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Abstract: Effective management of agricultural water resources in arid regions relies on precise
estimation of irrigation-water demand. Most previous studies have adopted pixel-level mapping
methods to estimate irrigation-water demand, often leading to inaccuracies when applied in arid
areas where land salinization is severe and where poorly growing crops cause the growing area
to be smaller than the sown area. To address this issue and improve the accuracy of irrigation-
water demand estimation, this study utilizes parcel-aggregated cropping structure mapping. We
conducted a case study in the Weigan River Basin, Xinjiang, China. Deep learning techniques,
the Richer Convolutional Features model, and the bilayer Long Short-Term Memory model were
applied to extract parcel-aggregated cropping structures. By analyzing the cropping patterns, we
estimated the irrigation-water demand and calculated the supply using statistical data and the water
balance approach. The results indicated that in 2020, the cultivated area in the Weigan River Basin
was 5.29 × 105 hectares, distributed over 853,404 parcels with an average size of 6202 m2. Based
on the parcel-aggregated cropping structure, the estimated irrigation-water demand ranges from
25.1 × 108 m3 to 30.0 × 108 m3, representing a 5.57% increase compared to the pixel-level estimates.
This increase highlights the effectiveness of the parcel-aggregated cropping structure in capturing the
actual irrigation-water requirements, particularly in areas with severe soil salinization and patchy
crop growth. The supply was calculated at 24.4 × 108 m3 according to the water balance approach,
resulting in a minimal water deficit of 0.64 × 108 m3, underscoring the challenges in managing
agricultural water resources in arid regions. Overall, the use of parcel-aggregated cropping structure
mapping addresses the issue of irrigation-water demand underestimation associated with pixel-level
mapping in arid regions. This study provides a methodological framework for efficient agricultural
water resource management and sustainable development in arid regions.
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1. Introduction

Agriculture is the foundation for socio-economic development and is the comprehen-
sive result of resource utilization and human transformation [1–3]. Efficient agricultural
water management is unachievable in arid regions with limited water resources. In recent
years, initiatives such as permanent basic farmland protection and national standard farm-
land renovation in China have decreased farmland areas and improved farmland structures.
However, considering the actual situation where farmland conditions remain variable, the
application of water-saving irrigation techniques and water resource management [4,5]
necessitates the rapid and precise updating of crop structures.

Crop structure defines crop distribution and plays a critical role in various agricul-
tural activities, including crop health diagnosis, agricultural disaster evaluation, and yield
prediction [6]. Additionally, mapping accurate crop structures is essential for estimating
agricultural water in water-scarce regions [7], as irrigation water is often allocated based
on the type and water requirements of planted crops. The traditional method of obtaining
cropping structure mainly relies on comprehensive data provided by yearbooks or admin-
istrative units, which suffer from poor timeliness and low spatial resolution, making it
difficult to meet the requirement of the irrigation-water demand estimation at a refined
spatial scale.

Compared with traditional methods, remote sensing technologies can quickly and
accurately acquire surface crop information at large scales and are identified as efficient
measures to manage irrigation water [8]. For example, Sobhan et al. [9] identified changes
in cropping patterns in an irrigation system and estimated irrigation-water demand by
integrating optical and microwave remote sensing data; Han et al. [10] used remote sensing
technology to analyze the effects of cropping restructuring on the water-use efficiency
of irrigation districts in the Heihe River Basin; and Ma et al. [11] evaluated crop water
productivity and optimized the planting structure in Qira Oasis using a dynamic Bayesian
network. In addition, there are a large number of studies that quantify evapotranspiration
and biomass production through remote sensing data to estimate regional irrigation-water
demand [12–15].

However, these studies are inconsistent with the actual situation when applied to
estimate irrigation-water demand in arid zones. The reason is that most of the studies
used a mapping method at the pixel level, while the irrigation plan is usually made based
on the area of agricultural parcels. Particularly in the arid region of Xinjiang, where
land salinization is a serious issue, there are poorly growing crops in some large fields,
resulting in the growing area being smaller than the sown area. Pixel-level mapping
often ignores these poorly growing areas, leading to underestimation of irrigation-water
demand. Therefore, a parcel-aggregated planting structure is more suitable to estimate
irrigation-water demand.

As the application of deep learning techniques [16–18] to extract complex spatial infor-
mation matures, more and more studies have used them for mapping parcel-aggregated
planting structures [19–22]. However, no study has yet applied the parcel-aggregated crop-
ping structure to irrigation-water demand estimation in arid areas. To evaluate the impact
of parcel-aggregated cropping structure mapping methods on irrigation-water estimation
in arid regions, this paper proposes a deep learning-based framework to extract parcel-
aggregated cropping structures. Using this framework, we obtained the parcel-aggregated
cropping structure of the Weigan River Basin of Xinjiang, China, and subsequently esti-
mated the irrigation-water demand based on it. Afterward, the irrigation-water demand
calculated by the parcel-aggregated cropping structure was compared with that obtained
by the pixel-level method. Finally, the irrigation-water supply was calculated using a water
balance approach, aiming to provide a scientific basis for further optimizing agricultural
water use. The subsequent sections of this paper are organized as follows: Section 2 de-
scribes the study area and data used. Section 3 details the methodology, including the
parcel-aggregated cropping structure mapping and irrigation supply and demand calcu-
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lations. Sections 4 and 5 present the results, analysis, and discussion. Finally, the main
conclusions are drawn in Section 6.

2. Study Area and Data Preparation

The Weigan River Basin (Figure 1) is situated in the northern section of the Tarim
Basin in Xinjiang, China, spanning from 40◦55′ to 41◦20′N and 82◦30′ to 83◦30′E, with
elevations ranging from 900 to 2500 m. The basin is characterized by a typical pre-mountain
impact fan-shaped plain and includes critical urban areas such as Kuche, Shaya, and Xinhe.
The catchment area of the basin covers 2.76 × 104 km2. The region has extreme aridity,
frequent windy conditions, and significant temperature fluctuations between day and night,
indicative of a typical continental warm temperate climate. The annual precipitation, mainly
from April to July, varies between 51 and 67 mm, while the average annual evaporation
varies between 2000 and 2010 mm [23]. The primary crops grown in the region include
cotton, corn, peppers, and tomatoes, with cotton being the most widely cultivated, covering
70% of the total arable land [24]. The main rivers in the basin are the Weigan River,
the Kuche River, the Indaria River, the mainstream of the Tarim River, and some small
tributaries. According to the river trend, the Heizi, Langan, and Alaer reservoirs are
selected as the intakes and Yingbazha reservoir as the outlet, forming a relatively closed
water balance cycle system.
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Figure 1. Location of the study area. (a) The study area is located in the northern section of the Tarim
Basin in Xinjiang, China; (b) a detailed map of the study area, including rivers, hydrological stations,
sampling points, and their types; (c) the zoomed-in Google Earth imagery of the study area and field
sampling points.

Our research used Google Earth true-color imagery from 2020 with a 1 m spatial
resolution to extract parcels. For the extraction of the cropping structure, we used Sentinel-
2 optical remote sensing data with a 10 m spatial resolution, as shown in Table 1. We
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preprocessed these Sentinel-2 images using the European Space Agency’s SNAP software
with version 10.0.0 and implemented a cloud removal step to eliminate interference from
cloud cover. Following the preprocessing, we merged and cropped the data using ENVI
software with version 5.3.1. Meteorological and hydrological data for the study were
obtained from various sources such as scientific research stations, statistical yearbooks,
bulletins, etc. Further details regarding the data sources will be provided in subsequent
sections. Field surveys were conducted in the summer of 2020, collecting 2418 valid
farmland sample points after eliminating duplicate and offset sample points. These sample
points were utilized for crop identification and labeling purposes. The other data used in
this study are shown in Table 2.

Table 1. The Sentinel-2 images used in this study.

Date Day of Year Date Day of Year Date Day of Year

6 January 2020 6 5 May 2020 126 2 September 2020 246
21 January 2020 21 20 May 2020 141 17 September 2020 261
5 February 2020 36 4 June 2020 156 2 October 2020 276
20 February 2020 51 19 June 2020 171 17 October 2020 291

6 March 2020 66 4 July 2020 186 1 November 2020 306
21 March 2020 81 19 July 2020 201 16 November 2020 321
5 April 2020 96 3 August 2020 216 1 December 2020 336

Table 2. Description of the data used in this study.

Category Subcategory Period Description

Remote sensing
imagery

Google Earth
imagery

2020

1. True-color with 1 m
spatial resolution

2. Used for parcel extraction

Sentinel-2 imagery
1. Four bands (B, G, R, IR) with

10 m spatial resolution
2. Used for parcel classification

Parcel-level
cultivated land
sample point

– 2020 Constructing training, validation, and
testing set

Agricultural
irrigation-water

quotas for 8 crops

Kuche

2014

1. Data derived from Xinjiang Uygur
Autonomous Region Agricultural
Irrigation-water Quota Indicators

2. Used for calculating irrigation-
water requirements for crops

Shaya
Xinhe
Yuli

Luntai

Hydrological data

Surface runoff
(Heizi, Langan,

Aral, Yingbazha)

2020

1. Data derived from Water Re-
sources Bulletin, Xinjiang Statis-
tical Yearbook and Aksu Region
Statistical Yearbook

2. Used for water consumption cal-
culations

Quantity of
underground

water resources

Water consumption
in each county
(Kuche, Shaya,
Xinhe, Yuli, Luntai)

Industrial
Livestock
Daily life

Vegetation

3. Methods
3.1. Overview of the Method

This study proposes a strategy for remote sensing-based analysis of irrigation supply
and demand in arid regions. Figure 2 shows the flowchart of the method, which comprises
two parts:
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1. Parcel-Aggregated Cropping Structure Mapping: The Richer Convolutional Features
(RCF) model was used to extract candidate parcels from a single, very-high-spatial-
resolution (VHR) image. Candidate parcels were then manually corrected to produce
the final parcels, avoiding the accumulation of errors. Consequently, the spatially
averaged NDVI temporal profiles of the sample parcels were constructed based on
time-series Sentinel-2 images. Finally, the LSTM model was used to infer the crop
types of all parcels, establishing the parcel-aggregated cropping structure of the
study area.

2. Irrigation Analysis: The precise irrigation-water demand in the study area was ob-
tained using the parcel-aggregated cropping structure, along with the irrigation
efficiency of the study area and the water consumption of each crop from statistical
data. The irrigation-water supply was calculated using statistics and a water balance
approach. Conclusions and optimization recommendations were given by analyzing
the relationship between irrigation supply and demand.
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Figure 2. Flowchart of the proposed three-step method used to analyze irrigation-water supply and
demand. Step 1 is parcel-aggregated cropping structure mapping; step 2 is irrigation analysis.

3.2. Parcel-Aggregated Cropping Structure Mapping
3.2.1. Parcel Extraction

The distinct edges of cultivated land in VHR images make it feasible to utilize deep-
learning techniques for parcel extraction. This study uses the RCF model for parcel extrac-
tion [17] as follows:

(1) A uniformly distributed sample set of cultivated land parcels was created, which
consists of 57 images, each measuring 1000 × 1000 pixels.
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(2) The sample set was preprocessed and enhanced, including random cropping, rotation,
and slight color transformation with a random value between 0 and 0.03. The sample
set was expanded to 1386 images through this process.

(3) An RCF model was trained based on the enhanced sample set. The framework for
model training was developed based on PyTorch. The ADAM [25] optimizer was
utilized with an exponential learning rate decay. The loss function, FocalLoss [26],
was used to penalize discrepancies between actual labels and model predictions,
which enables more effective handling of class imbalance problems in edge extraction.
Hyperparameters were set as follows: the initial learning rate was 0.01, the batch size
was 8, and the number of training epochs was 300.

(4) The trained model was applied to infer the cropland parcels from the entire image of
the study area. The inference applied 10% overlap patches that matched the size of
the training image and finally obtained the raster parcels.

(5) The raster farmland parcels were vectorized and polygonized to obtain prelimi-
nary parcels.

(6) The preliminary vector farmland parcels were verified and edited manually to obtain
the final vector parcels.

3.2.2. Crop Classification

Different crops exhibit distinct phenological information (Table 3), creating unique
temporal image features. The NDVI temporal curve effectively represents these temporal
features and is widely used in crop-type identification [19]. The NDVI was calculated as
follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where ρNIR is the reflectance value of the near-infrared band, and ρRed is the reflectance
value of the red band.

Table 3. The phenology of the main crops in the Weigan River Basin. The distinctive phenological
characteristics of crops are key to distinguishing their types.

Month Mar. Apr. May Jun. Jul. Aug. Sep. Oct.
Period B M E B M E B M E B M E B M E B M E B M E B M E
Cotton Sowing Seedling emergence Bud stage Flowering Boll opening Harvest

Corn Sowing Seedling
emergence Jointing Heading Grain

filling Harvest

Jujube Germination Leaf
expansion Flowering Growth Harvest

Pepper Sowing Seedling
emergence Transplanting Growth Flowering Fruiting Harvest

Pear Regreening Leaf
expansion Growth Harvest

Apricot Germination Flowering Leaf expansion Fruiting Harvest Leaf fall
Tomato Sowing Flowering Growth Harvest

Time-series curves of the main crops (cotton, corn, jujube, chili, pear, apricot, and
tomato) in the study area, along with the average temporal curve of other crops, as shown
in Figure 3. For better characterization, we used the Savitzky–Golay convolution smoothing
algorithm [25] (with a filtering window width set to 5 and a smoothing polynomial order
set to 2) to smooth the curves. The smoothed curves facilitate a more evident observation
of the crop’s peak and valley features at different time intervals, corresponding to Table 3.
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Figure 3. Growth curves of different crops. The black line denotes the original curve, while the
red line illustrates the smoothed outcome obtained by applying the Savitzky–Golay convolution
smoothing algorithm to the original curve. (a–g) corresponds to seven major crops in the study area,
and (h) is the average curve for the other crops.

The LSTM model has been used in time-series analysis for remote sensing applica-
tions [26–28] and is thus used to classify crops based on NDVI curves. The specific process
is outlined below:

(1) The crop categories were labeled for 3770 randomly selected parcels based on time-
series imagery and sampling points. Then, we divided these parcels into training,
validation, and test sets in the ratio of 6:1:3.

(2) The NDVI temporal curves were calculated, and then the Savitzky–Golay convolution
smoothing algorithm was applied to each parcel’s original curve.

(3) Model training was conducted on the training set using the designed bilayer LSTM
model (Bi-LSTM) with 18 hidden cells. The framework for model training was
developed based on PyTorch. The optimizer used was ADAM, and the loss function
was the cross-entropy loss function [29]. The hyperparameters were set as follows:
the initial learning rate was 0.001, the batch size was 16, and the number of training
epochs was 100. The accuracy metrics were calculated on the test set.

(4) The trained Bi-LSTM model was used for inference to determine the crop categories
of all parcels. Finally, the accuracy evaluation was performed.
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The accuracy metrics comprised F1 score (F1), average F1 score (average F1), and
weighted F1 score (weighted F1), calculated as follows:

P = TP/(TP + FP) (2)

R = TP/(TP + FN) (3)

F1 = 2·(P × R)/(P + R) (4)

F1Average =
1
N ∑N

i=1 F1i (5)

F1Weighted = ∑N
i=1 ωiF1i (6)

where TP is true positive and represents correctly classified parcels; FP is false positive and
represents incorrectly classified parcels; and FN is false negative, representing incorrectly
classified parcels as unfavorable. F1Average is calculated by taking the average of the F1
scores of all classes, treating each class equally regardless of its number of samples. And
F1Weighted is calculated by taking the mean of the F1 scores of all classes, weighted by the
number of samples in each class. N is the number of classes, and ωi is the proportion of
samples of class i in the dataset.

3.3. Irrigation Estimation

The irrigation demand is obtained by multiplying the irrigated area with the corre-
sponding integrated irrigation quota:

Q = ∑n
i=1 Qi = ∑n

i=1 mi × Ai (7)

where Q is the irrigation-water demand of the study area (m3); Qi is the irrigation-water
demand of the crop i (m3); Ai is the planting area of the crop i. mi is the irrigation quota for
the crop i (m3/a), which is calculated as follows:

mi = ∑n
t=1

mt

ηt
× pt (8)

where mt is the net irrigation-water quota for the crop, referring to the net irrigation-
water consumption per unit area (m3/a) throughout the crop growth cycle, including
the preparation period; ηt is the coefficient of water resource utilization for the different
irrigation methods; and pt is the percentage of the crop planting area using this irrigation
method relative to the total crop planting area.

The irrigation supply can be estimated based on a water balance approach [30]:

Wu + Wr + Wp = We + Wl + Ws + Wi + W f (9)

where Wu is the unduplicated groundwater resources for the year; Wr is the surface runoff
for the year; Wp is the available precipitation for the year; Ws is the livestock water consump-
tion for the year; Wl is the domestic water consumption for the year; We is the ecological
water consumption for the year; Wi is the industrial water consumption for the year; and
W f is the irrigation-water supply for each year.

4. Results and Analysis
4.1. Cropping Structure Mapping Result

The parcel-aggregated cropping structure in the study area is illustrated in Figure 4.
The cropland is mainly distributed along the riverbanks. In the upstream and midstream
regions, smallholder farming prevails, featuring smaller and more diverse plots of land.
In contrast, the downstream areas and locations farther from the river are characterized
by large, contiguous fields primarily dedicated to cotton cultivation. Overall, the parcels
in the study area, especially the large, rectangular fields, exhibit a regular shape. The ex-
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tracted parcels are uniform and accurately depict the smallest operational unit of farmland
management. Compared to pixel-level crop classification, parcel-level crop classification
results are more regularized and free from salt-and-pepper noise, making them suitable for
subsequent irrigation-water demand estimation.
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We compared the classification results of multiple time-series models. The models
included in the comparison are Transformer [31], Reformer [32], FEDformer [33], Cross-
former [34], Dlinear [35], LightTS [36], PatchTST [37], FiLM [38], and TimesNet [39]. The
experiment used the same dataset in Section 3.2.2 and retained the model with the highest
accuracy after five independent training sessions. The hyperparameter configuration for
Bi-LSTM can be found in Section 3.2.2. The remaining models were all set with an initial
learning rate of 0.001, a maximum of 100 epochs, a batch_size of 16, a loss function of
CrossEntropyLoss, and the optimizer ADAM. The accuracy evaluation metric displayed
is the F1 score for each crop category. Additionally, the average F1 and weighted F1 were
calculated. The weights for the weighted F1 are as follows: 0.8 for cotton, 0.05 for corn, and
0025 for all other crops.

The accuracy evaluation result is shown in Table 4, and the Figure 5 visualizes the
extraction results of different models. Almost all models can accurately distinguish the
category with the largest number of samples—cotton—while the accuracy for other cat-
egories with fewer samples decreases to varying extents. Transformer and its variants,
such as Reformer, FEDformer, Crossformer, PatchTST, and TimesNet, performed well.
Among these models, Reformer achieved the highest average F1 score of 0.849, and the
weighted F1 scores of all models were generally above 0.9, with the lowest being 0.884
(Crossformer). In contrast, models like LightTS, DLinear, and FiLM exhibited significantly
lower accuracy, with average F1 scores below 0.6. LightTS employs a lightweight MLP
structure for sampling; DLinear decomposes time-series data into trend and residual com-
ponents and models them using two separate single-layer linear networks; FiLM retains
high-dimensional representations of Legendre projections to preserve all essential details
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from historical data. The poor performance of these three models can be attributed to their
lightweight designs, as the number of parameters in LightTS and DLinear is inherently
insufficient to capture subtle temporal characteristics among different crop types. FiLM,
on the other hand, tends to overlook peaks in time-series data, which are critical for iden-
tifying crop growth patterns. In comparison, models based on Transformer and LSTM
architectures are more prone to overfitting these peaks in temporal data, allowing them
to differentiate crop categories more precisely. It is worth noting that while the average
F1 score better represents a model’s classification performance under imbalanced sample
conditions, for irrigation-water estimation, classification accuracy in categories with larger
sample sizes is more important. Therefore, we selected Bi-LSTM, which achieved the
highest weighted F1 score, as the final crop classification model.

Table 4. Accuracy evaluation results of crop classification based on different time-series models. The
evaluation index of classification accuracy for each crop type is the F1 score. The highest value for
each crop classification is emphasized in bold.

Model Cotton Corn Jujube Pepper Pear Apricot Tomato Others Average
F1

Weighted
F1

Transformer 0.942 0.796 0.814 0.777 0.847 0.909 0.627 0.843 0.819 0.914
Reformer 0.947 0.81 0.724 0.683 0.884 0.919 0.889 0.934 0.849 0.924
FEDformer 0.940 0.775 0.754 0.489 0.881 0.821 0.712 0.952 0.791 0.906
Crossformer 0.914 0.708 0.717 0.755 0.696 0.776 0.844 0.883 0.787 0.884
DLinear 0.897 0.626 0.338 0.252 0.716 0.756 0.487 0.395 0.558 0.822
LightTS 0.909 0.690 0.491 0.363 0.769 0.697 0.504 0.316 0.592 0.84
PatchTST 0.940 0.824 0.813 0.657 0.921 0.879 0.741 0.714 0.811 0.911

FiLM 0.907 0.665 0.495 0.315 0.790 0.591 0.412 0.331 0.563 0.832
TimesNet 0.957 0.864 0.871 0.644 0.943 0.571 0.879 0.792 0.815 0.926
Bi-LSTM 0.968 0.911 0.864 0.828 0.810 0.787 0.789 0.717 0.834 0.94

The quantified information of the cropping structure results is given in Table 5. The
study area’s agricultural cultivation scale encompasses 5.29 × 105 hectares (hm2), spanning
853,404 parcels. In contrast to the large-scale cultivation observed in corps cities like
Shihezi, agriculture in the Weigan River Basin predominantly adheres to a smallholder
economy model. The average parcel area is 6202 m2, featuring a smaller area than the
Xinjiang Production and Construction Corps’ cropland. This is primarily attributed to the
decentralized agricultural operation and smallholder economy prevailing in the county-
level area. Regarding the types of crops, the predominant ones in the region are cotton and
corn, covering areas of 404,326 hm2 and 66,480 hm2, respectively. Specialized crops include
peppers (14,340 hm2) and tomatoes (1871 hm2), while traditional fruit trees such as jujube,
pear, and apricot occupy areas of 47,354 hm2, 21,332 hm2, and 4239 hm2, respectively.

Fruit trees, peppers, and other specialized crops are predominantly situated in the
peripheries of towns and cities for ease of daily management. Conversely, cotton and corn
are primarily distributed along the two sides of the Weigan River and the Tarim River’s
middle reaches, facilitating irrigation practices. Cultivated land in the middle reaches of
the Tarim River has primarily been reclaimed in previous years, but in recent years, some
areas have been abandoned, and there is some fallow land on the edge of the oasis.

The study area primarily encompasses the main urban areas of Shaya, Xinhe, and
Kuche counties on the western edge of the Tarim Basin, along with portions of Yuli and
Luntai counties situated on the northern edge of the Tarim Basin. The cropping structures
within this basin exhibit broad similarities attributed to uniform irrigation methods.
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Table 5. Quantified cropping structure in the Weigan River Basin.

Crops Number of
Parcels

Total Area
(ha)

Proportion
of Parcels Area Ratio Average

Area (m2)

Cotton 589,398 404,326 69.04% 76.34% 6860
Corn 157,123 66,480 18.42% 12.55% 4230

Jujube 47,354 21,332 5.55% 4.03% 4504
Pepper 15,297 14,340 1.79% 2.71% 9374

Pear 29,432 15,942 3.45% 3.01% 5418
Apricot 4239 1526 0.50% 0.29% 3600
Tomato 4655 1871 0.55% 0.35% 4021
Others 5866 3826 0.69% 0.72% 6522

Figure 6 is the visualization of crop planting area proportions in the Weigan River
Basin, which was divided into two regions by different water utilization coefficients. The
first region includes Kuche, Shaya, and Xinhe, featuring a water utilization coefficient of
0.682. The second region includes Luntai and Yuli, featuring a water utilization coefficient of
0.65. The water utilization coefficients were derived from the “Xinjiang Uygur Autonomous
Region Agricultural Irrigation-water Quota Indicators”. Cotton is the primary crop with
significant economic value and dominates the whole planting area. The crop structure
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of the region with a water utilization coefficient of 0.682 is relatively homogeneous, with
maize as the second major crop constituting 12.78%, and the proportion of cotton, corn,
and other major crops reaching nearly 90%. The crop structure of the region with a water
utilization coefficient of 0.65 is relatively balanced, with corn, peppers, and jujube trees
planted in similar proportions of more than 4%, and the area has a significant ad-vantage
in the cultivation of specialty crops.
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4.2. Irrigation Demand

According to the “Xinjiang Uygur Autonomous Region Agricultural Irrigation-water
Quota Indicators”, the Weigan River Basin exhibits an overall water-saving irrigation rate
of approximately 78.3%, so a 75% irrigation design guarantee rate (p = 75%) was adopted.
The water demand for crop irrigation in the Weigan River Basin can be determined using
Equation (7), and the corresponding results are presented in Table 6.

Table 6. The detailed irrigation-water demand in the Weigan River Basin. The water-use coefficient is
0.682 in Kuqa, Shaya, and Xinhe and 0.65 in Luntai and Yuli. The table also provides the irrigation-
water demand of major crops under different irrigation methods and gives the upper and lower
limits of the irrigation-water demand with coefficients of 0.1 and 0.08, respectively.

Region Type Irrigation Method Cotton Corn Pepper Jujube Pear Apricot Tomato Others

Kuche
Shaya
Xinhe

irrigation quota
(m3/ha)

conventional 570 485 480 450 460 455 450 455
water-saving 295 250 245 320 330 325 225 235

irrigation-water
(107 m3)

conventional 71.65 10.25 1.93 2.28 2.97 0.25 0.23 0.55
water-saving 133.81 19.06 3.55 5.85 5.36 0.64 0.59 1.02

Luntai
Yuli

irrigation quota
(m3/ha)

conventional 615 490 500 680 730 700 480 460
water-saving 300 240 260 320 340 320 245 225

irrigation-water
(107 m3)

conventional 3.63 0.25 0.33 0.08 0.17 0.04 0.01 0.02
water-saving 6.39 0.44 0.61 0.14 0.31 0.07 0.01 0.03

Total

the upper limit of irrigation-water demand 29.97 × 108 m3

the average irrigation-water demand 27.24 × 108 m3

the lower limit of irrigation-water demand 25.07 × 108 m3
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Table 6 reveals that water-saving irrigation methods reduce unnecessary evaporation
and seepage, leading to a substantial 50% reduction in the corresponding irrigation-water
requirement quota. Nevertheless, given that 78.3% of the arable land is subjected to water-
saving irrigation, the water-saving irrigated arable land area is approximately four times
larger than that under conventional irrigation. Despite a reduced irrigation quota, the water
quantity used in water-saving irrigation for each crop type remains about 1.8 times greater
than that used in conventional irrigation. There are substantial variations in irrigation
quotas for the same crop among different crops and between different irrigation districts.
Coupled with the imbalance in planting structure, these variations result in significant
differences in the water requirements of different crops. Major crops like cotton and corn
have substantial irrigation quotas, and the significant proportion of cotton area results
in cotton and corn collectively accounting for 90.11% of the irrigation-water demand.
In contrast, for the other crops, their limited planting area causes their irrigation-water
demand to constitute 9.89% of the total. Although their proportion of irrigation-water
demand is not high, fruit trees such as jujube, pear, and apricot have large irrigation quotas.

In 2020, the irrigation-water demand amounted to 27.24 × 108 m3. However, consider-
ing the intricate meteorological and hydrological conditions and to ensure the scientific
calculation of crop water demand, coefficients of 0.1 (upper limit) and 0.08 (lower limit)
were applied to determine the amount of irrigation water in the study area. The required
irrigation is relatively reduced in years of abundant water characterized by high precipita-
tion. This is calculated based on the lower limit of the irrigation-water demand, resulting
in a required amount of about 25.07 × 108 m3. Artificial irrigation must be increased in dry
years, marked by intense evaporation. This is then calculated based on the upper limit of
irrigation-water demand, resulting in a required amount of about 29.97 × 108 m3.

4.3. Irrigation Supply

The surface runoff Wr and the non-repeatable underground water resource Wu values
are derived from publications such as the 2020 Water Resources Bulletin, Xinjiang Statistical
Yearbook, Aksu Statistical Yearbook, etc., where surface runoff statistics exhibit considerable
variation. Within the Tarim system, the Weigan River system is the most minor yet re-
markably stable water system, exhibiting minimal inter-annual variation in water quantity.
It primarily comprises the Weigan, Kuche, Heizi, Muzhaerte, and Kalasu Rivers, as well
as numerous small tributaries from this river. The runoff recharge of the Weigan River
system, considering surface runoff as a weight, consists of 51.7% glacial meltwater, 23.3%
groundwater, and 25.0% rain and snow.

Using hydrological data, we can develop an enclosed system for balancing water
supply and demand. Specifically, the Heizi reservoir hydrological station in the upper
reaches of the Weigan River, Langan hydrological station in the upper reaches of the
Kuche River, and Aral hydrological station in the middle reaches of the Tarim River
serve as monitoring stations for the inlet flow; the Yingbazha hydrological station in the
middle and lower reaches of the Tarim River serves as the monitoring station for the
outlet flow. In 2020, the surface runoff of the Weigan River basin was 44.15 × 108 m3, and
the groundwater volume was 4.15 × 108 m3. Precipitation in the Weigan River basin is
relatively low, measuring only 156.7 mm in 2020, per meteorological station data. However,
in the arid region of the Weigan River, precipitation remains a crucial form of water
resource replenishment. Precipitation recharge in this basin amounts to 22.27 × 108 m3 [40].
Therefore, the total incoming water of the Weigan River Basin is 70.57 × 108 m3, with
surface water resources constituting approximately 94.12% of the total.

Considering various types of water consumption and utilizing the per capita domestic
water consumption quota alongside population data, domestic water consumption Wl
of the Weigan River Basin totals 4.7 × 108 m3. Based on the industrial GDP output
value and industrial water consumption totaling CNY 10,000 of the GDP, industrial water
consumption Wi is estimated at 0.35 × 108 m3. According to the water consumption quota
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for animal husbandry and the basin’s livestock population, the water consumption for
animal husbandry is 0.07 × 108 m3.

Ecological water consumption comprises evapotranspiration, channel balance, and
vegetation-water consumption. Initially, lakes and reservoirs’ evapotranspiration, deter-
mined by Penman’s formula [41] based on the watershed area, is 2.21 × 108 m3. River
balance primarily encompasses water resources consumed in natural river channels to
maintain ecosystem stability and water consumed by the ecological use of channel seepage
water by bank protection forests in artificial irrigation canals. Empirical coefficients suggest
that 30% of surface runoff is typically consumed for river balance in arid-zone watersheds.
Consequently, it can be inferred that river balance consumes a minimum of 13.24 × 108 m3

of water. Due to the continuous decrease in cultivated land area in the middle reaches of the
Tarim River over the past five years, ecological conditions have improved. According to the
relevant literature, the water consumption of natural vegetation in the Weigan River Basin
is estimated to be 25.57 × 108 m3 [42]. In 2020, the total water consumption of the Weigan
River Basin, excluding irrigation-water consumption, amounts to about 46.17 × 108 m3.
According to the water balance approach, prioritizing ecological water consumption, the
irrigation-water supply should be 24.4 × 108 m3. A graphical representation for each term
of the water balance, as given by Equation (7), is given in Figure 7.
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5. Discussion
5.1. Differences in Irrigation-Water Demand Estimation Using Pixel-Level and Parcel-Level
Mapping in Arid Regions

The downstream area of the Weigan River Basin, particularly the large farmland
parcels, experiences severe soil salinization. The land must be irrigated to wash away
the salts. However, even with this measure, many cultivated lands remain of low quality,
resulting in patchy and fragmented crop growth. In such circumstances, the crop area
obtained through pixel-level classification is smaller than the actual sown area, leading to
an underestimation of the calculated irrigation-water requirements. In contrast, parcel-level
crop distribution mapping is not influenced by the crop growth conditions within the
farmland parcels and is particularly suitable for the prevalent situation in the study area
where the actual crop growth area is less than the sown area.
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Table 7 provides a comprehensive comparison of irrigation-water demand estimation
based on pixel-level and parcel-level cropping structures for various crops in the Weigan
River Basin, highlighting both the percentage of parcel numbers with different crop pixel
coverages and the total area and water demand for each crop. The parcel-level mapping
consistently shows higher total areas for each crop type compared to the pixel-level map-
ping. Overall, the total irrigation-water demand across all crops is underestimated by
14.38 × 107 m3 when using pixel-level mapping. This discrepancy is particularly pro-
nounced in the case of cotton, which dominates the region’s agricultural landscape. Parcel-
level mapping estimates 404,326 hectares of cotton, compared to 379,947 hectares from
pixel-level mapping, leading to an irrigation-water demand difference of 12.99 × 107 m3.
This underestimation in cotton accounts for the vast majority of the total discrepancy
between the two mapping methods, as cotton occupies over 75% of the cultivated area in
the study region. Another key factor driving this significant difference is the location and
condition of cotton fields. Cotton is often grown on the outer fringes of the basin, where
severe soil salinization degrades land quality, making these parcels more prone to patchy
growth. In contrast, higher-value crops such as pepper and jujube, typically cultivated
on smaller, higher-quality parcels by farmers, experience fewer discrepancies between
mapping methods.

Table 7. The detailed differences in irrigation-water demand estimation based on pixel-level and
parcel-level cropping structures in the study area.

Crop Type Cotton Corn Pepper Jujube Pear Apricot Tomato Others

The percentage of parcel
numbers with different

crop pixel coverage

<0.5 0.42% 0.05% 0.00% 0.12% 0.01% 0.05% 0.00% 0.39%
0.5–0.6 0.36% 0.07% 0.00% 0.05% 0.03% 0.05% 0.00% 0.17%
0.6–0.7 0.64% 0.17% 0.02% 0.06% 0.10% 0.23% 0.32% 0.27%
0.7–0.8 1.12% 0.36% 0.09% 0.15% 0.22% 0.00% 0.25% 0.44%
0.8–0.9 2.17% 1.15% 0.24% 0.18% 0.44% 0.32% 1.16% 1.03%
0.9–0.95 4.28% 3.95% 0.67% 0.77% 1.44% 0.96% 2.18% 2.31%

>0.95 91.01% 94.25% 98.98% 98.67% 97.76% 98.39% 96.10% 95.37%

Total area (ha)
Parcel-level 404,326 66,480 21,332 14,340 15,942 1526 1871 3826
Pixel-level 379,947 64,457 20,995 14,010 15,778 1506 1825 3702

Irrigation-water demand
estimation (107 m3)

Parcel-level 215.48 30 6.42 8.35 8.81 1 0.84 1.62
Pixel-level 202.49 29.09 6.32 8.16 8.72 0.99 0.82 1.57

Figure 8 takes the eastern downstream area of the Weigan River Basin as an example
to demonstrate the differences in irrigation-water requirements calculated using pixel-level
and plot-level crop distribution mapping. Figure 8a–d show images of the area from June
to September. The reclaimed farmland is surrounded by saline–alkaline land. It can be
observed that the crop growth in many farmland parcels within the study area is poor (as
indicated by the red arrows), appearing patchy and fragmented. Figure 8f,g present the dis-
tribution of farmland parcel irrigation-water requirements calculated based on pixel-level
and parcel-level crop mapping, respectively. Figure 8h visualizes the differences between
the two, with farmland parcel colors representing the ratio of irrigation-water require-
ments obtained from pixel-level mapping to those obtained from parcel-level mapping.
The actual crop growth area obtained through pixel-level crop mapping is lower than the
actual farmland parcel area used to determine irrigation-water requirements. According to
Equation (7), the calculated irrigation-water requirements are also underestimated. The
differences are even more pronounced in large mechanized farmland parcels. Firstly, they
experience more severe salinization. Additionally, compared to smallholder farming areas,
farmers often manage their farmland parcels more meticulously, leading to higher crop
survival rates. This solution is particularly suitable for saline–alkaline land in Xinjiang and
can be extended to areas where cultivated land quality is insufficient or where the sown
area is smaller than the growth area.
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Figure 8. An example of a study area estimating the irrigation-water demand through pixel- and
parcel-level crop structure. (a–d) Sentinel-2 images of the region from Jun. to Sep.; (e) parcel-
aggregated crop structure; (f) distribution of irrigation-water demand based on pixel-level cropping
structure; (g) distribution of irrigation-water demand based on parcel-aggregated cropping structure;
(h) visualization of differences between (f,g).

5.2. Limitations of the Study

This strategy has high requirements for cropping structure accuracy. The accuracy
of farmland parcel extraction directly affects the precision of calculated irrigation-water
requirements. This is why we still adopt a semi-automated approach for farmland parcel
extraction. During the pre-extraction of farmland parcels, we have a higher tolerance
for oversegmentation, as it does not directly impact the calculation of irrigation-water
requirements. However, undersegmentation of farmland parcels has a greater impact on
the calculation error of irrigation-water requirements. Due to the error propagation effect,
this not only affects the subsequent classification of crop types based on the temporal
mean spectral values within the farmland parcels but also directly impacts the accuracy of
calculated irrigation-water requirements. The issue of undersegmentation is mainly caused
by weak visual features and strong heterogeneity at the edges of farmland parcels. The
identification of farmland parcels still heavily relies on expert knowledge and cannot be
simply explained as a visual problem. Additionally, although there are strict irrigation quota
restrictions in arid regions, dynamic adjustments still occur during actual implementation.
Particularly in smallholder farming areas, farmer management is random. Furthermore,
the surface water system in the study area of this research is relatively enclosed. For study
areas with more complex water systems, the application still requires optimization.

5.3. Suggestions Based on Irrigation Supply and Demand Analysis

The agricultural water consumption in the Weigan River Basin for 2020 is estimated at
24.4 × 108 m3. This value falls short of the lower limit of 25.07 × 108 m3 for irrigation-water
demand in a year of abundant water in the region. Nevertheless, agricultural authorities
compensate for the irrigation-water gap in practical production by displacing vegetation-
water consumption. In recent years, the gradual farmland optimization has somewhat
mitigated the water usage conflict between arable land and natural forests and grasses. It
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has also enabled a partial supplementation of ecological water use. However, historical
over-exploitation of land has left the region’s arable land scale significantly exceeding
the carrying capacity of water resources, posing a heightened threat to the protection of
groundwater resources.

In analyzing the contradiction between water resource supply and demand, adjust-
ments to agriculture in the basin are recommended as follows:

(1) Convert farmland. The region should undertake efforts to convert farmland into
forests and grasslands in the southern part of the Weigan River Basin and the middle
reaches of the Tarim River to uphold the ecological security of the river.

(2) Adjust the agricultural planting structure. The water demand per unit area is exces-
sively high since nearly 80% of the region’s crops consist of high-water-consuming
varieties such as cotton and fruit trees. For instance, cotton’s water consumption
reaches 79.6%. A 10% reduction in its planting area could save 2.1 × 108 m3 of irri-
gation water. Low-water-consuming crops like tomatoes can be cultivated in areas
distant from the river and with weak soil fertility, reducing transpiration losses.

(3) Enhance the water-saving irrigation rate. Situated in the middle reaches of the Tarim
River, the Weigan River Basin has relatively straightforward glacier recharge and
surface water extraction. Though commendable, the 78.3% water-saving irrigation
rate lags behind the 87% rate in the Northern Xinjiang Irrigation Area. There is
significant potential for improvement. Therefore, agricultural irrigation methods
should be optimized to minimize unnecessary seepage and evaporation.

6. Conclusions

Accurate estimation of irrigation-water demand in arid regions is crucial for sustain-
able agricultural water resource management. However, traditional pixel-level mapping
often underestimates irrigation-water demand in regions like the Weigan River Basin due
to poor crop growth caused by land salinization. To address this issue, this study adopts a
parcel-aggregated cropping structure mapping method, providing a more accurate repre-
sentation of agricultural land use that aligns better with the implementation of irrigation
plans at the field level. By employing deep learning models—the RCF for parcel delin-
eation and the Bi-LSTM for time-series classification—this study extracts precise cropping
structures within the Weigan River Basin, Xinjiang, China. Subsequently, the water balance
approach was used to estimate the region’s irrigation-water consumption. Finally, we ana-
lyzed the disparity between irrigation supply and demand and recommended balancing
agricultural and ecological benefits. The conclusions were as follows:

(1) In 2020, the cultivated area of the Weigan River Basin was 5.29 × 105 ha, encompassing
a total of 853,404 parcels, with an average parcel size of 6202 m2. The primary crops
include cotton and corn, constituting about 76.34% of the arable land area.

(2) Based on the parcel-level cropping structure, the irrigation-water demand in 2020
was 27.24 × 108 m3, which is 1.44 × 108 m3 higher than the demand estimated
using the pixel-level cropping structure. Using the upper coefficient of 0.1 and the
lower limit coefficient of 0.08, the irrigation-water demand for this year was expected
to range between 25.07 × 108 m3 and 29.97 × 108 m3. Following a water balance
approach, deducting the remaining water consumption, the actual irrigation supply
was estimated at 24.4 × 108 m3, resulting in a shortfall of 0.64 × 108 m3 from the
lower limit of irrigation demand.

(3) The displacement of ecological water by irrigation water in the Weigan River Basin
has intensified ecological instability and depleted the ecological health of the lower
reaches of the Tarim River. It is recommended that farmland be converted into
forests and grasslands, preserving the ecological safety of the river. Furthermore, the
approach to water resource allocation should shift from “determining water policies
based on farmland conditions” to “determining farmland structures based on the
current status of water resources”.
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