, and
c. The relationship between image pixel values before and after atmospheric correction
can be expressed using a computational formula based on these parameters, as shown in
Equation (3):

output =
a × input − b

1 + (a × input − b)× c
(3)

Table 1. Set the 6S model parameters to establish the LUT.

Name Setting Parameter Values

Molecular atmosphere model Mid latitude winter
Aerosol model Continental

Surface reflectance BRDF
Response band Spectral response of main cameras

Observation geometry In dataset
AOD at 550 nm Range of 0.20 to 0.80, with a step increment of 0.001.
CWV (g/cm3) Range of 0.80 to 1.80, with a step increment of 0.01.

The fusion process of atmospheric parameters (AOD and CWV) with the remote
sensing image can be illustrated as shown in Figure 3. For each pixel, the corresponding
AOD and CWV indices are used to extract the three parameters from the lookup table
for fusion calculations, where ⊗ represents Equation (5). The values in the fused image
represent the reflectance with atmospheric effects removed or minimized (which can also be
expressed in terms of radiance). The accuracy and precision of the atmospheric parameters
AOD and CWV determine the spatial detail clarity and spectral quantification of the fused
remote sensing image.
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2.2. Evaluation Metrics

This study categorized the widely used quality evaluation metrics for remote sensing
image fusion into three types based on factors such as calculation methods and their
physical significance:

• Spectral domain: The evaluation metrics in the spectral domain are used to reflect the
degree of spectral variation or distortion in the images. This can be represented by com-
paring the reflectance calculated from the image with the actual reflectance measured
through experimental means, namely the deviation from true reflectance (DTR).

• Spatial domain: The evaluation metrics in the spatial domain assess spatial details
such as edges and textures within the image. These can be represented through
structural and feature-based measures, including the average gradient (AG) [17],
standard deviation (SD) [37], normalized correlation coefficient (NCC) [38], Structural
SIMilarity (SSIM) [38], and universal image quality index (UIQI) [39].

• Informational domain: The evaluation metrics in the information domain are used
to infer the amount of information contained in the images. This can be expressed
through statistical indicators of the images and relevant measures from information
theory, such as the normalized mutual information (NMI) [40] and information entropy
(EN) [37].

Next, the calculation methods and significance of each evaluation metric will be
introduced. Table 2 presents the attributes of these evaluation metrics.

Table 2. Attributes of the evaluation metrics.

Name Classification Meaning Number of Images
Required

AG Spatial Contrast and texture 1
SD Spatial Dispersion 1
EN Informational Information content 1

NCC Spatial Correlation 2
SSIM Spatial Structural similarity 2
NMI Informational Information similarity 2
UIQI Spatial Structural similarity 3
DTR Spectral Spectral quantification 1

1. Average Gradient

The definition formula of AG is shown in Equation (4), where F represents the fused
image, and the dimensions of the image are M × N. Generally, a higher average gradient
in the fused image indicates greater contrast, which is typically associated with better
fusion quality.

AG =
1

(M − 1)(N − 1)

M−1

∑
i=1

N−1

∑
j=1

√
[F(i + 1, j)− F(i, j)]2 + [F(i, j + 1)− F(i, j)]2

2
(4)

2. Standard Deviation

The calculation formula of SD is shown in Equation (5), where F represents the mean
gray value of the fused image. A larger SD in the fused image suggests a more dispersed
distribution of gray levels, which is generally considered indicative of better image quality.

SD =

√√√√ 1
M × N

M−1

∑
i=1

N−1

∑
j=1

[F(i, j)− F]2 (5)

3. Entropy
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The calculation formula of EN is shown in Equation (6), where p represents the gray
level distribution of the fused image, n is the dynamic range of the pixels, and pi is the
probability of a pixel in the fused image having a gray level of i. A higher EN in the fused
image indicates a greater amount of information contained within it, which is generally
regarded as a sign of better image quality.

EN = −
n

∑
i=1

pi log2 pi (6)

4. Normalized Correlation Coefficient

The definition of NCC is given by Equation (7), where R represents the image before
fusion and R represents the mean value. The NCC compares the two images before and
after fusion; a higher NCC value indicates a greater correlation between the two images.

NCC =

M
∑

i=1

N
∑

j=1
[(R(i, j)− R)(F(i, j)− F)]√

M
∑

i=1

N
∑

j=1
(R(i, j)− R)2 M

∑
i=1

N
∑

j=1
(F(i, j)− F)2

(7)

5. Structural Similarity

The SSIM evaluates image performance by comparing differences in brightness, con-
trast, and texture distortion between images. The comparison functions for brightness,
contrast, and structure are presented in Equation (8). Constants C1, C2, and C3 in Equation
(9) are introduced to ensure stability when the denominator approaches zero, and are re-
lated to the dynamic range of the remote sensing image pixels, n. The standard deviations
of the image before fusion and the fused image are denoted as σR and σF, respectively,
while σRF represents the covariance between the image before fusion and the fused image.

l(R, F) =
2RF + C1

R2
+ F2

+ C1

, c(R, F) =
2σRσF + C2

σ2
R + σ2

F + C2
, s(R, F) =

2σRF + C3

σRσF + C3
(8)

C1 = (0.01 × n)2, C2 = (0.03 × n)2, C3 =
C2

2
(9)

Combining Equations (8) and (9), the SSIM function can be derived as shown in
Equation (10):

SSIM(R, F) = [l(R, F)]α[c(R, F)]β[s(R, F)]γ (10)

α, β, and γ represent the relative importance of each metric and sum to 1. The SSIM
compares the two images before and after fusion; a higher SSIM value indicates greater
structural similarity between the two images.

6. Normalized Mutual Information

The definition of MI is given by Equation (11), where q represents the distribution of
the image before fusion R, and qi denotes the probability that a pixel in R has a grayscale
value of i. Additionally, γi,j represents the joint probability density of R and F.

MI =
n

∑
i=1

n

∑
j=1

γi,j log2
γi,j

piqi
(11)
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The normalization method of MI is detailed in Equation (12). It compares the two
images before and after fusion; a higher NMI value indicates a greater degree of dependence
between the two images.

NMI(R, F) =
2MI(R, F)

−
n
∑

i=1
pi log2 pi −

n
∑

j=1
qj log2 qj

(12)

7. Universal Image Quality Index

Similar to the SSIM, the UIQI also consists of three components that reflect the loss
of correlation between signals, luminance distortion, and contrast distortion. The UIQI
between the two images is represented by Equation (13):

UIQI(R, F) =
2σRFRF

(σ2
R + σ2

F)(R2
+ F2

)
(13)

By conducting a region-based evaluation of the image, the formula can be expressed
as Equation (14):

UIQI(R, F) =
1

|W|∑ UIQI(R, F|w ) (14)

where W represents the sum of all windows, |W| denotes the cardinality of W, and
UIQI(R, F|w ) indicates the similarity between images R and F within window w, as
calculated by Equation (13). Next, by introducing the two images prior to fusion, we
calculate the overall similarity between the fused image F and the images P and R before
fusion, as shown in Equation (15):

UIQI(P, R, F) =
1

|W| ∑
w∈W

[λ(w)UIQI(P, F|w ) + (1 − λ(w))UIQI(R, F|w )] (15)

where the formula for calculating the weight λ(w) is given in Equation (16):

λ(w) =
s(P|w)

s(P|w) + s(R|w)
(16)

and s represents the saliency measure of the image within the window, which in this paper,
is expressed by the image’s contrast. UIQI compares the three images before and after
fusion; a higher value indicates a greater overall similarity between the fused image and
the two images prior to fusion.

8. Deviation from True Reflectance

Define DTR as the percentage difference between the true surface reflectance and the
reflectance calculated from the image, as shown in Equation (17):

η(Rsur f ace, F) =

∣∣∣∣∣ 1
MN

M,N
∑

i=1,j=1
F(i, j)− Rsur f ace

∣∣∣∣∣
Rsur f ace

× 100% (17)

Here, Rsur f ace represents the measured reflectance at the surface, and (i, j) indicates the
coordinates of the target in the remote sensing image. This study uses the measurements
obtained from the ground-based Analytical Spectral Devices (ASDs) as the true reflectance.

2.3. Data

The aerial flight experiments were conducted to acquire remote sensing images. The
instruments utilized in these experiments included the visible near infrared airborne
synchronous monitoring atmospheric corrector (VNIR-ASMAC), the short wave infrared
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ASMAC (SWIR-ASMAC), a high-resolution panchromatic camera, a multispectral color
camera, a gyroscope, GPS, the CE318 sun photometer, and ASDs. To achieve synchronous
imaging across the various remote sensors, the pulse signals generated during imaging by
VNIR-ASMAC and SWIR-ASMAC served as the reference. These signals were subsequently
transmitted through hardware to trigger imaging in both the high-resolution panchromatic
camera and the multispectral color camera. Figure 4 illustrates some of the images obtained
during the aerial flight experiments.
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Figure 4. Aerial flight experiments: (a) ground operation; (b) in-helicopter testing; (c) low-altitude
aerial experiment; (d) high-altitude aerial experiment; (e) data collection by CE318; (f) data collection
by ASDs.

2.3.1. Panchromatic and Multispectral Color Remote Sensing Images

The main cameras used in this experiment were the panchromatic camera, model
LBAS-U350-74M, and the multispectral color camera, model LBAS-U350-74C, both man-
ufactured by LUSTER. The main distinction between the two cameras lies in the color
camera’s incorporation of the Bayer filter, which enables the acquisition images of the R,
G, and B band. Figure 5a,b provides physical diagrams of the cameras. Both cameras
underwent geometric calibration, radiometric calibration, and spectral response testing,
enabling the conversion of the digital number (DN) values of remote sensing images into
radiance values corresponding to their respective wavelengths.
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Figure 5. Main cameras devices on the ground: (a) panchromatic camera; (b) multispectral color
camera; (c) ASDs.

The primary cameras captured panchromatic and multispectral color images of three
scenes, as shown in Figure 6. The red stars indicate the locations where ground personnel
measured reflectance using ASDs, as shown in Figure 5c and detailed in Table 3.
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Figure 6. Panchromatic (right) and multispectral color (left) image: (a) artificial target scene; (b) road
and grass scene; (c) cornfield scene.

Table 3. Surface reflectance measured by ASDs.

Type of Ground Object
Reflectivity Measured by the ASDs

R (570~690 nm) G (450~660 nm) B (380~570 nm)

Artificial white target 0.674 0.660 0.595
Artificial black target 0.041 0.042 0.043

Grass 0.166 0.135 0.097
Concrete floor 0.364 0.365 0.324

2.3.2. Atmospheric Parameter Images

Figure 7a,b provides physical diagrams of the VNIR-ASMAC and SWIR-ASMAC.
The VNIR-ASMAC included three non-polarized bands (765, 910, and 950 nm) and three
polarized bands (490, 670, and 870 nm). Similarly, the SWIR-ASMAC featured two non-
polarized bands (950 and 1380 nm) and one polarized band (1610 nm). The multiangle,
multiband polarimetric imaging capability of the ASMAC enabled the real-time monitoring
of aerosol distribution in the atmosphere. The ASMAC underwent rigorous laboratory
calibration, with each pixel subjected to geometric, radiometric, and polarization calibration,
effectively treating each pixel as a radiance meter. Therefore, the remote sensing images
captured by ASMAC can be inverted into AOD and CWV images [36].
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Figure 7. Atmospheric measurement instrument: (a) VNIR-ASMAC; (b) SWIR-ASMAC; (c) CE318.

Figure 8 illustrates the distribution images of AOD and CWV (already registered)
corresponding to the remote sensing scenes, with their average and extremum values across
the entire image plane listed in the Table 4. This indicates that each pixel in the panchromatic
and multispectral images was associated with atmospheric parameters that are strictly
synchronous in both time and space, thereby minimizing the impact of spatiotemporal
heterogeneity in atmospheric parameters.
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Figure 8. Synchronous AOD (left) and CWV (right) distribution images: (a) artificial target scene;
(b) road and grass scene; (c) cornfield scene.

Table 4. The extremum and average values of the synchronous AOD and CWV images inverted from
ASMAC.

Scene
AOD CWV (g/cm3)

Minimum Average Maximum Minimum Average Maximum

Artificial target 0.441 0.549 0.626 0.976 1.273 1.539
Road and grass 0.384 0.494 0.587 0.981 1.226 1.493

Cornfield 0.465 0.501 0.593 1.121 1.317 1.554

Single-value atmospheric parameters representing asynchronous data were obtained
from the CE318, as illustrated in Figure 7c. The single-value AOD and CWV were selected
based on the acquisition time of the image, as shown in Table 5.

Table 5. The asynchronous single values of AOD and CWV measured from CE318.

Scene AOD CWV (g/cm3)

Artificial target 0.548 1.436
Road and grass 0.552 1.442

Cornfield 0.545 1.445

2.4. Fusion Frameworks

The atmospheric parameter distribution images were used as source images and fused
with panchromatic and multispectral remote sensing images. The fusion framework, as
shown in Figure 9, was designed to explore various factors influencing the performance
of the fused images. Four fusion experiments were conducted to investigate the effects
of different fusion methods, atmospheric correction, the synchronization of atmospheric
parameters, and the timing of atmospheric correction:

• Fusion 1: Disconnect all switches and perform decomposition or transformation
only on the panchromatic and color remote sensing images. Then, select the fusion
coefficients based on the fusion rules and reconstruct the fused image.

• Fusion 2: Connect the switch for Fusion 2, while keeping others disconnected. Single-
value atmospheric parameter LUTs are used to perform atmospheric correction on
the panchromatic and color remote sensing images, followed by decomposition or
transformation. Then, select the fusion coefficients based on the fusion rules and
reconstruct the fused image.

• Fusion 3: Connect the switch for Fusion 3, while keeping others disconnected. Syn-
chronous atmospheric parameter distribution LUTs are used to apply imaging-based
synchronous atmospheric correction to the panchromatic and color remote sensing im-
ages, followed by decomposition or transformation. Then, select the fusion coefficients
based on the fusion rules and reconstruct the fused image.

• Fusion 4: Connect the switch for Fusion 4, while keeping others disconnected. Perform
decomposition or transformation only on the panchromatic and color remote sensing
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images. Then, select the fusion coefficients based on the fusion rules and reconstruct
the fused image. Finally, an imaging-based synchronous atmospheric correction is
applied to the fused image.
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Figure 9. Experimental diagram of the interaction between atmospheric correction and fusion
techniques.

Fusion 1 was derived solely from panchromatic and color remote sensing images.
The evaluation results of this fused image can be used to assess the impact of different
decomposition or transformation methods on the fusion outcome. The key difference
between Fusion 1 and Fusion 2 was the inclusion of atmospheric parameters in the image
sources. The evaluation results of these fused images can be used to compare the effect
of atmospheric correction on the fusion outcome. The distinction between Fusion 2 and
Fusion 3 lies in whether the atmospheric parameter distribution image was temporally
and spatially synchronous with the panchromatic and color remote sensing images. These
results can be used to analyze the effect of atmospheric parameter synchronization on the
fusion outcome. Finally, the difference between Fusion 3 and Fusion 4 was the timing of
the inclusion of atmospheric parameter distribution images in the fusion process. The
evaluation results of these fused images can be used to compare the impact of atmospheric
correction timing on fusion performance.

3. Results
3.1. Fused Image

Using the fusion methods and rules provided in Section 2.1, and following the fusion
framework described in Section 2.4, panchromatic images, multispectral color images, and
atmospheric parameter images from the three scenes described in Section 2.3 were fused.
The resulting fused images are presented in Figures 10–13. The figures, from left to right,
are the fused images obtained using the PCA, IHS, DWT, NSCT, and LP fusion methods,
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respectively. Panels a–e depict the artificial target scene, f–j represent the road and grass
scene, and k–o illustrate the wheat field scene.
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Figure 10. The fused images under Fusion 1. Each row, from left to right, is a fusion image of PCA, 
IHS, DWT, NSCT, and LP. (a–e) depict the artificial target scene, (f–j) represent the road and grass 
scene, and (k–o) illustrate the wheat field scene. 
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Figure 10. The fused images under Fusion 1. Each row, from left to right, is a fusion image of PCA,
IHS, DWT, NSCT, and LP. (a–e) depict the artificial target scene, (f–j) represent the road and grass
scene, and (k–o) illustrate the wheat field scene.
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IHS, DWT, NSCT, and LP. (a–e) depict the artificial target scene, (f–j) represent the road and grass
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IHS, DWT, NSCT, and LP. (a–e) depict the artificial target scene, (f–j) represent the road and grass
scene, and (k–o) illustrate the wheat field scene.
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3.2. Spatial Detail Evaluation

This section provides an objective analysis of the fused images and evaluates them
using the metrics described in Section 2.2.

3.2.1. Effects of Fusion Methods on Spatial Detail

Table 6 presents the evaluation values of UIQI, NCC, NMI, SSIM, and AG for the
fused images obtained through five different fusion methods under Fusion 1. This was
performed to compare the impact of the choice of fusion method on the spatial details
of the fused images. The evaluation values represent the mean values across the RGB
channels. Additionally, the extreme value ratio for each metric was calculated, indicating
the ratio of the maximum to minimum evaluation values obtained through the different
fusion methods.

Table 6. Evaluation metrics for fused images within the Fusion 1 framework.

Scene Method UIQI NCC NMI SSIM AG SD EN

Artificial
target

PCA 0.486 * 0.941 0.749 0.323 2.36 × 10−3 0.028 4.408
IHS 0.832 0.925 0.740 0.628 3.11 × 10−3 0.065 5.229

DWT 0.847 0.946 0.755 0.793 4.30 × 10−3 0.070 5.538
NSCT 0.868 0.949 0.764 0.797 5.18 × 10−3 0.073 5.731

LP 0.834 0.826 0.716 0.763 3.76 × 10−3 0.077 5.403

Extreme value ratio 1.786 1.149 1.068 2.471 2.192 2.739 1.300

Road and
grass

PCA 0.485 0.791 0.709 0.310 2.61 × 10−3 0.024 4.051
IHS 0.839 0.853 0.701 0.639 2.96 × 10−3 0.043 5.173

DWT 0.850 0.922 0.728 0.803 3.55 × 10−3 0.042 5.553
NSCT 0.853 0.927 0.738 0.806 3.85 × 10−3 0.044 5.747

LP 0.836 0.804 0.699 0.580 2.81 × 10−3 0.041 5.035

Extreme value ratio 1.760 1.171 1.056 2.597 1.475 1.827 1.419

Cornfield

PCA 0.467 0.720 0.662 0.339 1.85 × 10−3 0.017 3.151
IHS 0.808 0.758 0.652 0.640 2.02 × 10−3 0.020 4.594

DWT 0.812 0.878 0.687 0.703 1.89 × 10−3 0.019 4.020
NSCT 0.822 0.881 0.689 0.715 2.10 × 10−3 0.019 3.999

LP 0.807 0.837 0.673 0.709 2.06 × 10−3 0.017 4.592

Extreme value ratio 1.759 1.223 1.057 2.111 1.135 1.191 1.458

* The maximum (optimal) and minimum (worst) evaluation values are highlighted using bold and italicized font
in this table.

3.2.2. Effects of Atmospheric Correction and Parameter Synchronization on Spatial Detail

Table 7 presents the evaluation values of AG, SD, and EN for the fused images obtained
through five different fusion methods under Fusion 1, Fusion 2, and Fusion 3. Since the
source images in Fusion 1, Fusion 2, and Fusion 3 differ, using source-based evaluation
metrics like UIQI, NCC, NMI, and SSIM are not meaningful. Instead, AG, SD, and EN,
which are based on the statistical features of the fused images themselves, are employed,
making them more comparable. Fusion 2 and Fusion 3 are utilized to assess the impact
of atmospheric parameter synchronization on the spatial details of the fused images,
while Fusion 1 and Fusion 3 are used to compare the effects of atmospheric correction on
these details.
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Table 7. Evaluation metrics for fused images within the Fusion 1, Fusion 2, and Fusion 3 framework.

Method Framework
Artificial Target Scene Road and Grass Scene Cornfield Scene

AG SD EN AG SD EN AG SD EN

PCA
Fusion 1 2.36 × 10−3 0.028 4.408 2.61 × 10−3 0.024 4.051 1.85 × 10−3 0.017 3.151
Fusion 2 2.93 × 10−3 0.039 * 4.950 2.90 × 10−3 0.029 4.533 2.45 × 10−3 0.020 3.569
Fusion 3 2.94 × 10−3 0.038 4.947 2.94 × 10−3 0.030 4.477 2.53 × 10−3 0.020 3.584

Extreme value ratio 1.25 1.38 1.12 1.13 1.25 1.12 1.369 1.168 1.137

IHS
Fusion 1 3.11 × 10−3 0.065 5.229 2.96 × 10−3 0.043 5.173 2.02 × 10−3 0.020 4.594
Fusion 2 6.07 × 10−3 0.077 5.694 3.66 × 10−3 0.051 5.434 2.58 × 10−3 0.025 4.871
Fusion 3 6.17 × 10−3 0.078 5.607 3.88 × 10−3 0.052 5.473 2.79 × 10−3 0.025 4.917

Extreme value ratio 1.98 1.20 1.09 1.31 1.21 1.06 1.380 1.249 1.070

DWT
Fusion 1 4.30 × 10−3 0.070 5.538 3.55 × 10−3 0.042 5.553 1.89 × 10−3 0.019 4.020
Fusion 2 8.07 × 10−3 0.082 5.780 4.10 × 10−3 0.050 5.681 2.30 × 10−3 0.023 4.313
Fusion 3 8.12 × 10−3 0.084 5.785 4.12 × 10−3 0.051 5.727 2.43 × 10−3 0.024 4.389

Extreme value ratio 1.89 1.19 1.04 1.16 1.21 1.03 1.281 1.295 1.092

NSCT
Fusion 1 5.18 × 10−3 0.073 5.731 3.85 × 10−3 0.044 5.747 2.10 × 10−3 0.019 3.999
Fusion 2 8.93 × 10−3 0.084 6.074 3.97 × 10−3 0.054 5.876 2.39 × 10−3 0.023 4.292
Fusion 3 8.97 × 10−3 0.084 6.078 4.10 × 10−3 0.054 5.882 2.51 × 10−3 0.025 4.364

Extreme value ratio 1.73 1.15 1.06 1.07 1.23 1.02 1.195 1.348 1.091

LP
Fusion 1 3.76 × 10−3 0.077 5.403 2.81 × 10−3 0.041 5.035 2.06 × 10−3 0.017 4.592
Fusion 2 7.58 × 10−3 0.093 6.157 3.38 × 10−3 0.049 5.334 2.48 × 10−3 0.024 4.891
Fusion 3 7.64 × 10−3 0.094 6.164 3.53 × 10−3 0.049 5.351 2.63 × 10−3 0.024 4.919

Extreme value ratio 2.03 1.23 1.14 1.26 1.22 1.06 1.276 1.394 1.071

* The maximum evaluation values (optimal value) are highlighted using bold and italicized font in this table.

3.2.3. Effects of Atmospheric Correction Timing on Spatial Detail

Similar to Table 7, Table 8 presents the evaluation values of AG, SD, and EN for the
fused images obtained through five different fusion methods under Fusion 3 and Fusion 4.
These metrics are utilized to compare the impact of the timing of atmospheric correction on
the spatial details of the fused images.

Table 8. Evaluation metrics for fused images within the Fusion 3 and Fusion 4 framework.

Method Framework
Artificial Target Scene Road and Grass Scene Cornfield Scene

AG SD EN AG SD EN AG SD EN

PCA
Fusion 3 2.94 × 10−3 0.038 4.947 2.94 × 10−3 0.030 4.477 2.53 × 10−3 0.020 3.584
Fusion 4 2.02 × 10−3 0.024 4.418 2.28 × 10−3 0.022 3.982 2.38 × 10−3 0.015 3.344

Extreme value ratio 1.454 1.618 1.120 1.287 1.384 1.124 1.066 1.315 1.072

IHS
Fusion 3 6.17 × 10−3 0.078 5.607 3.88 × 10−3 0.052 5.473 2.79 × 10−3 0.025 4.917
Fusion 4 5.93 × 10−3 0.063 5.012 3.55 × 10−3 0.048 5.332 2.52 × 10−3 0.023 4.858

Extreme value ratio 1.041 1.235 1.119 1.093 1.086 1.026 1.106 1.098 1.012

DWT
Fusion 3 8.12 × 10−3 0.084 5.785 4.12 × 10−3 0.051 5.727 2.43 × 10−3 0.024 4.389
Fusion 4 3.91 × 10−3 0.059 5.601 3.03 × 10−3 0.039 5.039 2.28 × 10−3 0.023 4.296

Extreme value ratio 2.076 1.410 1.033 1.360 1.316 1.137 1.065 1.062 1.022

NSCT
Fusion 3 8.97 × 10−3 0.084 6.078 4.10 × 10−3 0.054 5.882 2.51 × 10−3 0.025 4.364
Fusion 4 3.77 × 10−3 0.059 5.594 2.91 × 10−3 0.039 5.034 2.17 × 10−3 0.023 4.275

Extreme value ratio 2.376 1.410 1.086 1.407 1.399 1.168 1.156 1.106 1.021

LP
Fusion 3 7.64 × 10−3 0.094 6.164 3.53 × 10−3 0.049 5.351 2.63 × 10−3 0.024 4.919
Fusion 4 4.23 × 10−3 0.085 6.038 3.21 × 10−3 0.045 5.225 2.40 × 10−3 0.021 4.793

Extreme value ratio 1.805 1.099 1.021 1.099 1.100 1.024 1.093 1.145 1.026
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3.3. Spectral Quantification Evaluation
3.3.1. Effects of Fusion Methods on Spectral Quantification

Table 9 presents the DTR for the fusion images of the artificial targets and the roads and
grassland scenes using five different fusion methods under Fusion 1. These values are used
to assess the impact of the fusion methods on the spectral quantification of the fused image.
DTR is expressed as a percentage, where smaller values indicate a closer approximation to
the true reflectance. Similarly, the extreme values of DTR were also calculated.

Table 9. DTR for Fusion 1 framework.

Ground Type Method
Calculated Reflectance DTR

B G R B G R

Black target

PCA 0.017 0.023 0.024 59.35% 45.29% 40.36%
IHS 0.113 0.135 0.156 161.67% 221.19% 280.53%

DWT 0.104 0.116 0.120 140.83% 175.20% * 193.60%
NSCT 0.102 0.111 0.114 138.08% 163.66% 178.17%

LP 0.103 0.123 0.125 139.45% 193.26% 204.85%

White target

PCA 0.089 0.164 0.254 85.06% 75.14% 62.25%
IHS 0.468 0.538 0.622 21.34% 18.52% 7.76%

DWT 0.377 0.397 0.411 36.70% 39.86% 39.02%
NSCT 0.375 0.412 0.421 36.92% 37.59% 37.54%

LP 0.352 0.394 0.423 40.77% 40.29% 37.28%

Concrete floor

PCA 0.074 0.144 0.213 77.19% 60.47% 41.60%
IHS 0.266 0.339 0.410 17.88% 7.16% 12.64%

DWT 0.205 0.237 0.233 36.87% 35.02% 36.10%
NSCT 0.210 0.237 0.229 35.28% 35.18% 36.97%

LP 0.203 0.212 0.228 37.35% 41.92% 37.36%

Grass

PCA 0.042 0.078 0.123 56.95% 42.35% 25.86%
IHS 0.154 0.191 0.236 59.08% 41.25% 42.34%

DWT 0.147 0.175 0.229 51.94% 29.60% 37.69%
NSCT 0.149 0.170 0.224 54.10% 26.28% 34.81%

LP 0.163 0.180 0.241 68.41% 33.64% 45.00%

* When considering the evaluation metrics for DWT, NSCT, and LP fused images, the maximum and minimum
values are highlighted in bold and italicized font in this table.

3.3.2. Effects of Atmospheric Correction and Parameter Synchronization on Spectral
Quantification

Due to the inconsistent performance of IHS and PCA in improving spectral quan-
tification (as discussed in Section 4.1), only transform-domain-based fusion methods are
considered in the discussion. Table 10 presents the DTR values for the fused images of
artificial targets, roads, and grassland scenes, obtained using three transform-domain-
based fusion methods within Fusion 1, Fusion 2, and Fusion 3. These values are used to
evaluate the impact of atmospheric parameters and their synchronization on the spectral
quantification of the fused images.

Table 10. DTR for the Fusion 1, Fusion 2, and Fusion 3 framework.

Ground Type Method and DTR
B G R

Fusion 1 Fusion 2 Fusion 3 Fusion 1 Fusion 2 Fusion 3 Fusion 1 Fusion 2 Fusion 3

Black target

DWT 0.104 0.056 0.051 0.116 0.052 0.049 0.120 0.061 0.051
NSCT 0.102 0.053 0.048 0.111 0.049 0.046 0.114 0.057 0.047

LP 0.103 0.058 0.053 0.123 0.060 0.057 0.125 0.071 0.061
DTRDWT 140.8% 30.5% 18.9% 175.2% 23.1% 16.3% 193.6% 48.4% 23.7%
DTRNSCT 138.1% 23.2% 11.6% 163.7% 16.2% 9.4% 178.2% 39.9% 15.2%

DTRLP 139.5% 34.6% 22.9% 193.3% 42.0% 35.3% 204.8% 72.2% 47.6%
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Table 10. Cont.

Ground Type Method and DTR
B G R

Fusion 1 Fusion 2 Fusion 3 Fusion 1 Fusion 2 Fusion 3 Fusion 1 Fusion 2 Fusion 3

White target

DWT 0.377 0.545 0.557 0.397 0.542 0.494 0.411 0.516 0.611
NSCT 0.375 0.532 0.544 0.412 0.547 0.499 0.421 0.506 0.602

LP 0.352 0.516 0.529 0.394 0.529 0.481 0.423 0.515 0.610
DTRDWT 36.7% 8.5% 6.3% 39.9% 17.8% 25.2% 39.0% 23.5% 9.4%
DTRNSCT 36.9% 10.6% 8.5% 37.6% 17.1% 24.4% 37.5% 24.9% 10.7%

DTRLP 40.8% 13.2% 11.1% 40.3% 19.8% 27.2% 37.3% 23.6% 9.5%

Concrete floor

DWT 0.205 0.261 0.282 0.237 0.293 0.329 0.233 0.313 0.314
NSCT 0.210 0.252 0.273 0.237 0.285 0.320 0.229 0.320 0.321

LP 0.203 0.255 0.276 0.212 0.261 0.297 0.228 0.315 0.316
DTRDWT 36.9% 19.6% 13.1% 35.0% 19.7% 10.0% 36.1% 14.0% 13.8%
DTRNSCT 35.3% 22.2% 15.8% 35.2% 21.9% 12.3% 37.0% 12.1% 11.9%

DTRLP 37.4% 21.3% 14.8% 41.9% 28.4% 18.7% 37.4% 13.4% 13.2%

Grass

DWT 0.147 0.102 0.106 0.175 0.149 0.154 0.229 0.185 0.181
NSCT 0.149 0.104 0.108 0.170 0.142 0.146 0.224 0.179 0.176

LP 0.163 0.118 0.122 0.180 0.151 0.156 0.241 0.195 0.192
DTRDWT 51.9% 5.4% 9.5% 29.6% 10.7% 14.1% 37.7% 11.2% 9.1%
DTRNSCT 54.1% 6.9% 11.1% 26.3% 5.0% 8.4% 34.8% 7.9% 5.8%

DTRLP 68.4% 21.9% 26.1% 33.6% 12.0% 15.4% 45.0% 17.5% 15.4%

3.3.3. Effects of Atmospheric Correction Timing on Spectral Quantification

Similar to Table 10, Table 11 presents the DTR values for the fused images of artificial
targets, roads, and grassland scenes, obtained using three transform-domain-based fusion
methods within Fusion 3 and Fusion 4. These values are used to evaluate the impact of the
timing of atmospheric correction on the spectral quantification of the fused images.

Table 11. DTR for the Fusion 3 and Fusion 4 framework.

Ground Type Method and DTR
B G R

Fusion 3 Fusion 4 Fusion 3 Fusion 4 Fusion 3 Fusion 4

Black target

DWT 0.051 0.054 0.049 0.049 0.051 0.053
NSCT 0.048 0.050 0.046 0.048 0.047 0.052

LP 0.053 0.054 0.057 0.061 0.061 0.066
DTRDWT 18.9% 25.4% 16.3% 17.6% 23.7% 28.4%
DTRNSCT 11.6% 16.1% 9.4% 13.7% 15.2% 25.6%

DTRLP 22.9% 26.7% 35.3% 46.1% 47.6% 60.8%

White target

DWT 0.557 0.510 0.494 0.451 0.611 0.599
NSCT 0.544 0.530 0.499 0.471 0.602 0.589

LP 0.529 0.520 0.481 0.466 0.610 0.563
DTRDWT 6.3% 14.2% 25.2% 31.7% 9.4% 11.1%
DTRNSCT 8.5% 10.9% 24.4% 28.7% 10.7% 12.6%

DTRLP 11.1% 12.5% 27.2% 29.5% 9.5% 16.4%

Concrete floor

DWT 0.282 0.281 0.329 0.319 0.314 0.307
NSCT 0.273 0.268 0.320 0.309 0.321 0.317

LP 0.276 0.271 0.297 0.292 0.316 0.312
DTRDWT 13.1% 13.3% 10.0% 12.5% 13.8% 15.6%
DTRNSCT 15.8% 17.3% 12.3% 15.2% 11.9% 12.9%

DTRLP 14.8% 16.2% 18.7% 20.1% 13.2% 14.3%

Grass

DWT 0.106 0.109 0.154 0.165 0.181 0.120
NSCT 0.108 0.111 0.146 0.155 0.176 0.191

LP 0.122 0.128 0.156 0.178 0.192 0.123
DTRDWT 9.5% 12.1% 14.1% 21.9% 9.1% 27.7%
DTRNSCT 11.1% 14.8% 8.4% 14.5% 5.8% 15.1%

DTRLP 26.1% 32.0% 15.4% 32.1% 15.4% 25.9%
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4. Discussion
4.1. Effects of Fusion Methods

Table 6 presents the UIQI, NCC, NMI, SSIM, and AG values for fused images under
Fusion 1. These metrics are used to compare the impact of different fusion methods on the
spatial details of the fused images. The findings summarized from Table 6 are as follows:

1. In the three scenarios examined, the NSCT-based fusion method consistently demon-
strates the best evaluation values. Generally, transform-domain-based fusion methods
perform better than spatial-domain-based methods.

2. Among the three transform-domain-based fusion methods, NSCT outperforms DWT,
and DWT performs better than LP.

3. The ratio of the extreme values indicates that, for the artificial target scene, selecting
an appropriate fusion method can enhance the spatial details of the fused images by a
factor of 1.149 to 2.739. For road and grassland scenes, the enhancement ranges from
1.056 to 2.597 times, while for the wheat field scene, the enhancement ranges from
1.057 to 2.111 times.

Spatial-domain fusion methods involve mathematical or statistical computations on
pixels, which can result in a decreased contrast in the fused image and may not effectively
preserve the detailed features of the original images. This is due to the less refined nature of
image decomposition in the spatial domain, making it theoretically challenging to achieve
satisfactory fusion results. In contrast, transform-domain fusion methods utilize multiscale
decomposition techniques to represent images at various scales, resolutions, and orienta-
tions. This approach allows the fusion process to occur in the transform domain, offering
a greater variety of optional fusion rules and finer control. These characteristics enable
transform-domain fusion to preserve spatial information from the original images as much
as possible. The enhancement of spatial details in fused images depends on the “fineness”
of the image decomposition. Consequently, the NSCT method, which achieves a higher
degree of image decomposition, demonstrates relatively superior fusion performance.

Table 9 presents the DTR values for fused images under the Fusion 1 framework,
used to compare the impact of different fusion methods on the spectral quantification of
the fused images. The results in Table 9 indicate that PCA-based fused images exhibit
the smallest DTR for black targets, while IHS-based fused images show the smallest DTR
for white targets and cement surfaces. Conversely, PCA-based fused images have the
largest DTR for white targets, and IHS-based fused images demonstrate the largest DTR
for black targets. This suggests that the DTR stability of PCA and IHS fusion methods is
relatively poor. In contrast, the DTR stability for images fused using the DWT, NSCT, and
LP methods is superior, making the evaluation of transform-domain fusion methods for
spectral quantification more meaningful and practical. The summarized DTR results for
transform-domain fusion methods from Table 9 are as follows:

1. For black targets, selecting an appropriate fusion method can reduce the DTR of the
fused images from a maximum of 193.26% to 175.20% (G channel);

2. For white targets, selecting an appropriate fusion method can reduce the DTR from a
maximum of 40.77% to 36.70% (B channel);

3. For cement surfaces, selecting an appropriate fusion method can reduce the DTR from
a maximum of 41.92% to 35.02% (G channel);

4. For the grassland, selecting an appropriate fusion method can reduce the DTR from a
maximum of 68.41% to 51.97% (B channel).

Due to the complexity of image edges and texture information, which involve various
land cover components, spectral quantification is often compared using flat, homogeneous
land targets. In such cases, the spectral quantification of fused images primarily depends
on the low-frequency signals. Transform domain fusion methods effectively separate low-
frequency and high-frequency signals in a stable and detailed manner, resulting in better
DTR stability for images fused using the DWT, NSCT, and LP methods.
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4.2. Effects of Atmospheric Correction and Synchronous of Parameters

Table 7 presents the AG, SD, and EN values for fused images under Fusion 1, Fusion 2,
and Fusion 3, which are used to compare the impact of atmospheric parameters and their
synchronization on the spatial details of the fused images. The findings summarized from
Table 7 are as follows:

1. The evaluation values for Fusion 1 are the lowest among all fusion methods, indicat-
ing that introducing atmospheric parameters into the fusion process can effectively
enhance the spatial details of the fused images.

2. The highest evaluation values for most fusion methods are observed in Fusion 3, while
PCA and IHS fusion images show a few highest values in Fusion 2. This indicates
that synchronous atmospheric parameters have the greatest impact on improving the
spatial details of the fused images.

3. The ratio of the extreme values indicates that, for the artificial target scene, the syn-
chronous atmospheric parameter can enhance the spatial details of the fused images
by 1.04 to 2.03 times. For road and grassland scenes, the enhancement ranges from
1.02 to 1.31 times. For the wheat field scene, the enhancement ranges from 1.070 to
1.380 times.

Atmospheric effects can cause blurring in remote sensing images, leading to unclear
spatial details and textures. By incorporating atmospheric parameters into the fusion
process, these effects can be mitigated, and the contrast of the fused images can be improved.
Synchronous atmospheric parameter maps are particularly effective in addressing the
spatiotemporal heterogeneity of aerosols, resulting in a more significant enhancement of
spatial details.

Table 10 presents the DTR values for fused images under Fusion 1, Fusion 2, and
Fusion 3, which are used to compare the impact of atmospheric parameters and their
synchronization on the spectral quantification of the fused images. The results in Table 10
indicate that Fusion 1 exhibits the highest DTR values, while Fusion 3 shows the lowest DTR
values for most cases. Fusion 2 has the lowest DTR values for a few grassland scenarios.
The summarized results from Table 10 are as follows:

1. For black targets, synchronous atmospheric parameters can reduce the DTR of the
fused images from a maximum of 163.7% to 9.4% (G channel);

2. For white targets, synchronous atmospheric parameters can reduce the DTR from a
maximum of 36.7% to 6.3% (B channel);

3. For cement surfaces, synchronous atmospheric parameters can reduce the DTR from
a maximum of 35.0% to 10.0% (G channel);

4. For the grassland, atmospheric parameters can reduce the DTR of the fused images
from a maximum of 51.9% to 5.4% (B channel).

Atmospheric effects are one of the primary factors causing spectral distortion in
remote sensing images. Fusion processes can introduce these distorted signals into the
fused images, and strict fusion rules alone cannot eliminate atmospheric information. By
incorporating atmospheric parameters as sources in the fusion process, these effects can
be effectively mitigated or even eliminated. Synchronous atmospheric parameter maps
further address the spatiotemporal heterogeneity of aerosols, leading to enhanced spectral
quantification in the fused images.

4.3. Effects of the Timing of Atmospheric Correction

Table 8 presents the AG, SD, and EN values for fused images under Fusion 3 and
Fusion 4, which are used to compare the impact of the timing of atmospheric correction
on the spatial details of the fused images. The results in Table 8 indicate that Fusion
4 consistently shows lower evaluation values than Fusion 3 across all fusion methods,
suggesting that performing atmospheric correction before image fusion leads to a greater
enhancement of spatial details in the fused images.
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Table 11 presents the DTR values for fused images under Fusion 3 and Fusion 4, which
are used to compare the impact of the timing of atmospheric correction on the spectral
quantification of the fused images. The results in Table 11 indicate that the DTR values for
all land cover targets computed in Fusion 3 are lower than those in Fusion 4, suggesting that
performing atmospheric correction prior to image fusion leads to a greater improvement in
the spectral quantification of the fused images.

5. Conclusions

This study investigates the impact of 6S atmospheric correction combined with five
image fusion methods (PCA, IHS, DWT, LP, and NSCT) on the performance of fused
images, focusing on four aspects: the choice of fusion method, the implementation of
atmospheric correction, the synchronization of atmospheric parameters, and the timing of
atmospheric correction.

The experimental results for each fusion method indicate that the choice of fusion
technique significantly affects the spatial details of remote sensing fused images. In three
experimental scenarios, selecting an appropriate fusion method can enhance the spatial
detail evaluation values of the fused images by factors of 1.149 to 2.739, 1.056 to 2.597, and
1.057 to 2.111, respectively. However, the choice of fusion method has a relatively minor
impact on the spectral quantification of remote sensing images. The maximum reduction in
DTR for black targets, white targets, cement surfaces, and the grassland was observed to be
as follows: from 193.26% to 175.20%, from 40.77% to 36.70%, from 41.92% to 35.02%, and
from 68.41% to 51.97%, respectively.

Experiments employing different atmospheric parameters for atmospheric correction
demonstrate that atmospheric correction improves the performance of fused images across
all methods, with synchronized atmospheric parameter maps yielding better results than
single-value atmospheric parameters. In the three experimental scenarios, atmospheric
correction enhances the spatial details of PCA, IHS, DWT, NSCT, and LP fused images
by factors ranging from 1.12 to 1.38, 1.06 to 1.98, 1.03 to 1.89, 1.02 to 1.73, and 1.06 to
2.03, respectively. Additionally, atmospheric correction reduces the DTR for four types
of features (black targets, white targets, cement surfaces, and grassland), with maximum
reductions of the following: from 163.7% to 9.4%, from 36.7% to 6.3%, from 35.0% to 10.0%,
and from 51.9% to 5.4%. Furthermore, experiments conducted at different timings for
atmospheric correction indicate that placing the atmospheric correction step before the
fusion step yields better results.

In summary, integrating synchronized atmospheric parameter distribution images
into the fusion framework prior to remote sensing image fusion, along with selecting fusion
methods based on multiscale decomposition, such as NSCT, can significantly enhance both
the spatial details and spectral quantification of fused images. The findings of this study
provide a technical pathway for achieving the high-quality quantitative fusion of remote
sensing images.

While this research demonstrates the impact of 6S atmospheric correction and five
fusion techniques on the performance of fused images, future work will explore deep-
learning-based methods. Deep learning approaches not only hold promise for image fusion
but may also address challenges related to atmospheric correction and aerosol parameter
inversion, necessitating further investigation.
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