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Abstract: Aboveground carbon stocks (AGCs) in forests play an important role in understanding
carbon cycle processes. The global forestry sector has been working to find fast and accurate methods
to estimate forest AGCs and implement dynamic monitoring. The aim of this study was to explore
the effects of backpack LiDAR and UAV multispectral imagery on AGC estimation for two tree
species (Larix gmelinii and Betula platyphylla) and to emphasize the accuracy of the models used.
We estimated the AGC of Larix gmelinii and B. platyphylla forests using multivariate stepwise linear
regression and random forest regression models using backpack LiDAR data and multi-source remote
sensing data, respectively, and compared them with measured data. This study revealed that (1) the
diameter at breast height (DBH) extracted from backpack LiDAR and vegetation indices (RVI and
GNDVI) extracted from UAV multispectral imagery proved to be extremely effective in modeling for
estimating AGCs, significantly improving the accuracy of the model. (2) Random forest regression
models estimated AGCs with higher precision (Xing’an larch R2 = 0.95, RMSE = 3.99; white birch
R2 = 0.96, RMSE = 3.45) than multiple linear regression models (Xing’an larch R2 = 0.92, RMSE = 6.15;
white birch R2 = 0.96, RMSE = 3.57). (3) After combining backpack LiDAR and UAV multispectral
data, the estimation accuracy of AGCs for both tree species (Xing’an larch R2 = 0.95, white birch
R2 = 0.96) improved by 2% compared to using backpack LiDAR alone (Xing’an larch R2 = 0.93, white
birch R2 = 0.94).

Keywords: backpack LiDAR; UAV multispectral imagery; aboveground carbon stock (AGC); multiple
stepwise linear regression (MSLR); random forest regression (RF)

1. Introduction

Forest ecosystems play a crucial role in terrestrial ecosystems, acting as massive
global carbon reservoirs that contain 80% of the terrestrial carbon stored in aboveground
biomass [1]. The aboveground carbon stock (AGC) of forests is a key parameter for assessing
the carbon sequestration capacity and carbon balance above the forest soil layer, making
it vital to understand the role of forests in carbon cycling and climate change [2]. As the
issue of climate change becomes increasingly severe, accurately estimating and monitoring
changes in forest AGCs are essential for developing sustainable ecosystem management
and policies to mitigate climate change [3].

However, accurately estimating forest AGCs is a challenging task. Although traditional
field survey methods are precise and reliable, they are time-consuming and labor-intensive,
making it difficult to apply them over large areas or to fully cover diverse ecosystem
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types. As a result, remote sensing-assisted datasets have gradually become an important
supplementary approach, providing spatially and temporally continuous information over
extensive regions [4]. Remote sensing data sources such as LiDAR and UAV multispectral
imagery have high-resolution and wide-area surface information, offering the possibility of
estimating carbon stocks over large areas [5–8]. However, despite numerous studies show-
ing that LiDAR or optical data alone can predict forest AGCs, the accuracy obtained from
these methods without support from field measurements remains a challenge. Therefore,
calibration and validation of remote sensing-assisted prediction techniques still require
field measurement data.

Light detection and ranging (LiDAR) data, as a remote sensing data source, can be
used to rapidly and accurately obtain elevation information and vertical structure data for
vegetation cover [9] and are among the latest remote sensing technologies for forest carbon
accounting [10]. Backpack LiDAR, such as LiBackpack, a new type of portable LiDAR, offers
high capacity, accessibility, and flexibility in route selection and can obtain high-quality 3D
dense point clouds in forests with different vegetation structures [11]. However, despite
the accuracy of backpack LiDAR for measuring tree diameter [12,13], identifying the best
variables suitable for different tree species remains challenging, especially in the absence
of canopy spectral information, where LiDAR data classification accuracy for tree species
under complex vegetation conditions is limited [14]. On the other hand, UAV multispectral
imagery includes multispectral information, aiding in studying the spectral characteristics
of different tree species. Early research revealed that the high-resolution image texture
features of optical remote sensing data are strongly correlated with forest biomass [15,16],
and the vegetation indices obtained from optical data typically reach saturation at relatively
low biomass values [17,18]. UAV multispectral imagery has better spatial, spectral, and
temporal resolution compared to other optical datasets for similar data volumes and data
collection costs [19], and their time-series data provide high-quality information on seasonal
changes in forests. Additionally, UAV multispectral data are effectively used for forest
resource monitoring and dynamic management [20]. Recent studies suggest that combining
LiDAR and optical sensors is a feasible approach for estimating biomass and carbon storage
in both plantations and natural forests [21]. Brown et al. [22] showed that modeling with a
large amount of field measurement data added to data fusion can improve the estimation
of forest AGBs and AGCs. Kim et al. [23] stated that combining spectral information with
attributes derived from LiDAR data is more suitable for assessing the AGB and AGC than
using optical images or LiDAR data alone. However, finding a method for accurately
estimating forest AGCs with fewer field measurements to establish regression models is
currently challenging.

Extracting vegetation information from remote sensing imagery and integrating it
with ground-measured data for modeling has become an effective and popular method
for obtaining regional forest AGCs. The study mentioned the use of parametric and non-
parametric models. Multiple stepwise linear regression (MSLR) represents the traditional
parametric model, assuming a linear relationship between predictive variables and the
variable being predicted. However, this assumption limits the inherent nonlinearity of the
relationship between them and requires a large sample size [24]. On the other hand, random
forest regression (RF) is a nonparametric model that does not assume a specific distribution
for the samples. It can handle complex nonlinear relationships and high-dimensional prob-
lems and has been proven effective for estimating forest AGCs [25]. Additionally, machine
learning techniques aid in combining data from different sources to improve outcomes [26].

In this study, L. gmelinii and B. platyphylla, two typical tree species, were chosen as
the study species due to their ecological significance and notable differences in carbon
storage [27]. Liu et al. explored the carbon storage capacity of Xing’an larch and birch
forests, suggesting that they have an important role in boreal forests [28]. Larix gmelinii,
an important economic tree species, grows in cold and dry conditions and has a high
carbon stock. In contrast, compared with L. gmelinii, B. platyphylla plays a different role in
ecosystems and has distinct growth environments and characteristics, leading to potentially
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significant differences in carbon storage. By studying these two typical species, we aim
to deepen the understanding of the variability in forest carbon storage among different
tree species, thereby providing more accurate estimation models to support forest resource
management and conservation.

Despite these developments, comprehensive validation of the accuracy of forest AGC
estimation is lacking. This study is dedicated to addressing this challenge. We hypothesize
that the combination of forest vertical variables with horizontal variables from optical
images through allometric relationships can be used to accurately estimate forest AGCs
at the plot scale with minimal field measurement data. Therefore, the objectives of this
study are: (1) to assess the effectiveness of using backpack LiDAR and UAV multispectral
imagery in estimating aboveground carbon stocks (AGC) for L. gmelinii and B. platyphylla;
(2) to compare the predictive accuracy of different models; and (3) to validate whether
integrating multi-source data can enhance the accuracy of AGC estimation.

2. Materials and Methods
2.1. Study Area

The research area is located in the Dural National Forest Farm, Arxan city, Hing-
gan League, Inner Mongolia Autonomous Region of China (119◦28′–120◦01′E, 47◦15′–
47◦35′N), which is a comprehensive forest farm integrating both natural and artificial forests
(Figure 1—Some of the sampling sites are located outside of the yellow box labeled as
the UAV-LS working area. However, in the actual study, the sample plots used in the
estimation of AGCs were those within the yellow boxes). This region, situated in the
Hinggan League of the Inner Mongolia Autonomous Region of China, is an important
natural ecological conservation area. The total area of the Dural Forest Farm is 49,812
hectares, 33,466 hectares of which are designated for forestry, accounting for 67% of the
total area. The forest coverage rate is as high as 48.3%, with an altitude ranging from 792 to
1495 metres. The region experiences a cold temperate continental monsoon climate, with an
average annual temperature of 1.48 ◦C, an average temperature of −25.6 ◦C in the coldest
month, and an average temperature of 16.6 ◦C in the hottest month. The average annual
precipitation is 437 mm. The main tree species of the forest are B. platyphylla and L. gmelinii,
along with a minority of Populus davidiana and Pinus sylvestris. Most of the area has good
site conditions, with similar forest types distributed in concentrated and contiguous areas,
which is beneficial for forest management and operation [29].

2.2. Inventory Data

Within the study area covered by airborne LiDAR data, we conducted two field sur-
veys for tree information collection at the plot scale in July 2021 and July 2022 (Figure 2). In
this study, we used field-measured data from 435 rectangular plots, each measuring 0.04 ha
(230 plots from larch forests and 205 plots from birch forests). Additionally, considering the
distributions of L. gmelinii and B. platyphylla, these plots were established to provide a good
statistical representation of these two main tree species. Given the relative rareness of tree
species in the study area, our data collection specifically targeted these two tree species.
Within each plot, the tree heights were measured using a laser rangefinder. Trees with a
diameter at breast height (DBH) greater than 5 cm were marked at a height of 1.2 m using a
DBH measuring tape. Simultaneously, the coordinates of the plot’s center point and its four
corners were obtained using a GNSS receiver with differential satellite station technology,
which was employed for accurate positioning.

Currently, most forest biomass estimation studies are based on existing allometric
growth equations selected according to the study area or equations fitted from the analysis
of felled trees [30]. Allometric growth equations are fundamental not only for calculating
the biomass of various tree organs and vegetation carbon storage but also for estimating
tree carbon sequestration rates and potentials [31]. The diameter at breast height (DBH)
and tree height (H) have been used as predictive variables for estimating aboveground
biomass (AGB) [32,33]. Therefore, this study estimated the AGB of individual L. gmelinii
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and B. platyphylla trees in the Dural Forest Farm based on DBH (cm) and H using allometric
growth equations for the dominant tree species of the Greater Khingan Range in Inner
Mongolia [34,35] (Table 1). The total AGB of the forests in the study area was calculated as
shown in Equation (1):

AGBTotal = WStem + WBranch + WLea f + WBark (1)Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 25 
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Table 1. Allometric growth equations for Inner Mongolia L. gmelinii and B. platyphylla.

Organ Allometric Growth Equation of Larix
gmelinii

Allometric Growth Equation of Betula
platyphylla

Stem WStem = 0.01258(D2H)0.99331 WStem = 0.02853(D2H)0.89278

Branch WBranch = 0.00136(D2H)1.02797 WBranch = 0.00278(D2H)1.02568

Leaf WLeaf = 0.01009(D2H)0.64543 WLeaf = 0.01545(D2H)0.61265

Bark WBark = 0.002307(D2H)0.70655 WBark = 0.02392(D2H)0.71131

D represents the diameter at breast height (DBH) of the tree; H represents the tree height; WStem represents the
biomass of the tree trunk; WBranch represents the biomass of the branches; WLeaf represents the biomass of the
leaves; and WBark represents the biomass of the bark.

For the L. gmelinii and B. platyphylla forests in the Dural Forest Farm, we referred
to the standard conversion factors for L. gmelinii and B. platyphylla forests in the Greater
Khingan Range, which are 0.4948 and 0.5018, respectively [36], to convert AGB to AGC
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(aboveground carbon) [37], as shown in Equations (2) and (3). Table 2 provides a summary
of the forest parameters obtained from field measurements.

AGCLarix = 0.4948 × AGBTotal (2)

AGCBetula = 0.5018 × AGBTotal (3)
Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 25 
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urement. (c) Obtaining the coordinates. (d) DBH measurement and recording. 
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In the formula, AGBTotal represents the total aboveground biomass, AGCLarix is the
aboveground carbon stock of L. gmelinii, and AGCBetula is the aboveground carbon stock of
B. platyphylla forests.
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After simplifying Equations (1)–(3), the final equations for calculating the measured
aboveground carbon (AGC) for L. gmelinii and B. platyphylla forests are obtained, as shown
in Equations (4) and (5):

AGCLarix_Measured = 0.0248 × (D2H)
0.8955

(4)

AGCBetula_Measured = 0.034 × (D2H)
0.8622

(5)

In the formulas, AGCLarix measured represents the measured aboveground carbon
stock of L. gmelinii; AGCBetula measured represents the measured aboveground carbon
stock of B. platyphylla forests; D is the measured diameter at breast height (DBH); and H is
the measured tree height.

Table 2. Summary statistics of the field-measured forest parameters.

Variable
Larix gmelinii Betula platyphylla

Min Max Mean Std Min Max Mean Std

H (m) 4 16 11.89 2 6 16.9 13.43 2.25
DBH (cm) 5.5 35 15 4.28 5.3 29.8 12.58 4.37
AGB (Kg) 3950 320,540 64,490 40,480 6590 231,500 56,580 39,570
AGC (Kg) 1960 158,610 31,910 20,030 3310 116,170 28,390 19,850

2.3. Remote Sensing Data
2.3.1. Backpack LiDAR Data

The Backpack Laser Scanning (BLS) system is a backpack-mounted device that inte-
grates LiDAR with other sensors. The simultaneous localization and mapping (SLAM)
algorithm allows for the rapid and continuous acquisition of LiDAR point cloud data, even
as the robot or device moves through an unknown environment. The SLAM algorithm
enables a robot or device to autonomously create a map and accurately locate itself without
knowing its initial position, facilitating navigation in unknown environments.

In this study, we employed the LiBackpack DGC 50 backpack laser scanner developed
by Beijing Greenvalley Technology Co., Ltd. (Beijing, China) (Figure 3). This device
efficiently captures tree point cloud data within plots using a designed “S”-shaped hiking
route for data collection [38]. The choice of the LiBackpack DGC 50 was based on its effective
data collection capability and reliable data quality assurance. During data collection, the
operator connects to the backpack laser scanner via a smartphone to monitor the number
of satellite signals and real-time point cloud scanning status. To ensure the quality of the
point cloud data, steady movement is required during collection, especially at turns, to
ensure data accuracy and completeness.

To acquire point cloud data with geographic coordinates, a GNSS receiver (CHC
iRTK 5) is used in an open area outside the plot with stable Global Navigation Satellite
System signals. This receiver acquires the absolute geographic coordinates of a point using
satellite differential techniques, and a base station is set up at this point to gather static data.
Finally, the raw point cloud data, trajectory files, and GNSS static data are imported into
GreenValley International Li-Fuser BP software (Digital Green Earth; Beijing, China) for
processing to obtain point cloud data with absolute geographic location information.

The LiBackpack DGC 50 laser scanner and Li-Fuser BP software were selected for their
superior capabilities in rapid data acquisition and processing. The backpack LiDAR data
were collected by an operator who walked along an ‘S’-shaped route, ensuring compre-
hensive coverage of each plot. During data collection, the operator monitored the data
quality in real-time via a mobile connection, ensuring the accuracy and completeness of the
point cloud data. The scanning path was meticulously designed to cover the entirety of
each designated plot, ensuring that the collected data was precisely aligned with the AGC
measurement points.
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Figure 3. LiBackpack DGC50 backpack LiDAR scanning system.

When processing the backpack LiDAR data, the initial steps involve copying the raw
field data and exporting the image data. Next, Hi-Target Business Center software (Beijing
Huatai Kejie Information Technology Co.; Beijing, China) is used to convert the static
data into GNSS files in RINEX format. The Insta360 studio software (Shenzhen Qianhai
Shadowstone Innovative Technology Co.; Shenzhen, China) is then utilized to convert
the required video format from the backpack LiDAR into .MP4. Afterward, Li-Fuser BP
software is used to process the data coordinates, calibrating the relative coordinates from
the mobile trajectory to the geodetic coordinates, with all coordinates resolved using the
CGCS2000 3-degree GK CM 120E system (Environment System Research Institute, ESRI).
Each plot covers an area of 0.04 hectares, and the LiDAR scan ensures comprehensive
coverage of all trees, providing complete data on tree height, DBH, and canopy structure.

The processed Backpack data were preprocessed using LiDAR360 V5.3 software
(Digital Green Earth Ltd.; Beijing, China). The point cloud data were clipped according
to the sample range, and after removing redundancy and noise, the data were filtered.
The ground points were classified, and a digital elevation model (DEM) was generated
through irregular triangular mesh interpolation. Based on the DEM, the point cloud was
normalized to obtain seed points, and individual trees were segmented using these seed
points to acquire ground-based point cloud data. Figures 4 and 5 display the profile point
cloud data of the collected L. gmelinii and B. platyphylla plots, visualized by elevation.
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2.3.2. UAV Multispectral Data

On 11 July 2021, multispectral imagery was collected across six transect areas using a
Feima D200 multirotor UAV (Pegasus Robotics Technology Co.; Shenzhen, China) and a
V300 fixed-wing UAV equipped with a D-CAM2000 multispectral sensor (Pegasus Robotics
Technology Co.; Shenzhen, China) (shown in Figure 6). The sensor captured six spectral
bands, namely blue, green, red, red-edge, near-infrared, and panchromatic bands. The
flight operation was designed at an altitude of 383 m with an 80% flight path overlap and
60% side overlap. The UAVs were equipped with an inertial navigation system (IMU),
providing a spatial resolution of 0.02 m. The acquired sensor images were loaded into
pix4dmapper 4.5.6 official version software (Pix4D Company, Switzerland) to allow the
feature point matching algorithm to match the different images, and the aerial triangulation
method and beam method leveling algorithm were used to obtain the multispectral images
of the UAV-piloted flight area. During field data collection, we used RTK-GNSS equipment
to precisely measure the corner and center points of each plot, ensuring centimeter-level
accuracy in the coordinates. These coordinates were then converted to the same coordinate
system as the UAV imagery (CGCS2000) to maintain spatial consistency across different
data sources. In ArcMap 10.7, the UAV-acquired multispectral images were cropped
according to the boundaries of each plot, ensuring that the resulting images only included
pixels within the plot area. Additionally, feature point matching algorithms were applied
to spatially align the UAV imagery with ground-based data and further optimized using
bundle adjustment techniques to ensure precise spatial correspondence between datasets.
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Figure 6. (a) Pegasus V300 drone and (b) multispectral D-CAM2000 sensor.

The six spectral bands of UAV multispectral imagery contain rich vegetation infor-
mation, which are crucial factors in estimating forest carbon storage. This study selected
five bands closely related to vegetation (blue, green, red, and near-infrared) and used
ArcGIS 10.7 to extract band information for the main tree species plots in the study area.
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The spectral information resulting from the reflection, absorption, and scattering of solar
radiation by the forest canopy, along with chlorophyll content, is an important variable
for AGB/AGC modeling [39–41]. The seven vegetation indices derived from band com-
binations, including NDVI, RVI, DVI, EVI, GNDVI, NDRE, and SAVI, effectively reflect
vegetation growth and health and are closely related to AGB/AGC [42–48]. In this study,
these vegetation indices were extracted and coupled with LiDAR structural variables to
establish a model for quantitatively estimating AGC density (see Table 3). ENVI 5.3 soft-
ware was used to perform calculations on the aforementioned bands of UAV multispectral
imagery, computing various types of vegetation indices for modeling and analysis when
estimating forest vegetation carbon storage.

Table 3. Vegetation Index Formulas.

Vegetation Index Descriptions Equations References

NDVI Normalized Vegetation Index NDVI = ρNIR−ρRED
ρNIR+ρRED

[42]
RVI Ratio Vegetation Index RVI = ρNIR

ρRED
[43]

DVI Difference Vegetation Index DVI = ρNIR − ρRED [44]
EVI Enhanced Vegetation Index EVI = 2.5×(ρNIR−ρRED)

(ρNIR+6×ρRED−7.5×ρBLUE+1)
[45]

GNDVI Green Normalized Vegetation Index GNDVI = ρNIR−ρGREEN
ρNIR+ρGREEN

[46]

NDRE Normalized Redside Vegetation Index NDRE =
ρRedEdge−ρNIR
ρRedEdge+ρNIR

[47]

SAVI Soil-Adjusted Vegetation Index SAVI = 1.5 × (ρNIR−ρRED)
(ρNIR+ρRED+0.5)

[48]

2.4. Predictive Model

Forest AGC was estimated using combinations of three types of data variables: LiDAR
variables (LVs), optical variables (OVs), and a combination of LiDAR and optical variables
(LVs + OVs). Predictive variables from LiDAR data (2 variables) and vegetation index
data (7 variables) were used along with corresponding AGC field data to estimate the
forest AGC of L. gmelinii and B. platyphylla. The models were run with the measured forest
AGC and remotely sensed data-derived indices as dependent and independent variables,
respectively. The impact of different modeling methods on result quality varies [49]. In this
study, two types of multiple stepwise linear regression (MSLR) models and random forest
(RF) regression models were used to predict AGCs.

2.4.1. Multiple Stepwise Linear Regression Model

A multiple linear regression model using a stepwise selection of predictive variables
was employed to predict the relationship between AGCs obtained from remote sensing
datasets and variables. Stepwise regression is a parametric algorithm that screens variables
and establishes an optimal regression equation. In the stepwise regression modeling pro-
cess, predictive variables are input into the regression equation one by one based on given
statistical standards. In each step of the analysis, the variable with the highest correlation
with the dependent variable is first entered into the regression equation, followed by the
introduction of other variables one by one to establish the model. The MSLR model has
been widely applied in the estimation of forest AGB and AGCs [50–53].

However, these techniques are not conducive to establishing complex relationships
between biophysical parameters and remote sensing matrices. Machine learning technology
is a powerful nonlinear regression method that can serve as an alternative to traditional
methods for dealing with complex and nonlinear problems. Machine learning algorithms
can integrate data from different sources [26].

2.4.2. Random Forest Regression Model

The random forest (RF) method is a classification and regression method that uses
regression trees to predict the relationships between variables and is widely used in biomass
carbon storage prediction [54,55]. It is often effective in predictive models [56]. In this
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algorithm, a subset of training data is randomly selected to construct a decision tree. The
remaining part of the training data is used to estimate the error of each tree. At each node of
the tree, a set of predictive variables is randomly selected to determine the split. Hundreds of
trees are constructed in a similar manner, and the final prediction is formed by aggregating the
predicted values of all the trees [19]. RF has been proven to reduce overfitting and systematic
errors [57], rank important variables, and generate independent measurements of prediction
error [58]. It has been shown to be more accurate than linear regression models [59].

In this study, the Random Forest (RF) model utilized data from 210 Xing’an larch
and 180 white birch trees, selecting one-third of the total number of variables (70 for
larch and 60 for birch) as the basis for splitting at each node. The input data consisted
of structural attributes derived from LiDAR, such as diameter at breast height (DBH)
and tree height (H), along with vegetation indices extracted from UAV multispectral
imagery, including the Ratio Vegetation Index (RVI) and Green Normalized Difference
Vegetation Index (GNDVI). The model was trained and validated using a 70/30 split
ratio, with cross-validation employed to ensure the robustness and stability of the model’s
performance. Model accuracy was evaluated through multiple metrics, including the
root mean square error (RMSE), coefficient of determination (R2), and mean absolute
error (MAE). Furthermore, the model assessed the relative importance of each variable by
measuring the increase in prediction error when a particular variable was omitted, which
facilitated model optimization and highlighted the most influential predictors.

2.5. Accuracy Evaluation

To validate the effectiveness of the models, in this study, we randomly selected
160 plots from 230 field-measured L. gmelinii carbon storage plots and 144 plots from
205 field-measured B. platyphylla carbon storage plots to construct regression models. The
remaining 70 and 61 plots were used to evaluate the predictive accuracy of our established
forest AGC estimation models. Widely used statistical indicators were employed to assess
the accuracy of the forest AGC estimation models. For each model, we calculated the
coefficient of determination (R2, Formula (6)), root mean square error (RMSE, Formula (7)),
relative root mean square error (RRMSE, Formula (8)), and mean absolute error (MAE,
Formula (9)). R2 measures the fit between the predicted and observed values, while RMSE,
RRMSE, and MAE calculate the estimation error of the model. A larger R2 indicates a better
fit between the observed and predicted values. Smaller RMSE, RRMSE, and MAE values
indicate smaller estimation errors in the model. The calculation formulas are as follows:

R2 = 1 − ∑n
i=1 (y

i − ∧
yi)

2

∑n
i=1 (yi − yi)

2 (6)

RMSE =

√
∑n

i=1 (
∧
yi − yi)2

n
(7)

RRMSE =
RMSE

y
× 100 (8)

MAE =
∑n

i=1

∣∣∣yi −
∧
yi

∣∣∣
n

(9)

In the formulas, n represents the number of samples; yi and
∧
yi are the observed and

predicted AGC values, respectively, for the i-th sample; and yi is the average AGC value of
the i-th sample.

3. Results
3.1. Extraction of Forest Structural Parameters Based on Remote Sensing Data

First, we conducted sampling at the field site, where each tree within the plot was
scanned using backpack LiDAR. The data were then exported and processed in LiDAR360
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software, where the point cloud data underwent cropping, filtering, ground point classifi-
cation, normalization, and individual tree segmentation. This process ultimately provided
the DBH and H of trees with specific coordinates. Finally, the DBH and H measured in the
field were fitted and cross-validated with those extracted from the backpack LiDAR data.

Figure 7a shows the comparison between the measured DBH and the DBH extracted
from the Backpack LiDAR for the Larix gmelinii forest plot (R2 = 0.9966, RMSE = 0.25, and
MAE = 0.17). Figure 7b presents the comparison between the measured H and the H ex-
tracted from the Backpack LiDAR for the Larix gmelinii forest plot (R2 = 0.4507, RMSE = 1.48,
and MAE = 3.15).
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Figure 7. (a) Comparison of measured DBH with DBH extracted by backpack LiDAR in Larix;
(b) Comparison of measured DBH with DBH extracted by backpack LiDAR in Larix.

Figure 8a shows the comparison between the measured DBH and the DBH extracted
from the Backpack LiDAR for the Betula platyphylla forest plot (R2 = 0.984, RMSE = 0.51,
and MAE = 0.37). Figure 8b presents the comparison between the measured H and the
H extracted from the Backpack LiDAR for the Betula platyphylla forest plot (R2 = 0.6227,
RMSE = 1.51, and MAE = 1.61).
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3.2. Aboveground Carbon Stock Estimation in Forests at the Sample Plot Scale Based on LiDAR
Remote Sensing Data
3.2.1. Aboveground Carbon Stock Estimation in Forests Based on LiDAR Remote Sensing
Using Multiple Stepwise Linear Regression Methods

The modeling approach used a simple regression fitting method to model LiDAR-
estimated DBH and H with forest AGC. We used model accuracy evaluation metrics (such
as R2 and RMSE) to test the significance of the model to eliminate variables that have
an insignificant impact on the dependent variable. Finally, we established a multivariate
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linear regression equation containing all important variables to explain the variation in the
dependent variable. Therefore, in this study, using IBM SPSS Statistics 27 statistical analysis
software, we selected the multivariate linear stepwise regression method based on the
correlation between the biomasses of different types of tree species and modeling factors.
We retained factors with strong significance and eliminated those with weak significance
until we formed the optimal model equation for estimating aboveground carbon storage
for different tree species. The DBH and H of each tree extracted from the backpack LiDAR
were used as independent variables (a Pearson correlation analysis showed a significant
correlation between DBH and H, with R = 0.7, p < 0.05), and the measured aboveground
carbon storage as the dependent variable. Various linear and nonlinear fitting models were
applied using Excel to explore the relationship between forest structural variables (such as
DBH and H) and predicted AGC. The best-fitting model was then selected from among
these models (Tables 4 and 5).

Table 4. Multivariate stepwise linear regression modeling for LiDAR prediction of AGC in Larix.

Variable Model R2 RMSE

DBHLiDAR AGCLiDAR = 0.0962 × DBHLiDAR
2.1023 0.937 4.19

DBHLiDAR AGCLiDAR = 3.7302 × DBHLiDAR − 25.612 0.882 5.94
HLiDAR AGCLiDAR = 2.9865 × HLiDAR

1.0256 0.244 14.28
HLiDAR AGCLiDAR = 5.6161 × HLiDAR − 0.9979 0.230 14.63
DBHLiDAR × HLiDAR AGCLiDAR = 0.1272 (DBHLiDAR × HLiDAR)1.1291 0.770 11.20
DBHLiDAR × HLiDAR AGCLiDAR = 0.2634 (DBHLiDAR × HLiDAR) − 2.2132 0.737 11.97
DBHLiDAR + HLiDAR AGCLiDAR = 0.0124 (DBHLiDAR + HLiDAR)2.4667 0.904 7.60
DBHLiDAR + HLiDAR AGCLiDAR = 2.7801 (DBHLiDAR + HLiDAR) − 33.604 0.847 11.39

Table 5. Multivariate stepwise linear regression modeling for LiDAR prediction of AGC in Betula.

Variable Model R2 RMSE

DBHLiDAR AGCLiDAR = 0.1724 × DBHLiDAR
1.9684 0.948 3.71

DBHLiDAR AGCLiDAR = 4.4728 × DBHLiDAR − 28.31 0.939 4.56
HLiDAR AGCLiDAR = 0.0391 × HLiDAR

2.534 0.411 17.26
HLiDAR AGCLiDAR = 5.3764 × HLiDAR − 39.113 0.281 17.00
DBHLiDAR × HLiDAR AGCLiDAR = 0.0151 (DBHLiDAR × HLiDAR)1.4633 0.942 5.74
DBHLiDAR × HLiDAR AGCLiDAR = 0.2659 (DBHLiDAR × HLiDAR) − 15.195 0.909 6.65
DBHLiDAR + HLiDAR AGCLiDAR = 0.002 (DBHLiDAR + HLiDAR)2.9239 0.938 5.47
DBHLiDAR + HLiDAR AGCLiDAR = 3.3565 (DBHLiDAR + HLiDAR) − 56.464 0.880 7.41

In this study, simple stepwise regression fitting methods were used to establish various
linear and nonlinear models that relate LiDAR-estimated forest structural variables such as
tree height (H) and diameter at breast height (DBH) with the measured forest AGC. The
model with the highest correlation coefficient was selected from multiple fitted models. As
shown in Tables 4 and 5, among all the trained multivariate linear and nonlinear models,
the multivariate power model exhibited higher accuracy than the multivariate linear model.
In L. gmelinii forests, the LiDAR-estimated DBH provided the best fit for predicting L.
gmelinii AGC (R2 = 0.9371). Similarly, in B. platyphylla forests, the LiDAR-estimated DBH
was the best predictor for B. platyphylla AGC (R2 = 0.9482). Therefore, in this study, a
power function regression model was used, with LiDAR-estimated DBH as the predictor, to
simulate and predict AGC in L. gmelinii and B. platyphylla forests, respectively. The optimal
prediction regression models are shown in Equations (10) and (11):

AGCLarix_LiDAR = 0.0962 × DBHLiDAR
2.1023 (10)

AGCBetula_LiDAR = 0.1724 × DBHLiDAR
1.9684 (11)

Using the aforementioned formulas, the AGC of L. gmelinii and B. platyphylla forests
was predicted using LiDAR data. Figure 9 shows the results of the accuracy validation of
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the AGC predicted by the LiDAR MSLR model compared with the AGC estimated in the
field in L. gmelinii and B. platyphylla forests. As demonstrated, the AGC of L. gmelinii and B.
platyphylla predicted by LiDAR using the MSLR model was significantly correlated with
the measured AGC, with R2 values of 0.91 and 0.94, RMSE values of 6.21 and 5.20, RRMSE
values of 19.36% and 18.37%, and MAE values of 3.83 and 3.32, respectively. Among the
two different tree species, the R2, RMSE, RRMSE, and MAE values were greatest for the B.
platyphylla forests.
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Figure 9. Forest AGC (Tg) of (a) Larix and (b) Betula measured via LiDAR using the MSLR model
versus the predicted forest AGC. (Blue dots indicate data sample points for Larix; red dots indicate
data sample points for Betula).

3.2.2. Aboveground Carbon Stock Estimation in Forests Based on LiDAR Remote Sensing
Using the Random Forest Regression Method

In this study, 186 L. gmelinii trees and 164 B. platyphylla trees were randomly selected for
RF modeling. Figure 10 shows the results of the accuracy validation of the AGC predicted
by the LiDAR RF model compared with the AGC estimated in the field in L. gmelinii and
B. platyphylla forests. As illustrated, the AGCs of L. gmelinii and B. platyphylla predicted
by LiDAR via the RF model were significantly correlated with the measured AGC, with
R2 values of 0.9501 and 0.9618, RMSE values of 4.4023 and 3.54, RRMSE values of 13.61%
and 14.03%, and MAE values of 3.2041 and 2.79, respectively. Among the two different tree
species, the R2, RMSE, RRMSE, and MAE values were greatest for the B. platyphylla forests.
Overall, the fitting models based on RF performed better than those based on MSLR.
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3.3. Estimation of Aboveground Carbon Stocks in Forests at the Sample Site Scale Based on
Multisource Remote Sensing Data
3.3.1. Aboveground Carbon Stock Estimation in Forests Based on Multisource Remote
Sensing Using Multiple Stepwise Linear Regression Methods

Considering the shortcomings of LiDAR data, which are spatially discrete and do not
have imaging capability, multispectral information was combined to improve the accuracy
of forest AGC estimation on the basis of obtaining LiDAR tree height and diameter at breast
height (DBH). In this study, based on previous estimates of forest AGC using LiDAR data,
the inversion model was optimized by combining multispectral imagery to complement the
spectral information of vegetation. First, the UAV multispectral orthorectified image was
opened, and the required individual band information (red, near-infrared, blue, green, etc.)
was extracted in ArcGIS 10.7. Second, seven vegetation indices, such as the NDVI, DVI,
EVI, RVI, NDRE, GNDVI, and SAVI, were calculated using the above band information,
and the results of each index were saved as separate GeoTIFF files. Finally, a Pearson
correlation analysis was conducted using IBM SPSS Statistics 27 software to assess the
relationship between the seven vegetation indices and the measured AGC (as shown in
Table 6). This analysis was used to identify the optimal vegetation indices that could
enhance the accuracy of AGC estimation. As known from Table 3, the seven selected
vegetation indices were weakly correlated with the measured AGC. The vegetation index
with the highest correlation with forest AGC in larch forests was RVI, while the index with
the highest correlation with forest AGC in birch forests was GNDVI.

Table 6. Vegetation index and measured AGC—Pearson correlation.

Vegetation Index Correlation

Larix Betula

NDVI 0.0397 0.1273
DVI 0.0417 0.1162
EVI 0.0407 0.0903
RVI 0.0426 0.1328

NDRE 0.0413 0.1329
GNDVI 0.0367 0.1614

SAVI 0.0235 0.0861

Through the analysis of the correlation between AGC and modeling factors in the
sample data of larch and birch forests, we found a weak correlation between various
modeling factors and AGC. We hypothesize that incorporating these vegetation indices
could improve the accuracy of AGC predictions. Therefore, in this study, we combined
multispectral indices with LiDAR parameters to develop models. For L. gmelinii, DBH and
H extracted from LiDAR data, along with the vegetation index RVI calculated from UAV
multispectral imagery, were used as independent variables, with the measured AGC as
the dependent variable. For B. platyphylla, DBH, H, and the vegetation index GNDVI were
used as independent variables, with the measured AGC as the dependent variable. Various
linear and nonlinear fitting models were applied using Excel to explore the relationship
between these forest structure variables and the predicted AGC. The best-fitting models
were selected from multiple models, and predictive AGC models under multi-source
remote sensing were established using various linear and nonlinear equations, with the
optimal model chosen for AGC prediction (Tables 7 and 8). As indicated in the following
two tables, similar to the regression models predicting AGC with LiDAR, multivariate
power models exhibit higher accuracy than multivariate linear models among all the
models. The use of the RVI alone for predicting AGC had poor effectiveness (R2 = 0.043,
RMSE = 29.02). However, incorporating LiDAR parameters such as DBH and tree height
significantly improves the prediction performance and modeling accuracy. In L. gmelinii
forests, the AGC prediction model with the highest accuracy was constructed via simple
power function fitting of the RVI combined with the LiDAR DBH (R2 = 0.939, RMSE = 5.06)
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(Table 7). Similarly, in B. platyphylla forests, the highest accuracy was achieved using a
simple power function fitting of the GNDVI combined with the LiDAR DBH (R2 = 0.942,
RMSE = 3.67) (Table 8). These results are more accurate than those of models fitted with
only LiDAR data, significantly enhancing the precision of AGC fitting. This outcome
reflects that while vegetation indices can provide some information about the horizontal
structure of vegetation cover, they lack information on the vertical structure of vegetation
height and are prone to saturation. However, incorporating LiDAR parameters not only
overcomes saturation issues but also enhances the accuracy of AGC estimation.

Table 7. Multivariate stepwise linear regression modeling for multisource remote sensing prediction
of AGC in Larix.

Variable Model R2 RMSE

RVI AGCRVI = 13.802 × RVI − 12.697 0.043 29.02
RVI + HLiDAR AGCRVI+H(LiDAR) = 3.5266 × (RVI + HLiDAR) − 11.54 0.394 27.21
RVI × HLiDAR AGCRVI×H(LiDAR) = 1.0189 × (RVI × HLiDAR) + 1.6993 0.386 14.48
RVI × DBHLiDAR AGCRVI×DBH(LiDAR)= 1.268 × (RVI × DBHLiDAR) − 30.04 0.889 6.16
RVI × DBHLiDAR AGCRVI×DBH(LiDAR) = 0.0106 × (RVI × DBHLiDAR)2.039 0.924 5.74
RVI + DBHLiDAR AGCRVI+DBH(LiDAR) = 4.3185 × (RVI + DBHLiDAR) − 46.748 0.913 5.37
RVI + DBHLiDAR AGCRVI+DBH(LiDAR) = 0.0144 (RVI + DBHLiDAR)2.6197 0.939 5.06
RVI + (DBH + H) LiDAR AGCRVI+(DBH+H) LiDAR = 0.0102 [RVI + (DBH + H) LiDAR]2.4015 0.863 6.80
RVI × (DBH + H) LiDAR AGCRVI×(DBH+H) LiDAR = 0.006 [RVI × (DBH + H) LiDAR]1.9538 0.818 8.55
RVI + (DBH × H) LiDAR AGCRVI+(DBH×H) LiDAR = 0.2316 [RVI + (DBH × H) LiDAR]0.9215 0.774 8.37
RVI × (DBH × H) LiDAR AGCRVI×(DBH×H) LiDAR = 0.1075 [RVI × (DBH × H) LiDAR]2.0231 0.759 8.94

Table 8. Multivariate stepwise linear regression modeling for multisource remote sensing prediction
of AGC in Betula.

Variable Model R2 RMSE

GNDVI + HLiDAR AGCGNDVI+H(LiDAR) = 3.6502 × (GNDVI + HLiDAR) − 21.84 0.191 16.41
GNDVI × HLiDAR AGCGNDVI×H(LiDAR) = 5.9133 × (GNDVI × HLiDAR) − 11.63 0.150 16.82
GNDVI × DBHLiDAR AGCGNDVI×DBH(LiDAR)= 8.4868 × (GNDVI × DBHLiDAR) − 26.025 0.903 5.67
GNDVI × DBHLiDAR AGCGNDVI×DBH(LiDAR) = 0.7576 × (GNDVI × DBHLiDAR)1.9001 0.919 4.95
GNDVI + DBHLiDAR AGCGNDVI+DBH(LiDAR) = 4.4075 × (GNDVI + DBHLiDAR) − 29.202 0.933 4.49
GNDVI + DBHLiDAR AGCGNDVI+DBH(LiDAR) = 0.1424 (GNDVI + DBHLiDAR)2.0231 0.942 3.67
GNDVI + (DBH + H) LiDAR AGCGNDVI+(DBH+H) LiDAR = 0.0017 [GNDVI +(DBH + H) LiDAR]2.9292 0.911 5.32
GNDVI × (DBH + H) LiDAR AGCGNDVI×(DBH+H) LiDAR = 0.0248 [GNDVI ×(DBH + H) LiDAR]2.6788 0.845 0.76
GNDVI + (DBH × H) LiDAR AGCGNDVI+(DBH×H) LiDAR = 0.0166 [GNDVI + (DBH × H) LiDAR]1.4349 0.923 5.84
GNDVI × (DBH × H) LiDAR AGCGNDVI×(DBH×H) LiDAR = 0.0495 [GNDVI × (DBH × H) LiDAR]1.4068 0.905 6.80

This study employs a combination of the multispectral vegetation indices RVI and
GNDVI with LiDAR data for modeling, constructs models using various linear and nonlin-
ear equations, and selects the best models for predicting forest AGCs. In L. gmelinii forests,
the combination of multisource remote sensing-estimated DBH + RVI (power function)
yielded the best fit for predicting AGCs, with an R2 value of 0.939. In B. platyphylla forests,
the combination of DBH + GNDVI (power function) estimated through multisource remote
sensing provides the best fit for predicting AGCs, with an R2 value of 0.942.

AGCLarix_LiDARδmultispectral = 0.0144 × (DBHLiDAR + RVImultispectral)
2.6197 (12)

AGCBetula_LiDARδmultispectral = 0.1424 × (DBHLiDAR + GNDVImultispectral)
2.0231 (13)

Using Equations (12) and (13), the AGC of L. gmelinii and B. platyphylla forests is
predicted through multisource remote sensing. Figure 11 shows the results of the accuracy
validation of the AGC predicted by the multisource remote sensing MSLR model compared
with the AGC estimated in the field in L. gmelinii and B. platyphylla forests. As demonstrated,
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the AGC of L. gmelinii and B. platyphylla predicted by multisource remote sensing using the
MSLR model was significantly correlated with the measured AGC, with R2 values of 0.92
and 0.96, RMSE values of 6.15 and 3.57, RRMSE values of 19.06% and 12.44%, and MAE
values of 4.41 and 2.70, respectively. Among the two different tree species, the R2, RMSE,
RRMSE, and MAE values were greatest for B. platyphylla forests. Compared to the AGC
predicted solely with LiDAR, the accuracy improved by 0.01 and 0.03, respectively.
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(a) (b) 

Figure 11. Forest AGC (Tg) of (a) Larix and (b) Betula measured by multisource remote sensing using
the MSLR model versus the predicted forest AGC. (Blue dots indicate data sample points for Larix;
red dots indicate data sample points for Betula).

3.3.2. Aboveground Carbon Stock Estimation in Forests Based on Multisource Remote
Sensing Using a Random Forest Regression Approach

Figure 12 shows the results of the accuracy validation of the AGC predicted by the
multisource remote sensing RF model compared with the AGC estimated in the field in L.
gmelinii and B. platyphylla forests. The results indicate a significant correlation between the
predicted AGC via multisource remote sensing via the RF model and the measured AGC
for both tree species. The R2 values for L. gmelinii and B. platyphylla were both 0.95, the
RMSE values were 3.99 and 3.45, the RRMSE values were 12.49% and 13.83%, and the MAE
values were 3.10 and 2.78. Among these two different tree species, the R2, RMSE, RRMSE,
and MAE values were greatest in B. platyphylla forests. Moreover, compared to the AGC
predicted solely with LiDAR, there was an improvement in accuracy of 0.02 for L. gmelinii
and 0.01 for B. platyphylla.
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3.4. Comparative Analysis of Multiple Stepwise Linear Regression and Random Forest Regression
Models Based on Different Remote Sensing Methods

This study utilized various remote sensing data and employed both MSLR and RF re-
gression models to predict the AGC of L. gmelinii and B. platyphylla forests. Figures 13 and 14
display comparisons between the prediction results of these two models under the different
remote sensing data and the actual observation results for AGC. Overall, the R2 values
show an increasing trend from left to right, approaching 1, indicating progressively better
model fitting. The RMSE, RRMSE, and MAE values display a decreasing trend from left
to right, suggesting that the smaller these values are, the less the discrepancy between
the model predictions and observed values, and the better the predictive power of the
model. This overall trend indicates the feasibility of the models. Specifically: (1) Among
both the parametric and nonparametric models, the RF model constructed from machine
learning algorithms demonstrated greater accuracy in estimating AGC for L. gmelinii and
B. platyphylla forests than the MSLR model. (2) When combining vegetation indices from
UAV multispectral images with LiDAR remote sensing data in the MSLR and RF models
for estimating forest AGC, the accuracy surpasses that of using only LiDAR remote sensing
data. (3) In both L. gmelinii and B. platyphylla forests, regardless of whether the MSLR or RF
model was used, the accuracy of estimating forest AGC was greater for B. platyphylla than
for L. gmelinii.
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4. Discussion
4.1. Potential of LiDAR Combined with Multispectral Imagery for Estimating AGC in Forests

Compared to manual measurements, backpack LiDAR offers precise scanning and
real-time data integration while in motion, providing a more flexible and efficient method
for forest inventory collection [60]. In the data collection process, backpack LiDAR requires
only one surveyor to carry the equipment across the measurement site, significantly reduc-
ing time and costs and improving efficiency [61]. As shown in Table 9, when collecting
point cloud data for a 10 m × 40 m sample, traditional measurement methods require
3–4 people to complete the data collection, whereas backpack LiDAR needs only one per-
son. While traditional manual measurements take approximately 36 min to measure a plot,
backpack LiDAR takes only approximately 5 min. Preprocessing the collected data via
traditional methods took approximately 14 min, while preprocessing the backpack LiDAR
point cloud data took approximately 10 min. The internal data processing time depends on
the size of the dataset and the computer configuration. Overall, compared with traditional
methods, backpack LiDAR saves approximately 30 min per plot, illustrating its time effi-
ciency. In terms of optical data, acquiring airborne multispectral images under favorable
weather conditions enhances efficiency and reduces costs to a certain extent. Therefore, the
combined use of optical imagery and LiDAR further reduces the cost of assessing forest
emission reductions. This combination enables the mapping of large areas near real-time
carbon stocks [62]. The findings of this study underscore the high precision and potential
of LiDAR technology for estimating AGC, offering significant value for enhancing forest
management practices and informing sustainable ecosystem management strategies [63].
However, scaling up this approach to a broader level may present significant challenges,
particularly in low-income countries where limited financial and technical resources could
hinder its widespread implementation and reduce its overall effectiveness [64].

Table 9. Timing comparison between traditional and Backpack LiDAR measurement methods.

Measurement Method Personnel Sample Site (m2)
Time Consumption (min)

Data Collection Data Processing Total

Traditional measurement 3–4 10 × 40 30:16 14:16 44:32
Backpack LiDAR 1 10 × 40 5:42 10:04 15:46

Optical images have been applied in earlier studies to estimate forest AGB and AGCs,
but the results showed that optical signals are weakly penetrating. Spectral images mainly
record the horizontal structure of the forest and cannot record the vertical structure in-
formation of the forest. However, LiDAR can penetrate the forest canopy and record
vertical structure information. This approach compensates for the shortcomings of op-
tical images. In this study, there are two main reasons for the small improvement after
adding multispectral information. The first reason may be that when the visible light of
multispectral data is saturated in dense forest areas [65], the accuracy is lower in complex
forest structures, resulting in the deviation of the AGC estimated by the NDVI from the
measured AGC. Another reason for this difference may be that the LiDAR forest structure
attributes themselves have a strong correlation with AGC, and the addition of multispectral
information did not result in much improvement. Overall, although these improvements
are not significant, novel multisensor earth observation methods that involve the combi-
nation of satellite-borne LiDAR data with optical data using machine learning techniques
enable accurate measurements of carbon stocks and provide effective data support for
forest emission reduction. For example, Jiao et al. [66] proposed a practical framework
for assessing forest emission reductions via the fusion of optical satellite imagery and
spaceborne LiDAR data. Shen et al. mapped subtropical forest AGB data by combining
Landsat TM/ETM+ and ALOS l-band SAR imagery from Guangdong Province, and the
results demonstrated that multisensor imagery-based AGBs had a good correlation [67,68].
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Our results further suggest that combining LiDAR and multispectral data is essential for
improving the accuracy of AGB and AGC estimation.

4.2. Main Challenges and Uncertainty Analyses for Estimating Forest AGCs

In response to the challenges in estimating vegetation biomass and carbon storage
(specifically, whether obtaining large-scale forest structure and spectral information im-
proves biomass and carbon stock estimations [69]), this study integrates forest structural
attributes and spectral data to estimate forest AGCs at the plot level. Despite the difficulty
in accurately capturing AGC changes in forests with complex structures using only struc-
tural and spectral information, the heterogeneity of canopy spectral information provided
by multispectral images has enhanced the accuracy of our multisource data integration
modeling approach, increasing the AGC estimation accuracy from 90.29% to 90.6%. Ad-
ditionally, we utilized various multiple linear regression and power regression models to
select the best-fitting models for AGC estimation. Compared to multiple linear regression
models, power regression models exhibited greater accuracy in AGC estimation. This
indicates that the dominant tree species in our study area, L. gmelinii, conforms to a power
allometric relationship and that using this relationship can improve the accuracy of forest
AGC estimates. Therefore, the power allometric relationship based on forest structural
attributes and spectral information represents a new method for enhancing AGC estima-
tion. This method can be used to explore the relationship between tree metabolism and
biomass [70], and such relationships may be more stable in similar landscapes [71].

However, there are still uncertainties in this study. First, the laser beams of backpack
LiDAR cannot penetrate the lower canopy layers in dense forest structures; second, due
to obstruction from the understory, backpack LiDAR faces challenges in capturing the
treetops of the upper canopy, resulting in notable differences between the LiDAR-estimated
and actual measured heights. The results and conclusions of this study are currently valid
only for coniferous forests with relatively simple stand structures, and further validation
is needed for broadleaf forests, mixed forests, or other forest types with more complex
structures based on additional forest plots and remote sensing data. In addition, this study
utilized ultra-high-resolution UAV imagery with a spatial resolution of 0.02 m. While such
high spatial detail enables capturing fine-scale variations, it may also introduce significant
spatial variability, particularly in areas with heterogeneous vegetation distribution. This
level of granularity can result in weak correlations between vegetation indices (VI) and
AGC, ultimately impacting the model’s predictive accuracy. Despite the observed low
correlation in our findings, VI still holds considerable promise for capturing ecosystem
dynamics and monitoring environmental changes [72].

4.3. Research and Perspectives on Estimating Late-Season Forest AGCs

This study revolves around the theme of estimating regional-scale forest AGCs by
integrating multispectral imagery and LiDAR data; encompassing a comprehensive and
systematic exploration from field data collection to preprocessing steps such as atmospheric,
radiometric, and geometric correction of multispectral imagery and cropping; resampling,
denoising, filtering, ground classification, and normalization of LiDAR data; constructing
forest AGC estimation models suitable for complex terrain conditions; and then spatially
extrapolating regional-scale forest AGCs. However, due to the scarcity of field measurement
data and the complexity of mountainous terrain, the accuracy of regional forest AGC
estimation combined with multisource remote sensing data is still not precise enough,
warranting further research.

At the current stage, calibration and validation still require high-quality field measure-
ment data. Due to the complex terrain of mountainous areas, more accessible sites were
chosen for field inventory collection, resulting in spatial discontinuity and discreteness in
the regional forest AGC density spatial distribution map. Future research should aim to
select spatially continuous plots for data collection. Limited by time, the collected samples
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were insufficient, suitable only for single-tree or regional forest AGC estimation, and not
representative of the entire forest AGC storage in the Dulaer forest.

The backpack LiDAR data collection is affected by poor GPS signals, directly impacting
the quality of trajectory files and leading to failures in point cloud resolution or significant
errors in absolute coordinates. Moreover, obtaining high-precision absolute coordinate
point cloud data is crucial for determining individual tree locations within sample areas.
Therefore, efficiently and accurately collecting absolute geographical reference point cloud
data in dense forests without GPS signals will be a focus of future research. Additionally,
in L. gmelinii plots with dense branches, it was necessary to cut branches in advance
along the designed route to ensure the safe operation of the backpack LiDAR, which
affects the data collection time and quality. Thus, the accuracy of image data collection
via backpack LiDAR needs further verification in more operational environments. The
multispectral data used in this study had limited spectral bands, resulting in less correlation
between the calculated vegetation spectral indices and forest AGC. Future research should
explore the capability of regional forest spectral inversion via hyperspectral imaging via
UAVs at different flight altitudes in conjunction with LiDAR data. To further mitigate
the impact of spatial variability, future research could explore the use of Object-Based
Image Analysis (OBIA) and texture features. These advanced methodologies offer more
stable and structured variables by grouping adjacent pixels into cohesive objects based on
their spectral and morphological similarities, thereby minimizing the variability inherent
in high-resolution data. Additionally, texture features can capture the intricate spatial
patterns and distribution characteristics of vegetation, providing a richer representation of
the landscape and ultimately enhancing the precision of AGC estimation [71,72].

In summary, combining LiDAR data with traditional remote sensing data can comple-
ment data sources better, facilitating the acquisition and classification of ground information
and improving the accuracy of ecological parameter estimation, ecological monitoring, and
simulation. Effectively integrating multisource remote sensing data for ecological research
is currently a trending topic.

5. Conclusions

In this study, LiDAR and multispectral data were effectively integrated to estimate
the AGC of Xing’an larch and white birch forests. The findings highlight the strong
correlation between LiDAR-derived forest structure attributes and the AGC, underscoring
the critical role of LiDAR in carbon monitoring and assessment. Although the relationship
between vegetation indices (VI) and the AGC was comparatively weaker, their potential
value in ecological monitoring and assessment should not be overlooked and warrants
further investigation. This research serves as a valuable reference for future applications of
multi-source remote sensing technologies in forest carbon stock estimation, particularly in
assessing their feasibility and effectiveness under diverse environmental conditions.
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