Optimized Soil Moisture Mapping Strategies on the Tibetan Plateau Using Downscaled and Interpolated Maps as Mutual Covariates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. In Situ Data
2.2.2. Satellite Data
2.2.3. Auxiliary Data
2.3. Prediction Models and Processes
2.3.1. Machine Learning Models
2.3.2. Downscaling Method
2.3.3. Interpolation Method
2.3.4. Combined Downscaling–Interpolation Methods
2.4. Validation and Evaluation
2.4.1. Validation Method
2.4.2. Validation Indicators
3. Results
3.1. Accuracy Evaluation of Single and Combined Models
3.2. Spatial Coverage Differences and Improvement Patterns
3.3. Covariate Contributions in Downscaling and Interpolation
4. Discussion and Conclusions
4.1. Factors Influencing Differences in Soil Moisture Predictions
4.2. Applicability and Limitations
4.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, T.W.; Steiner, J.; Mason, B.; Quiring, S.M. Observation-Driven Characterization of Soil Moisture-Precipitation Interactions in the Central United States. J. Geophys. Res.-Atmos. 2023, 128, e2022JD037934. [Google Scholar] [CrossRef]
- Wang, C.; Fu, B.J.; Zhang, L.; Xu, Z.H. Soil moisture-plant interactions: An ecohydrological review. J. Soils Sediments 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Hsu, H.; Dirmeyer, P.A.; Seo, E. Exploring the Mechanisms of the Soil Moisture-Air Temperature Hypersensitive Coupling Regime. Water Resour. Res. 2024, 60, e2023WR036490. [Google Scholar] [CrossRef]
- Li, M.; Foster, E.J.; Le, P.V.V.; Yan, Q.; Stumpf, A.; Hou, T.; Papanicolaou, A.N.; Wacha, K.M.; Wilson, C.G.; Wang, J.K.; et al. A new dynamic wetness index (DWI) predicts soil moisture persistence and correlates with key indicators of surface soil geochemistry. Geoderma 2020, 368, 17. [Google Scholar] [CrossRef]
- Luo, Z.T.; Niu, J.Z.; He, S.Q.; Zhang, L.; Chen, X.W.; Tan, B.; Wang, D.; Berndtsson, R. Linking roots, preferential flow, and soil moisture redistribution in deciduous and coniferous forest soils. J. Soils Sediments 2023, 23, 1524–1538. [Google Scholar] [CrossRef]
- Lee, E.; Kim, S. Spatiotemporal soil moisture response and controlling factors along a hillslope. J. Hydrol. 2022, 605, 127382. [Google Scholar] [CrossRef]
- Dari, J.; Morbidelli, R.; Saltalippi, C.; Massari, C.; Brocca, L. Spatial-temporal variability of soil moisture: Addressing the monitoring at the catchment scale. J. Hydrol. 2019, 570, 436–444. [Google Scholar] [CrossRef]
- Peng, C.; Zeng, J.; Chen, K.S.; Ma, H.; Bi, H. Spatiotemporal Patterns and Influencing Factors Of Soil Moisture At A Global Scale. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 3174–3177. [Google Scholar]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Wei, X.; Li, Q.; Zhang, M.; Giles-Hansen, K.; Liu, W.; Fan, H.; Wang, Y.; Zhou, G.; Piao, S.; Liu, S. Vegetation cover—Another dominant factor in determining global water resources in forested regions. Glob. Chang. Biol. 2017, 24, 786–795. [Google Scholar] [CrossRef]
- Vereecken, H.; Amelung, W.; Bauke, S.L.; Bogena, H.; Brüggemann, N.; Montzka, C.; Vanderborght, J.; Bechtold, M.; Blöschl, G.; Carminati, A.; et al. Soil hydrology in the Earth system. Nat. Rev. Earth Environ. 2022, 3, 573–587. [Google Scholar] [CrossRef]
- Peng, C.C.; Zeng, J.Y.; Chen, K.S.; Li, Z.; Ma, H.L.; Zhang, X.; Shi, P.F.; Wang, T.T.; Yi, L.; Bi, H.Y. Global spatiotemporal trend of satellite-based soil moisture and its influencing factors in the early 21st century. Remote Sens. Environ. 2023, 291, 13. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, J. Enhanced soil moisture drying in transitional regions under a warming climate. J. Geophys. Res. Atmos. 2016, 121, 2542–2555. [Google Scholar] [CrossRef]
- Li, C.X.; Yu, G.; Wang, J.L.; Horton, D.E. Toward Improved Regional Hydrological Model Performance Using State-Of-The-Science Data-Informed Soil Parameters. Water Resour. Res. 2023, 59, e2023WR034431. [Google Scholar] [CrossRef]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Akbar, R.; Chan, S.; Chaubell, J.; Das, N.; Dunbar, R.S.; Entekhabi, D.; Gevaert, A.; et al. Comprehensive analysis of alternative downscaled soil moisture products. Remote Sens. Environ. 2020, 239, 111586. [Google Scholar] [CrossRef]
- Wu, T.J.; Yang, C.F.; Luo, J.C.; Dong, W.; Zhou, Y.N.; Yang, Y.P.; Zhao, W.; Xi, J.B.; Wang, C.P. Land Geoparcel-Based Spatial Downscaling for the Microwave Remotely Sensed Soil Moisture Product. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Tang, X.W.; Li, B.; Tang, Z.Y.; Miao, F.; Song, G.L.; Yang, L.; Wang, H.; Zeng, Q.Y. Spatial Downscaling of Soil Moisture Based on Fusion Methods in Complex Terrains. Remote Sens. 2023, 15, 4451. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Arachchilage, K.; Yeo, I.Y.; Khaki, M.; Han, S.C.; Dahlhaus, P.G. Spatial Downscaling of Satellite-Based Soil Moisture Products Using Machine Learning Techniques: A Review. Remote Sens. 2024, 16, 2067. [Google Scholar] [CrossRef]
- Wang, Q.M.; Ji, P.; Atkinson, P.M. Fusion of Surface Soil Moisture Data for Spatial Downscaling of Daily Satellite Precipitation Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 1053–1065. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Liu, Y.X.Y.; Xia, X.L.; Yao, L.; Jing, W.L.; Zhou, C.H.; Huang, W.M.; Li, Y.; Yang, J. Downscaling Satellite Retrieved Soil Moisture Using Regression Tree-Based Machine Learning Algorithms Over Southwest France. Earth Space Sci. 2020, 7, e2020EA001267. [Google Scholar] [CrossRef]
- Dandridge, C.; Fang, B.; Lakshmi, V. Downscaling of SMAP Soil Moisture in the Lower Mekong River Basin. Water 2020, 12, 56. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L.; Zhao, T. A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution. Sci. Data 2023, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Albergel, C.; Balenzano, A.; Brocca, L.; Cartus, O.; Cosh, M.H.; Crow, W.T.; Dabrowska-Zielinska, K.; Dadson, S.; Davidson, M.W.J.; et al. A roadmap for high-resolution satellite soil moisture applications—Confronting product characteristics with user requirements. Remote Sens. Environ. 2021, 252, 112162. [Google Scholar] [CrossRef]
- Usowicz, B.; Lipiec, J.; Lukowski, M.; Slominski, J. Improvement of Spatial Interpolation of Precipitation Distribution Using Cokriging Incorporating Rain-Gauge and Satellite (SMOS) Soil Moisture Data. Remote Sens. 2021, 13, 1039. [Google Scholar] [CrossRef]
- Yan, P.; Lin, K.R.; Wang, Y.R.; Zheng, Y.; Gao, X.; Tu, X.J.; Bai, C.M. Spatial interpolation of red bed soil moisture in Nanxiong basin, South China. J. Contam. Hydrol. 2021, 242, 103860. [Google Scholar] [CrossRef]
- Zeyliger, A.; Chinilin, A.; Ermolaeva, O. Spatial Interpolation of Gravimetric Soil Moisture Using EM38-mk Induction and Ensemble Machine Learning (Case Study from Dry Steppe Zone in Volgograd Region). Sensors 2022, 22, 6153. [Google Scholar] [CrossRef]
- McBratney, A.B.; Santos, M.L.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Tunçay, T. Comparison Quality of Interpolation Methods to Estimate Spatial Distribution of Soil Moisture Content. Commun. Soil Sci. Plant Anal. 2021, 52, 353–374. [Google Scholar] [CrossRef]
- Carranza, C.; Nolet, C.; Pezij, M.; van der Ploeg, M. Root zone soil moisture estimation with Random Forest. J. Hydrol. 2021, 593, 125840. [Google Scholar] [CrossRef]
- Li, X.W.; Hua, G.W.; Cheng, T.C.E.; Choi, T.M. What Does Cross-Industry-Production Bring Under COVID-19? A Multi-Methodological Study. IEEE Trans. Eng. Manag. 2022, 15, 1230–1244. [Google Scholar] [CrossRef]
- Jiang, H.R.; Zheng, G.H.; Yi, Y.H.; Chen, D.L.; Zhang, W.J.; Yang, K.; Miller, C.E. Progress and Challenges in Studying Regional Permafrost in the Tibetan Plateau Using Satellite Remote Sensing and Models. Front. Earth Sci. 2020, 8, 560403. [Google Scholar] [CrossRef]
- Wang, X.W.; Yang, Y.Z.; Lv, J.L.; He, H.L. Past, present and future of the applications of machine learning in soil science and hydrology. Soil Water Res. 2023, 18, 67–80. [Google Scholar] [CrossRef]
- Wadoux, A.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2007, 112, F02S03. [Google Scholar] [CrossRef]
- Ma, Z.; Shi, Z.; Zhou, Y.; Xu, J.; Yu, W.; Yang, Y. A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed. Remote Sens. Environ. 2017, 200, 378–395. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Q.; Yu, M. Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015. Remote Sens. 2019, 11, 2435. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Shangguan, Y.; Min, X.; Shi, Z. Inter-comparison and integration of different soil moisture downscaling methods over the Qinghai-Tibet Plateau. J. Hydrol. 2023, 617, 129014. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Yan, B.; Li, X.; Luo, W.; Ma, M.; Guo, J.; Kang, J.; Zhu, Z.; Zhao, S. A Nested Ecohydrological Wireless Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2015–2019. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Ma, C.; Qin, J.; Zhang, Y. High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China. Remote Sens. Environ. 2017, 191, 232–245. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Cui, Q.; Lu, H.; La, Z.; Han, M.; Tang, W. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 5780–5792. [Google Scholar] [CrossRef]
- Yang, K.; Qin, J.; Zhao, L.; Chen, Y.; Tang, W.; Han, M.; Zhu, L.; Chen, Z.; Lv, N.; Ding, B.; et al. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, J.; Heuvelink, G.; Jin, R.; Wang, J. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China. Int. J. Geogr. Inf. Sci. 2015, 29, 92–110. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, Z.; Chen, Y.; Liu, S.; Che, T.; Xu, Z.; Shang, L.; He, X.; Meng, X.; Ma, W.; et al. Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau. Earth Syst. Sci. Data 2024, 16, 3017–3043. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; Neill, P.E.O.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Z.; Montzka, C.; Chai, L.; Liu, S.; Ge, Y.; Liu, J.; Lu, Z.; He, X.; Zheng, J.; et al. Inter-comparison of several soil moisture downscaling methods over the Qinghai-Tibet Plateau, China. J. Hydrol. 2021, 592, 125616. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, K.; Qi, Y.; Zhou, X.; He, J.; Lu, H.; Li, X.; Chen, Y.; Li, X.; Zhou, B.; et al. TPHiPr: A long-term (1979–2020) high-accuracy precipitation dataset (1/30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth Syst. Sci. Data 2023, 15, 621–638. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, J.; Ma, J.; Wang, Z.; Ding, L.; Zhang, X.; Zhang, X. TRIMS LST: A daily 1 km all-weather land surface temperature dataset for China’s landmass and surrounding areas (2000–2022). Earth Syst. Sci. Data 2024, 16, 387–419. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.; Zhang, W.; Chen, X.; Shen, W.; Xiao, T.; Zhang, Y. China Regional 250 m Normalized Difference Vegetation Index Data Set (2000–2023); National Tibetan Plateau Data Center, Ed.; National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.-L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. Forest 2001, 23, 18–22. [Google Scholar]
- Max, K. Caret: Classification and Regression Training, R package version 6.0-80; R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Elith, J.; Leathwick, J.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Ridgeway, G. Gbm: Generalized Boosted Regression Models, R package version 2.2.2; R Development Core Team: Vienna, Austria, 2024. [Google Scholar]
- Heuvelink, G.B.M.; Angelini, M.E.; Poggio, L.; Bai, Z.; Batjes, N.H.; van den Bosch, R.; Bossio, D.; Estella, S.; Lehmann, J.; Olmedo, G.F.; et al. Machine learning in space and time for modelling soil organic carbon change. Eur. J. Soil Sci. 2021, 72, 1607–1623. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L.; et al. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Nussbaum, M.; Spiess, K.; Baltensweiler, A.; Grob, U.; Keller, A.; Greiner, L.; Schaepman, M.E.; Papritz, A. Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil 2018, 4, 1–22. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, J.; Zhu, K.; Ge, Y.; Zhou, C. Evaluating spatial statistical and machine learning models in urban dynamic population mapping. Trans. Urban Data Sci. Technol. 2022, 1, 37–55. [Google Scholar] [CrossRef]
- Malone, B.; Biggins, D.; Sharman, C.; Searle, R.; Glover, M.; Brown, S. An experiential account with recommendations for the design, installation, operation and maintenance of a farm-scale soil moisture sensing and mapping system. Soil Res. 2024, 62, 1–17. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, D.; van der Velde, R.; Wen, J.; Ma, Y.; Zeng, Y.; Wang, X.; Wang, Z.; Chen, J.; Su, Z. A dataset of 10-year regional-scale soil moisture and soil temperature measurements at multiple depths on the Tibetan Plateau. Earth Syst. Sci. Data 2022, 14, 5513–5542. [Google Scholar] [CrossRef]
- Zhan, X.W. Accuracy issues associated with satellite remote sensing soil moisture data and their assimilation. In Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Shanghai, China, 25–27 June 2008; pp. 213–220. [Google Scholar]
- Cao, W.; Sheng, Y.; Wu, J.C.; Peng, E.X. Differential response to rainfall of soil moisture infiltration in permafrost and seasonally frozen ground in Kangqiong small basin on the Qinghai-Tibet Plateau. Hydrol. Sci. J. J. Des. Sci. Hydrol. 2021, 66, 525–543. [Google Scholar] [CrossRef]
- Cao, W.; Sheng, Y.; Wu, J.C.; Li, J. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau. J. Mt. Sci. 2017, 14, 2406–2419. [Google Scholar] [CrossRef]
- He, Z.M.; Jia, G.D.; Liu, Z.Q.; Zhang, Z.Y.; Yu, X.X.; Hao, P.Q. Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrol. Process. 2020, 34, 4904–4919. [Google Scholar] [CrossRef]
- Mo, M.H.; Liu, Z.; Yang, J.; Song, Y.J.; Tu, A.G.; Liao, K.T.; Zhang, J. Water and sediment runoff and soil moisture response to grass cover in sloping citrus land, Southern China. Soil Water Res. 2019, 14, 10–21. [Google Scholar] [CrossRef]
- Liu, H.Y.; He, S.Y.; Anenkhonov, O.A.; Hu, G.Z.; Sandanov, D.V.; Badmaeva, N.K. Topography-Controlled Soil Water Content and the Coexistence of Forest and Steppe in Northern China. Phys. Geogr. 2012, 33, 561–573. [Google Scholar] [CrossRef]
- Deng, Q.H.; Yang, J.J.; Zhang, L.P.; Sun, Z.Z.; Sun, G.Z.; Chen, Q.; Dou, F.K. Analysis of Seasonal Driving Factors and Inversion Model Optimization of Soil Moisture in the Qinghai Tibet Plateau Based on Machine Learning. Water 2023, 15, 2859. [Google Scholar] [CrossRef]
- Wang, J.P.; Wu, X.D.; Tang, R.Q.; Ma, D.J.; Zeng, Q.C.; Xiao, Q.; Wen, J.G. The first assessment of coarse-pixel soil moisture products within the multi-scale validation framework over Qinghai-Tibet Plateau. J. Hydrol. 2022, 613, 128454. [Google Scholar] [CrossRef]
- Sudnitsyn, I.I. Effect of the size of elementary soil particles on the soil moisture characteristic curve. Eurasian Soil Sci. 2015, 48, 735–741. [Google Scholar] [CrossRef]
- Guber, A.K.; Rawls, W.J.; Shein, E.V.; Pachepsky, Y.A. Effect of soil aggregate size distribution on water retention. Soil Sci. 2003, 168, 223–233. [Google Scholar] [CrossRef]
- Shwetha, P.; Varija, K. Soil water retention curve from saturated hydraulic conductivity for sandy loam and loamy sand textured soils. In Proceedings of the International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE), Natl Inst Technol Karnataka, Mangaluru, India, 11–14 March 2015; pp. 1142–1149. [Google Scholar]
- Qiu, D.X.; Xu, R.R.; Wu, C.X.; Mu, X.M.; Zhao, G.J.; Gao, P. Vegetation restoration improves soil hydrological properties by regulating soil physicochemical properties in the Loess Plateau, China. J. Hydrol. 2022, 609, 127730. [Google Scholar] [CrossRef]
- Vu, E.; Schaumann, G.E.; Buchmann, C. The contribution of microbial activity to soil-water interactions and soil microstructural stability of a silty loam soil under moisture dynamics. Geoderma 2022, 417, 115822. [Google Scholar] [CrossRef]
- Cheng, T.; Hong, S.Y.; Huang, B.S.; Qiu, J.; Zhao, B.K.; Tan, C. Passive Microwave Remote Sensing Soil Moisture Data in Agricultural Drought Monitoring: Application in Northeastern China. Water 2021, 13, 2777. [Google Scholar] [CrossRef]
- Zheng, X.M.; Zhao, K.; Ding, Y.L.; Jiang, T.; Zhang, S.Y.; Jin, M.J. The spatiotemporal patterns of surface soil moisture in Northeast China based on remote sensing products. J. Water Clim. Chang. 2016, 7, 708–720. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X. Regression Kriging-Based Upscaling of Soil Moisture Measurements From a Wireless Sensor Network and Multiresource Remote Sensing Information Over Heterogeneous Cropland. IEEE Geosci. Remote Sens. Lett. 2015, 12, 92–96. [Google Scholar] [CrossRef]
- Wu, D.D.; Wang, T.J.; Di, C.L.; Wang, L.C.; Chen, X. Investigation of controls on the regional soil moisture spatiotemporal patterns across different climate zones. Sci. Total Environ. 2020, 726, 138214. [Google Scholar] [CrossRef]
- Diek, S.; Chabrillat, S.; Nocita, M.; Schaepman, M.E.; de Jong, R. Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping. Geoderma 2019, 337, 607–621. [Google Scholar] [CrossRef]
- Burns, T.T.; Berg, A.A.; Cockburn, J.; Tetlock, E. Regional scale spatial and temporal variability of soil moisture in a prairie region. Hydrol. Process. 2016, 30, 3639–3649. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Li, L.; Dai, Y.J.; Wei, Z.W.; Wei, S.G.; Wei, N.; Zhang, Y.G.; Li, Q.L.; Li, X.X. Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models. Adv. Atmos. Sci. 2024, 41, 1326–1341. [Google Scholar] [CrossRef]
- Zhu, Z.Z.; Bo, Y.C.; Sun, T.T.; Zhang, X.R.; Sun, M.; Shen, A.J.; Zhang, Y.S.; Tang, J.; Cao, M.F.; Wang, C.Y. A downscaling-and-fusion framework for generating spatio-temporally complete and fine resolution remotely sensed surface soil moisture. Agric. For. Meteorol. 2024, 352, 110044. [Google Scholar] [CrossRef]
- He, J.; Yin, J.; Wu, J.; Christakos, G. Accurate carbon storage estimation for the salt marsh ecosystem based on Bayesian maximum entropy approach—A case study for the Spartina alterniflora ecosystem. J. Environ. Manag. 2024, 354, 120278. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Dong, L.B.; Li, A.; Lv, W.W.; Wu, J.Z.; Zhang, H.L.; Bai, R.H.; Liu, Y.L.; Li, J.W.; Shangguan, Z.P.; et al. Soil physicochemical properties and crusts regulate the soil infiltration capacity after land-use conversions from farmlands in semiarid areas. J. Hydrol. 2023, 626, 130283. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Z.; Huang, Z.; López-Vicente, M.; Wu, G.L. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena 2019, 182, 104147. [Google Scholar] [CrossRef]
- Liu, J.; Chai, L.; Lu, Z.; Liu, S.; Qu, Y.; Geng, D.; Song, Y.; Guan, Y.; Guo, Z.; Wang, J.; et al. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas. Remote Sens. 2019, 11, 792. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Xu, T.; Guo, Z.; Xia, Y.; Ferreira, V.G.; Liu, S.; Wang, K.; Yao, Y.; Zhang, X.; Zhao, C. Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. J. Hydrol. 2019, 578, 124105. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, S.; Ma, J.; Li, J.; Li, X.; Wang, H.; Chen, S.; Zang, W. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data. Remote Sens. 2017, 9, 292. [Google Scholar] [CrossRef]
- Liu, J.; Chai, L.; Dong, J.; Zheng, D.; Wigneron, J.P.; Liu, S.; Zhou, J.; Xu, T.; Yang, S.; Song, Y.; et al. Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sens. Environ. 2021, 255, 112225. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Ding, J.; Song, L.; Xu, T.; Ma, Y.; Xu, Z.; Yang, X.; Zhang, Y.; Wang, J. A Framework for Quantifying the Uncertainty in Upscaling Evapotranspiration From Homogeneous to Heterogeneous Underlying Surface. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4413624. [Google Scholar] [CrossRef]
- Groemping, U. Relative importance for linear regression in r: The package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef]
- Rätsch, G.; Onoda, T.; Müller, K.R. Soft margins for adaboost. Mach. Learn. 2001, 42, 287–320. [Google Scholar] [CrossRef]
Networks Name | Naqu | Pagri | Maqu | uHRB |
---|---|---|---|---|
Number of stations | 53 | 19 | 11 | 25 |
Time frequency | 15 min | 15 min | 15 min | 1 h |
Latitude (N) | 31.0°–31.9° | 27.7°–28.2° | 33.6°–34.0° | 37.9°–38.3° |
Longitude (E) | 91.7°–92.5° | 89.1°–89.3° | 101.8°–102.6° | 100.2°–101° |
Type | Covariate 1 | Original Resolution | Data Source | |
---|---|---|---|---|
Climate | Rainfall | 1000 m | 1 days | Jiang et al. [51] |
LST_D | 1000 m | 1 day | Tang et al. [52] | |
LST_N | 1000 m | 1 day | ||
Vegetation | NDVI | 250 m | 30 days | Gao et al. [53] |
Terrain | DEM | 30 m | – | https://earthdata.nasa.gov |
Aspect | 30 m | – | (accessed on 22 October 2020) | |
Slope | 30 m | – | ||
Soil physical | Sand | 250 m | – | Liu et al. [54] |
and chemical | Silt | 250 m | – | |
properties | Clay | 250 m | – | |
pH | 250 m | – | ||
SOC | 250 m | – | ||
BD | 250 m | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ge, Y.; Wang, J. Optimized Soil Moisture Mapping Strategies on the Tibetan Plateau Using Downscaled and Interpolated Maps as Mutual Covariates. Remote Sens. 2024, 16, 3939. https://doi.org/10.3390/rs16213939
Zhang M, Ge Y, Wang J. Optimized Soil Moisture Mapping Strategies on the Tibetan Plateau Using Downscaled and Interpolated Maps as Mutual Covariates. Remote Sensing. 2024; 16(21):3939. https://doi.org/10.3390/rs16213939
Chicago/Turabian StyleZhang, Mo, Yong Ge, and Jianghao Wang. 2024. "Optimized Soil Moisture Mapping Strategies on the Tibetan Plateau Using Downscaled and Interpolated Maps as Mutual Covariates" Remote Sensing 16, no. 21: 3939. https://doi.org/10.3390/rs16213939
APA StyleZhang, M., Ge, Y., & Wang, J. (2024). Optimized Soil Moisture Mapping Strategies on the Tibetan Plateau Using Downscaled and Interpolated Maps as Mutual Covariates. Remote Sensing, 16(21), 3939. https://doi.org/10.3390/rs16213939