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Figure S1. Image histograms generated by MODIS LAI values at a resolution of 500m in all 
counties of CPSAs in the study area in each year. The horizontal axis represents the range of 
LAI values, and the vertical axis represents the frequency. The unit of the vertical axis is 107. 
The shape of the image histogram can reveal prior knowledge, that is, the distribution of LAI 
data is assumed to be a normal distribution. 
 
Figure S1 is to support the assumption that the LAI for each county followed normal 
distribution, which is sup-ported by the histograms generated for the MODIS LAI values at a 
resolution of 500m in all poverty-stricken areas and counties. 
 
 
 

 



 
Figure S2. Proportion of greenness changes  
 
In Figure S2, from 2000 to 2020, the spatial-temporal change result 𝑏଴ +  𝑏ଵ௜ value of 
greenness in 59% of the poverty counties was greater than 0, in 35% of the poverty counties 
was less than 0, and in 6% of the poverty counties was not significantly. 

 
Figure S3. Synergies and tradeoffs percentage accumulation of the relationship between 
greenness change and poverty change in CPSAs and the relationship affected by browning, 
slowly greening, stable greening and quick greening areas [18]. 
 
According to each poverty-stricken area as the scope, we calculated the proportion of 
different coupling relationships in the total area of the poverty-stricken area and obtained 
Figure S3 as the result. 
 

 

Bayesian spatial-temporal modelling approach  



 
Bayesian hierarchical model was applied to identify the spatial and temporal change pattern 
of LAI from 2000 to 2020 [35]. We assumed that the LAI for each county followed normal 
distribution. Here, 𝑦௜௧ represent the annual average LAI value in ith county at tth year.  

                           𝑦௜௧~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇௜௧, 𝜎ଶ)                               (S1) 𝜇௜௧ can be modeled as:  𝜇௜௧ = 𝛼 + 𝑠௜ + 𝑏଴𝑡 + 𝑣௧ + 𝑏ଵ௜𝑡                           (S2) 
In this model, the observed space–time variability of greenness condition is decomposed into 
the following components. The spatial coefficient, 𝑠௜, describes the stability of the spatial 
pattern of the entire study area during a 20-year observation period. 𝑏଴𝑡 + 𝑣௧ represents the 
trend over the twenty years in the whole study area. The overall time trend is decomposed by 
a linear function (𝑏଴𝑡) with an additional term (𝑣௧), which allows for nonlinearity in the 
overall trend pattern [36,37]. The stable component of greenness change was represented by 
combining the common spatial pattern and the common time trend together. The term 𝑏ଵ௜𝑡 allows each county to have its own change trend. While 𝑏଴ is the overall rate of change 
in greenness change, 𝑏ଵ௜ measures the departure from 𝑏଴ for each county. For instance, a 
negative value of 𝑏ଵ௜ indicates a declining trend in greenness change over time and 𝛼 is the 
intercept term [38]. The prior distributions of 𝑠௜ and 𝑏ଵ௜ are determined by Besag York 
Mollie (BYM) model [35].  
 
Model parameters in Model (S1) were assigned to follow the normal distributions. The BYM 
model is a convolution of a spatially structured random effect and a spatially unstructured 
random effect. We used the conditional autoregressive (CAR) prior with a spatial adjacency to 
impose spatial structure. In the spatial adjacency matrix 𝑊 of size 𝑁 ×  𝑁, if areas 𝑖 and 𝑗 
share a common boundary, its diagonal entries 𝑊௜௜ = 0 and the off-diagonal entries 𝑊௜௝ = 1, 
otherwise 𝑊௜௝ = 0. This implies that adjacent counties tend to have similar overall vegetation 
coverage. The same BYM prior is assigned to 𝑏ଵ௜. We assumed that nearby counties have 
changes of vegetation coverage have higher similarity compared with counties far away.   
 
The model can be implemented using a statistical software, OpenBUGS 
(https://openbugs.net/), which is specially designed for Bayesian analysis [39]. We ran MCMC 
chains for the model with 200,000 iterations. With the chains, 10,000 MCMC draws in total 
were used for inference. Standard trace plots and autocorrelation plots is showing in Figure 
S4. The convergence was judged by the Gelman–Rubin statistic, a standard tool for assessing 
convergence of MCMC chains. When the Gelman–Rubin statistic was < 1.05 for all model 
parameters, the convergence was achieved.   
 
The steps of running model in OpenBUGS could be referred to the manual documents of 
OpenBUGS. (https://chjackson.github.io/openbugsdoc/Manuals/Contents.html) 
 
 



 
Figure S4. Traceplots (first row), the posterior densities (second row) and autocorrelation 
plots (third row) for selected variables in Model (b0=overall slope; b1=departure from the 
overall slope for county). Trace plots for all these variables show mixing and the 
autocorrelation plots show no evidence of high autocorrelation for the chains. The resulting 
posterior densities are smooth based on the MCMC iterations. 
 
OpenBUGS codes for implementing： 
 
model { 
 for (i in 1:N) { 
  for (tt in 1:T) { 
   y[i,tt] ~ dnorm(theta[i,tt],tau)    
   ####   U[i]=alpha + s_i in Equation 2 
   theta[i,tt] <- U[i] + gamma_overall[tt] + gamma[i,tt]  
         #+ beta_eth * simpson[i] + beta_owned * p_owned[i]  
         #+ beta_detached * p_detached[i] 
  } 
  ####   BYM on level of burglary (at mid time point) 
  mu.u[i] <-  alpha + s[i]  
  U[i] ~ dnorm(mu.u[i],tau_U) 
 } 
 ####   spatially-structured random effects 
 s[1:N] ~ car.normal(adj[],weights[],num[],tau_s) 
 
 ####   variance of spatially-structured random effects 
 sigma_s ~ dnorm(0,10)I(0,) 
 tau_s <- pow(sigma_s,-2) 
 
 ####   variance of spatially-unstructured random effects 
 sigma_U ~ dnorm(0,10)I(0,) 
 tau_U <- pow(sigma_U,-2) 
 
 ####   variance of overdispersions 



 sigma ~ dnorm(0,10)I(0,) 
 tau <- pow(sigma,-2) 
 
 ####   overall intercept 
 alpha ~ dflat() 
 
 ####   overall time trend  (centred at mid time point 2.5) 
 st <- mean(gamma_overall_temp[1:T]) 
 for (tt in 1:T) { 
  gamma_overall[tt] <- gamma_overall_temp[tt] - st 
  gamma_overall_temp[tt] ~ dnorm(mu_gamma_overall[tt],tau_gamma_overall) 
  mu_gamma_overall[tt] <- b0 * (tt-mt) 
 } 
 tau_gamma_overall <- pow(sigma_gamma_overall,-2) 
 sigma_gamma_overall ~ dnorm(0,10)I(0,) 
 
 ####   linear local departures in trend (centred at mid time point) 
 for (i in 1:N) { 
  b1[i] ~ dnorm(mu_beta_sp[i],tau_b1) 
  mu_beta_sp[i] <- beta_sp[i]# + beta_ncc * ncc[i] 
  for (tt in 1:T) {gamma[i,tt] <- b1[i] * (tt - mt)} 
 } 
 ####assign weights 
 for(k in 1:sumNumNeigh) { 
     weights[k] <- 1 
    } 
 ####   spatially-structured random effects on slopes 
 beta_sp[1:N] ~ car.normal(adj[],weights[],num[],tau_beta_sp) 
 
 ####   random effect variances on slopes 
 sigma_beta_sp ~ dnorm(0,10)I(0,) 
 tau_beta_sp <-pow(sigma_beta_sp,-2) 
 sigma_b1 ~ dnorm(0,10)I(0,) 
 tau_b1 <-pow(sigma_b1,-2) 
 
 ####   overall slope 
 b0 ~ dflat() 
 
 ####   priors on regression coefficients 
 #beta_eth ~ dnorm(0,0.001) 
 #beta_owned ~ dnorm(0,0.001) 
 #beta_detached ~ dnorm(0,0.001) 
 #beta_ncc ~ dnorm(0,0.001) 
 



 for (tt in 1:T) {time[tt] <- tt} 
 mt <- mean(time[1:T]) 
  
 #spatial temporal  
 for (i in 1:N) {spatial.temporal[i] <- b0 +mu_beta_sp[i]} 
} 
 
 
 


