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Abstract: The monitoring of grape quality parameters within viticulture using airborne remote
sensing is an increasingly important aspect of precision viticulture. Airborne remote sensing allows
high volumes of spatial consistent data to be collected with improved efficiency over ground-based
surveys. Spectral data can be used to understand the characteristics of vineyards, including the
characteristics and health of the vines. Within viticultural remote sensing, the use of cover-crop
spectra for monitoring is often overlooked due to the perceived noise it generates within imagery.
However, within viticulture, the cover crop is a widely used and important management tool. This
study uses multispectral data acquired by a high-resolution uncrewed aerial vehicle (UAV) and
Sentinel-2 MSI to explore the benefit that cover-crop pixels could have for grape yield and quality
monitoring. This study was undertaken across three growing seasons in the southeast of England, at
a large commercial wine producer. The site was split into a number of vineyards, with sub-blocks
for different vine varieties and rootstocks. Pre-harvest multispectral UAV imagery was collected
across three vineyard parcels. UAV imagery was radiometrically corrected and stitched to create
orthomosaics (red, green, and near-infrared) for each vineyard and survey date. Orthomosaics
were segmented into pure cover-cropuav and pure vineuav pixels, removing the impact that mixed
pixels could have upon analysis, with three vegetation indices (VIs) constructed from the segmented
imagery. Sentinel-2 Level 2a bottom of atmosphere scenes were also acquired as close to UAV surveys
as possible. In parallel, the yield and quality surveys were undertaken one to two weeks prior to
harvest. Laboratory refractometry was performed to determine the grape total acid, total soluble
solids, alpha amino acids, and berry weight. Extreme gradient boosting (XGBoost v2.1.1) was used
to determine the ability of remote sensing data to predict the grape yield and quality parameters.
Results suggested that pure cover-cropuav was a successful predictor of grape yield and quality
parameters (range of R2 = 0.37–0.45), with model evaluation results comparable to pure vineuav and
Sentinel-2 models. The analysis also showed that, whilst the structural similarity between the both
UAV and Sentinel-2 data was high, the cover crop is the most influential spectral component within
the Sentinel-2 data. This research presents novel evidence for the ability of cover-cropuav to predict
grape yield and quality. Moreover, this finding then provides a mechanism which explains the success
of the Sentinel-2 modelling of grape yield and quality. For growers and wine producers, creating
grape yield and quality prediction models through moderate-resolution satellite imagery would be a
significant innovation. Proving more cost-effective than UAV monitoring for large vineyards, such
methodologies could also act to bring substantial cost savings to vineyard management.

Keywords: precision agriculture; UAV; satellite; remote sensing; cover crop; quality; yield

1. Introduction
Precision Viticulture

Within viticulture, the management of grape yield and quality variation is vital for the
performance of business. The effective management of the vineyard will control the vine

Remote Sens. 2024, 16, 3942. https://doi.org/10.3390/rs16213942 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16213942
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0416-1608
https://orcid.org/0000-0002-3576-9675
https://doi.org/10.3390/rs16213942
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16213942?type=check_update&version=2


Remote Sens. 2024, 16, 3942 2 of 18

environment to ensure the desired level of ripening for the grape and therefore the desired
qualities in the wine. Factors such as the availability of nutrients and water, temperatures,
sunlight exposure, pests and disease all have important effects on grape variability. Over
many centuries, management practices have developed to help control these factors and
ensure the quality of the produced grapes and wine.

A key element of both historical and modern viticulture is applying management
methodologies in response to data characterising vine variance. This guided approach to
vine management ensures the correct level of management for grapes to reach the desired
quality parameters. Historically, monitoring a vineyard has required a person walking
the vines, using human intuition to observe and record important information. However,
the increasing integration of technology in the industry has developed new monitoring
methodologies. One of the key technologies emerging within precision viticulture is the use
of airborne remote sensing to generate data and characterise changes. Satellite Earth obser-
vation (EO) and uncrewed aerial vehicles (UAVs) produce spatially continuous data with
significantly higher efficiency than ground-based monitoring. The use of a broad spectral
range can also help identify variation and disease, which would otherwise be missed by the
human eye [1]. One of the most impactful applications of remote sensing is the monitoring
or prediction of grape yield and quality parameters. Understanding the expected grape
yield and quality variation prior to harvest would allow management strategies to be
modified to achieve the desired quality parameters or support selective harvesting.

Research has shown that grape yield and quality, the physiological appearance of
the vines, and the spectral characteristics of the vine can be associated [2]. This three-way
interaction then allows a proxy relationship to be made between grape yield and quality
and the spectral data observed by multispectral remote sensing. With the continuing
development of both UAV and satellite remote sensing, an important discussion is which
remote sensing platform is best suited to vineyard monitoring. Due to their different
operating heights (UAV typically 30–100 m, satellite EO typically 150–600 km), the two
platforms offer largely different spatial resolutions and costs. UAVs provide low-cost,
high-resolution solutions (<0.10 m spatial resolution) whilst satellites provide low-cost,
moderate-resolution solutions (>10 m spatial resolution). Whilst very-high-resolution
(VHR) satellite imagery exists (<1 m), this typically has a price point which is significantly
higher than UAV solutions for local studies. Therefore, the required spatial resolution for
monitoring is a key factor in the decision between UAV or satellite monitoring.

The critical difference between UAV and moderate-resolution satellite monitoring is
the UAVs’ ability to create pure vine pixels. This is possible due to the pixel size (e.g., 0.10 m)
being lower than the width of the vine row (typically 0.75–1.00 m). A pixel size larger
than 1.00 m would result in mixed-feature pixels containing both vine and the inter-row
space and cover crop. The impact of spatial resolution and mixed-feature pixels has been
commented on in previous research. Zarco-Tejeda et al. [3] deployed aircraft hyperspectral
remote sensing to assess vineyard condition. Alongside recommendations for future works,
Zarco-Tejeda et al. [3] stated the importance of achieving <1.0 m spatial resolution to focus
their analysis on the vines whilst masking out the inter-row space. Matese et al. [4] also
suggested that lower-resolution satellite pixels were likely biased due to the averaging of
vines and inter-row space within a pixel. Khaliq et al. [5] further stated that a lower-biomass
cover-crop species produced a biased description of the vine characteristics. These studies
suggest that the inclusion of inter-row space and cover crop within mixed-feature pixels
hinders the ability of airborne remote sensing to monitor the vines. Therefore, this places
importance upon high-resolution imagery and incentivises the use of UAVs for monitoring.

The underlying objective of the studies by Zarco-Tejeda et al. [3], Matese et al. [4], and
Kasimiti et al. [6] is to focus on the monitoring of vines. This is perhaps with the assumption
that the vine contains the most useful spectral information, whilst the inter-row and cover
crop mostly contain noise. Interestingly, the suggested focus on vines is challenged in yield
and quality monitoring, where established viticultural science highlights the importance of
the inter-row for the management of grape quality parameters. Management approaches
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such as mowing alternate rows, cover-crop species composition, and cover-crop biomass
all have important implications for wider vineyard management and the management of
grape quality variability [7,8]. If management approaches result in the spectral variation of
cover crop, it presents a mechanism through which cover-crop spectra could be linked to
yield and quality.

Whilst previous research has evidenced inter-row space and cover-crop spectra as
noise when attempting to monitor the vine characteristics, this narrative might not apply
to yield and quality monitoring due to the known importance of the cover crop within
vineyard management. To date, viticultural literature has provided limited evidence on
the possible direct effect of cover crop upon yield and quality; however, no evidence
exists for the link between cover-crop spectra and yield and quality. If a cover crop can be
shown to contain useful spectra for monitoring yield and quality, this also suggests that
mixed-feature pixels, such as those acquired by a moderate-resolution satellite, could have
a greater value than currently described.

This study will assess the potential of cover-crop spectra to be used within yield
and quality monitoring, before investigating the influence that a cover crop has within
moderate-resolution satellite imagery, and the potential implications this has for grape
yield and quality monitoring.

2. Methodologies
2.1. Study Site and Sampling Design

This study was undertaken at Gusbourne Vineyard (Kent, UK), a world-renowned
producer of English wine. As a northern hemisphere, cool-climate vineyard, the growing
season temperatures typically average 17 ◦C with high precipitation throughout the year.
The growing season begins with bud-burst in spring, with veraison occurring in late
August, and harvest in late September or early October. During this period, the vine
canopies gradually increase in biomass until leaf fall in autumn.

The site is non-contiguous, split across multiple fields of varying topography, soil types,
and microclimates. Variation in the management of inter-row space and vine canopy exists
across the site. Data collection targeted three fields of an identical vine clone and rootstock,
with planted areas varying between 1.00 and 2.50 ha. Vine rows are 100–200 m long with
2.50 m row vine spacing and 1.50 m inter-row width. The inter-row area presents a mixture
of grassland cover-crop species including Yorkshire fog grass (Holcus lanatus), Cowslip
(Primula veris), and Cocksfoot grass (Dactylis glomerate). The cover crop presents at 10–20 cm
height, depending on the mowing frequency, with the under vine areas undergoing tillage
to control competition with the vine. Vineyard management requires the trimming of the
vine canopy typically four times per growing season and the mowing of the inter-row
space typically two to three times per growing season. Moreover, at certain locations, the
inter-row space is mown on alternate rows to control the soil moisture and the resources
available to the vine. The sample fields are detailed in Figure 1.

Sampling was conducted in accordance with the common viticultural practice of using
individual trellis blocks as sample areas [9]. Trellis blocks are the supporting structures
on which vines grow, and within the sampled vineyards, five vines were planted to each
trellis; therefore, there were ten vines in each sampled block (two rows of five vines). As
detailed in Figure 2, sample locations for each year are shown spatially. Samples consist
of grape quality data from 100 grapes per trellis block, and UAV and Sentinel-2 imagery
for these locations. In total, 165 grape samples were collected during a three-year period
(2020 n = 39, 2021 n = 72, 2022 n = 54). The variance in sample size between the sample
years is the result of varying resource’s availability for grape collection and processing.
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Figure 1. (Subfigures (A): top left, (B): right, (C): bottom left): Three sample vineyards, (A): 62 vine 
rows, study area of 20,000 m2; (B): 8 vine rows, centre coordinates 51.047926, 0.789715, study area of 
10,000 m2; (C): 25 vine rows, centre coordinates, study area of 15,400 m2. 
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Figure 1. (Subfigures (A): top left, (B): right, (C): bottom left): Three sample vineyards, (A): 62 vine
rows, study area of 20,000 m2; (B): 8 vine rows, centre coordinates 51.047926, 0.789715, study area of
10,000 m2; (C): 25 vine rows, centre coordinates, study area of 15,400 m2.
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2.2. Remote Sensing Data Collection
2.2.1. UAV Image Acquisition

A total of nine flights were conducted to cover three harvest seasons across the
three vineyards. For each instance, imagery was collected approximately two weeks prior
to commercial harvest. UAV imagery was acquired using a Parrot Sequoia four-band
multispectral sensor (Parrot, Paris, France). The Parrot Sequoia is an advanced comple-
mentary metal-oxide-semiconductor [10] sensor which captures spectral data in the green
(550 + −40 nm), red (660 + −40), red edge (735 + −10 nm), and NIR (790 + −40) band-
widths [11]. It is principally designed to target vegetation features [12,13] and is frequently
used within agricultural surveys [14]. Along with an integrated Global Positioning System
(GPS) and inertial measurement unit (IMU), the Sequoia houses a downwelling sunshine
sensor which automatically calibrates outputs to an absolute reflectance value [11]. Cor-
rected reflectance values are vital for the comparison of temporally unique images due to
inevitable variation in illumination levels. The sensor was mounted upon a DJI Matrice
600P UAV flying at a height of 50 m above the ground level with 10 m line spacing. Imagery
was acquired every two seconds under a flight speed of 3–4 m/s, resulting in a >80% image
overlap. For each yearly data collection, the three sample fields were captured within
a four-hour window between 10 a.m. and 2 p.m., to ensure consistently high levels of
incident radiation and minimal shadows cast by vines. Over the entire field campaign, a
downwelling sensor onboard the Parrot Sequoia was used to correct the radiance values to
reflectance values. The sensor was calibrated at the start of each data collection.

2.2.2. Sentinel-2 Data Download

A Sentinel-2 image was downloaded from the 1–2-week period prior to harvest for each
of the three survey years (image acquisition dates: 14 September 2020, 18 September 2021,
10 September 2022) from the Copernicus Open Access hub. Data were downloaded
in Level 2a bottom-of-atmosphere reflectance and converted from the delivered format
(reflectance × 10,000) to the 0–1 reflectance range.

2.3. Image Processing and Analysis

After screening for image quality, between 350 and 500 images were processed at
each of the three sites using Pix4D v4.8.1 [15]. Mosaicking was undertaken to produce an
orthomosaic for each bandwidth. Processing settings included a minimum of three match
points, with Gaussian average downsampling with camera and sun irradiance corrections.
The four orthomosaics per data collection were then further inspected in ArcGIS 10.8.1
to ensure geospatial accuracy. Orthomosaics were then masked to the boundary of each
vineyard before vegetation indices (VIs) (Table 1) were calculated. Vine and cover-crop
polygons (as shown in Figure 2) were manually created, ensuring they only selected pure
pixels. Spectral data were then averaged within these polygons to produce a mean spectral
value for both vine (vineuav) and cover crop (cover-cropuav) for each spectral parameter at
the 165 sample locations. The distinct horizontal separation of vine and cover crop allowed
for the successful and accurate segmentation of the two features.

Table 1. Spectral parameters for XGBoost models.

VI Formula/Bandwidth

Sequoia Sentinel-2a

Red 660 nm + −40 nm 664.6 + −15.5 nm

Green 550 nm + −40 nm 559.8 + −18 nm

NIR 790 nm + −40 nm 832.8 + −53 nm
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Table 1. Cont.

VI Formula/Bandwidth

NDVI NIR − Red
NIR + Red

GNDVI NIR − Green
NIR + Green

EVI2 2.5 ∗ NIR − Red
NIR + 2.4 ∗ Red + 1

Table 1 details the three ratio VIs calculated (NDVI, GNDVI, EVI2) alongside four sin-
gle bandwidths (red, green, NIR). These VIs are highly popular within remote sensing
literature and were applied in this study due to their association with plant biophysical
characteristics (e.g., greenness and leaf area, photosynthetic activity, chlorophyll), which are
reported to affect grape yield and quality [16,17]. They are also chosen due to their robust-
ness to background interference from soil [18]. The six spectral parameters from vineuav,
cover-cropuav, and Sentinel-2 were set as independent variables for extreme gradient
boosting (XGBoost) modelling, with grape quality parameters as the dependent variables.
XGBoost is a highly popular machine learning (ML) approach which is renowned for its
robustness and avoidance of overfitting [19]. Among the 165 samples, 109 samples were
used for training and 56 were used for model evaluation. Model building was performed
using Scikit-Learn CVGridSearch [20], which automates hyperparameter tuning. To im-
prove the model performance and avoid overfitting to training data, the hyperparameters
detailed in Table 2 were assessed for each model. Model performance was assessed using
the coefficient of determination (R2), mean average error (MAE), and mean-squared error
(MSE). The three evaluation metrics are calculated using the SciKit-learn Python package
with y representing dependent variables and x representing the independent variables.

Table 2. XGBoost hyperparameter tuning using CVSearch.

Number of estimators 1000 1500 2000

Minimum child weight 0.5 1 3

Max depth 6 8 10

Learning rate 0.2 0.5 1

Subsampling column ratio 0.3 0.5 0.8

Further analysis for the similarity between UAV and Sentinel-2 was undertaken using
the structural similarity index (SSIM) proposed by Wang et al. [21]. Defined by Equation (1),
where x and y represent the two images, µx, µy represent the mean grey intensity, σx, σy
represent the standard deviation of grey intensity, σxy represents the covariance of grey
intensity, and C1, and C2 are constants. The SSIM assesses the similarity of image luminance,
contrast, and structure within a kernel. With identical images scoring 1 and no similarity
scoring 0.

SSIM(x, y) =

(
µx2 + µy2 + C1

)(
σx2 + σy2 + C2

)(
2µxµy + C1

)(
2σxy + C2

) (1)

For application within this work, UAV NIR reflectance data were aggregated to
10 m × 10 m pixels to ensure that image dimensions match Sentinel-2 NIR data. The
NIR band was selected for this analysis due to its larger spectral range. SSIM was then
applied using the SciKit-image library using a 3 × 3 pixel kernel size [22].

2.4. Grape Quality Assessment

At each sample location, ten grapes were collected per vine to create a 100-grape
sample per trellis block. Grape bunches were located by eye, ensuring that observation was
with the purpose of ensuring that bunches are representative of the vineyard and absent of
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disease. Ten bunches were then located and ten grapes blindly selected to minimise bias in
selection. Grapes were picked from the top, bottom, vine-facing side, and inter-row facing
side of the bunch to control for sunlight exposure and ripening potential variation within
the bunch. The 100-grape samples were subject to laboratory processing within 24 h of
picking to minimise the effect of decomposition. Samples were crushed and filtered before
being centrifuged to separate the must and ensure particle size < 10 µm for refractometry.
A 6 ml sample was placed on an OenoFoss Fourier Transform Infrared sensor to perform a
scan of the sample through a full-mid infrared spectrum [23] with four output parameters,
and then recorded for training machine learning models.

Analysis focused on the grape total acid measuring total hydrogen ions in the sample,
which impacts the mouthfeel and taste of the wine [24]. TSS, measured in Brix, quantifies
the sugar content of the sample, an important component for fermentation and alcohol con-
tent [25]. Also, alpha amino acids are a source of nitrogen for the fermentation process [26],
and finally, the berry weight was measured as the weight of the 100 grape samples. Each
of these quantifiable parameters are important for the final wine characteristics and are
popular metrics within viticultural literature [27–32].

3. Results
3.1. Sentinel-2 and UAV Imagery

Figure 3 presents the reflectance values for NIR, red, and green bandwidths for UAV
and Sentinel-2. Due to their operational altitudes and sensor parameters, the two platforms
can acquire data at different spatial resolutions, UAV orthomosaics are presented at 0.063 m
spatial resolution, and S2 orthomosaics are presented at 10 m spatial resolution. UAV and
Sentinel-2 bandwidths are displayed as a reflectance value between 0 and 1 and highlight
the interaction of the electromagnetic spectrum with vegetation and soil. Higher biomass
vines will reflect more energy in the NIR wavelengths and absorb more energy in the
red wavelengths, whilst lower biomass inter-row areas will have lower reflective and
absorption behaviours. Due to this behaviour, the vine rows can be clearly observed in the
higher-resolution UAV imagery. However, within the Sentinel-2 data, the spatial resolution
being greater than the interrow space size (approximately 2.0 m) results in mixed-feature
pixels where the vine cannot be separated from the cover crop.
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3.2. Airborne Remote Sensing for Identifying Grape Yield and Quality Variation

Remote sensing UAV and Sentinel-2 data were input as independent variables within
ML models to predict four grape yield and quality parameters. Model evaluation results
for mixed-pixel Sentinel-2 data, pure vineuav, and pure cover-cropuav pixels are presented
in Tables 3–5 and Figures 4–6. These results are presented with the objective to understand
the success of each sensor (UAV vs. Sentinel-2) and the spectral target (vine vs. cover crop)
for predicting the grape yield and quality parameters.

Table 3 and Figure 4a–d present the model evaluation results and regression outputs
for total acid, berry weight, alpha amino acid, and total soluble solids (Brix) from Sentinel-2
bands. The plots indicate the relationship between the remote sensing prediction and
lab-derived yield and quality parameters. Total acid presents strong modelling results
(R2 = 0.60, MAE = 0.81 mg/L), TSS also demonstrates successful modelling but with
a number of outliers where Sentinel-2 has over-predicted TSS values. Both total acid
and TSS also present two clusters within the data. Alpha amino acid (Alpha) (R2 = 0.44,
MAE = 10.02 mg/L) and berry weight (R2 = 0.18, MAE = 9.18 g) produce successful but
weaker modelling results, with higher variance within predictions.
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Table 3. Extreme gradient boosting (XGBoost) model performance for the Sentinel-2 prediction of
four yield and quality parameters. Model evaluation statistics include coefficient of determination
(R2), mean average error (MAE), and mean square error (MSE). Total acid range = 4.6 mg/L, alpha
amino acid range = 71.8 mg/L, total soluble solids (TSSs) range = 5.5 Brix, berry weight range = 53.3 g.

Total Acid (mg/L) Alpha (mg/L) TSS (Brix) Berry Weight (g)

R2 0.60 0.44 0.60 0.18
MAE 0.81 10.02 0.59 9.18
MSE 1.02 12.85 0.81 11.51

Table 4 and Figure 5a–d present the model evaluation results and regression outputs
from vineuav bandwidths and VIs. The results demonstrate the successful modelling of total
acid (R2 = 0.67, MAE = 0.73 mg/L) and TSS (R2 = 0.77, MAE = 0.50 Brix), yet consistent with
Sentinel-2 results, clear clusters of values are again present. Alpha amino acid (R2 = 0.58,
MAE = 8.29) and berry weight (R2 = 0.34, MAE = 8.22 g) are weaker models, with more
variation; however, no clustering is observed.
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Table 4. Extreme gradient boosting (XGBoost) model performance for the pure vineuav pixels predic-
tion of four yield and quality parameters. Model evaluation statistics include a coefficient of determi-
nation (R2), mean average error (MAE), and mean square error (MSE). Total acid range = 4.6 mg/L,
alpha amino acid range = 71.8 mg/L, total soluble solids (TSSs) range = 5.5 Brix, berry weight
range = 53.3 g.

Total Acid (mg/L) Alpha (mg/L) TSS (Brix) Berry Weight (g)

R2 0.67 0.58 0.58 0.32
MAE 0.73 8.29 0.50 8.22

RMSE 0.93 11.09 0.68 10.35

Table 5 and Figure 6a–d present the model evaluation results and regression outputs
from cover-cropuav bandwidths and VIs. The results demonstrate the successful modelling
of total acid (R2 = 0.45, MAE = 0.93 mg/L) and TSS (R2 = 0.45, MAE = 0.76 Brix); yet,
consistently with Sentinel-2 results, the clear clusters of values are again present. Alpha
amino acid (R2 = 0.43, MAE = 10.02) and berry weight (R2 = 0.37, MAE = 8.10 g) produce
similar model performance metrics with a limited evidence of clustered values.
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Table 5. Extreme gradient boosting (XGBoost) model performance for pure cover-cropuav pixels’
prediction of four yield and quality parameters. Model evaluation statistics include the coeffi-
cient of determination (R2), mean average error (MAE), and mean square error (MSE). Total acid
range = 4.6 mg/L, alpha amino acid range = 71.8 mg/L, total soluble solids (TSSs) range = 5.5 Brix,
berry weight range = 53.3 g.

Total Acid (mg/L) Alpha (mg/L) TSS (Brix) Berry Weight (g)

R2 0.45 0.43 0.45 0.37
MAE 0.93 10.02 0.76 8.10

RMSE 1.21 13.00 0.95 10.09

R2 values between UAV and Sentinel-2 platforms and the vineuav and cover-cropuav
suggest that modelling is successful; however, prediction strength is limited. Sentinel-2
models for total acid, TSS, and alpha amino acid produce similar model success to vineuav
models, whilst berry weight predictions were weak for each methodology. Pure cover-
cropuav produced successful models; however, R2 values ranging between 0.37 and 0.45
were marginally weaker than both pure vineuav and Sentinel-2 models.

3.3. The Spectral Similarity Between UAV and Sentinel-2 Acquired Data

With model evaluation results evidencing that remote sensing data from both UAV and
Sentinel-2 can successfully predict grape yield and quality parameters, the following results
will compare the similarity between UAV and Sentinel-2 imagery. Within viticultural
literature, the authors stated the inhibiting influence of the inter-row space and cover
crop upon Sentinel-2 imagery when attempting to monitor vine variation. Quantifying
the similarity of the two platforms will aid in understanding of the influence vine and
cover-crop spectra upon a mixed-feature Sentinel-2 image.

Figures 7–9 present Sentinel-2 10 m NIR and 10 m resampled UAV data, alongside
the difference raster and SSIM outputs for three vineyards in 2022. Firstly, across the three
vineyards, the maximum difference in NIR reflectance is between 0.15 and 0.20, with one
pixel falling above 0.20, suggesting that despite a difference in observation dates, NIR
reflectance is highly similar between the two platforms. BC is the least similar vineyard,
with areas to the north and east with multiple pixels of NIR difference above 0.15. An edge
effect can also be observed in BC and BH, where NIR values drop significantly around the
edge of the image due to bare ground areas in the vineyard headland.
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Figure 8. Structure similarity index and difference between Sentinel-2 (S2) near-infrared (NIR) and
unmanned aircraft vehicle (UAV) NIR data at Bottom Camp (BC).

SSIM quantifies the similarity of images based on their luminance, contrast, and
structure, with values of 1 representing identical images and values of 0 representing
images with no similarity. To note, the SSIM raster does not report the edge pixels where a
3 × 3 kernel cannot be applied. The SSIM for all three vineyards is very high, with overall
SSIM scores in excess of 0.99. Using a 3 × 3 pixel kernel, the SSIM score suggests that the
Sentinel-2 and UAV rasters have similar pixel values and spatial structures. Across the
three rasters, the least similar pixels are located in areas where the NIR difference value is
highest. In BC, these pixels are found to the north and east of the image, whilst for BT, the
lower SSIM score is observed near a single pixel which has a large NIR difference between
the two platforms. A further observation is the apparent gradient of SSIM, occurring from
left to right in BT and BH, and then from bottom to top in BC.



Remote Sens. 2024, 16, 3942 13 of 18

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 8. Structure similarity index and difference between Sentinel-2 (S2) near-infrared (NIR) and 
unmanned aircraft vehicle (UAV) NIR data at Bottom Camp (BC). 

 
Figure 9. Structure similarity index and difference between Sentinel-2 (S2) near-infrared (NIR) and 
uncrewed aerial vehicle (UAV) NIR data at Boothill (BH). 

SSIM has identified that the spatial similarity between UAV NIR and Sentinel-2 NIR 
is exceptionally high. To understand the individual effects of cover-crop and vine spectra 
upon Sentinel-2 imagery, the vineuav and cover-cropuav values are plotted against their spa-
tially corresponding Sentinel-2 pixel in Figure 10. Across the three sample vineyards, it is 
clear that cover-cropuav NDVI (R = 0.954) holds a more linear relationship with Sentinel-2 
NDVI than vineuav NDVI (R = 0.547). The data values are largely clustered by both the 
sample year and sample vineyard, with BT cover-cropuav reporting the highest NDVI 

Figure 9. Structure similarity index and difference between Sentinel-2 (S2) near-infrared (NIR) and
uncrewed aerial vehicle (UAV) NIR data at Boothill (BH).

SSIM has identified that the spatial similarity between UAV NIR and Sentinel-2 NIR
is exceptionally high. To understand the individual effects of cover-crop and vine spectra
upon Sentinel-2 imagery, the vineuav and cover-cropuav values are plotted against their
spatially corresponding Sentinel-2 pixel in Figure 10. Across the three sample vineyards, it
is clear that cover-cropuav NDVI (R = 0.954) holds a more linear relationship with Sentinel-2
NDVI than vineuav NDVI (R = 0.547). The data values are largely clustered by both the
sample year and sample vineyard, with BT cover-cropuav reporting the highest NDVI
values (NDVI = 0.88–0.92) for both UAV and Sentinel-2 imagery. BC and BH present a
0.20 NDVI difference between the sample years, whilst BT presents as a single larger cluster
for both vineuav and cover-cropuav NDVI. Whilst it is clear that considering results by
individual sample vineyard and sample year reduces the strength of the relationship, this
intra-vineyard relationship is still significant on six occasions for cover-cropuav and on no
occasion for vineuav.
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4. Discussion
4.1. Grape Quality Modelling Using Cover Crops and Machine Learning

This research assessed the ability of drone-derived vine and cover-crop pixels and
mixed-feature Sentinel-2 pixels to predict grape yield and quality parameters. With the
segmentation of high-resolution UAV imagery, further understanding was gained on the
roles that cover-crop spectra play in the application of medium-resolution satellite imagery
for vineyard monitoring.

The presented results show successful models across the three sets of spectral data
(Sentinel-2, vineuav, cover-cropuav) and the four quality parameters (total acid, TSS, alpha
amino acid, and berry weight). These outputs support the use of remote sensing data
and machine learning models to predict multiple important and industry-recognised wine
quality parameters which have a significant bearing on the flavour and mouthfeel of the
wine [24,32], whilst further understanding the spatial variability of grape yield and quality
can improve vineyard management and allow selective harvesting [6]. Therefore, the
accurate monitoring of these parameters is essential for the business success of a vineyard.

Among these successful models, perhaps the most significant finding from this re-
search is the outputs of cover-cropuav models. This is the first research to evidence that
cover-crop spectra, acquired from high-resolution data, can be utilised within machine
learning modelling to predict grape yield and quality parameters. For the total acid, TSS,
and alpha amino acid, vine models only marginally outperformed cover-cropuav models
(R2 difference: total acid = −0.22, TSS = −0.23, alpha amino acid = −0.25), whilst for berry
weight, the cover-cropuav produced a stronger model evaluation than vineuav models (R2

difference: berry weight = +0.05). The comparability of these models suggests a relationship
between cover-crop spectra and grape quality parameters. Within viticulture, growers will
often use cover crop to help manage water availability and improve soil quality, therefore
carefully controlling the vines’ access to resources [33,34]. Evidence also exists that demon-
strates plant-level interactions between cover crops and vines, with some authors further
suggesting that these interactions also manifest within grape quality [35,36]. It is therefore
possible that this interaction between cover crops and vines could be a mechanism through
which cover-crop spectral variation can be linked to yield and quality. Whilst the results of
this study are promising, viticultural literature remains inconclusive on the direct effect
that cover crop has upon yield and quality. Despite the evidence presented by Bokulich
et al. [37] and Chou et al. [35], comprehensive trial-based studies assessing different cover-
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crop mixtures also found no direct effects upon grape quality parameters [36,38–40]. A
second and more probable mechanism which may explain successful model results is an
indirect relationship, where vines, cover crops, and grape yield and quality present parallel
changes in their response to environmental changes (e.g., soil moisture and organic matter).
Whilst this would be a proxy measurement of yield and quality, rather than measuring the
direct effect of cover crop, this is the first study to evidence that cover crops have useful
spectral data for grape yield and quality monitoring.

4.2. The Influence of Cover-Crop Spectra within Sentinel-2 Imagery

A second important outcome of this study which builds upon findings that cover-crop
spectra hold beneficial information for monitoring is the effect that cover crop has upon
mixed-feature medium-resolution satellite imagery, such as Sentinel-2. Previous research
has largely stated that cover-crop and inter-row spaces act as noise when monitoring the
vineyard [3–6], therefore rationalising the use of high-resolution UAV imagery to ensure
that pure vine pixels can be acquired for monitoring.

In this work, SSIM results (Figures 7–9) between 10 m resampled UAV and Sentinel-2
imagery suggest that the luminance, contract, and structure is highly similar (SSIM = > 0.99).
Therefore, it can be stated with certainty that spectrally, both platforms have similar repre-
sentations of vineyard variance, whilst spatial resolution (UAV = 0.063 m, Sentinel-2 = 10 m)
remains the most significant difference. Further exploring this similarity and assessing
the relationship of vineuav and cover-cropuav NDVI to Sentinel-2 NDVI reveals that cover-
cropuav holds a significantly more linear relationship (r-value = 0.954) to Sentinel-2 than
vineuav (r-value = 0.547) across the three sample years and three sample vineyards. The
strength of this result suggests that cover crop has a larger influence on a 10 m Sentinel-2
pixel than vine spectra. Therefore, in practice, the use of a moderate-resolution satellite to
monitor a vineyard with similar presentation to that in this study will describe the spectral
variance of the cover crop more than the spectral variance of the vines. This is likely the
product of the cover crop having a larger spatial area than a vine within each 10 m pixel.

Conclusions reached by Matese et al. [4], Di Gennaro et al. [2], and Khaliq et al. [5],
which aimed to monitor vine variation from moderate-resolution satellite imagery, state
that the cover crop inhibits the ability to monitor vines. As shown in this study, cover-crop
spectra have a higher influence on the Sentinel-2 pixel than the vine spectra, which will
lead to the vine signal being obscured within a Sentinel-2 pixel. Therefore, a cover crop
could be viewed as a hindrance when trying to monitor the vines.

Interestingly, within this study, the focus is not on assessing the vine in isolation,
but instead, attempting to model yield and quality variation. This study has shown that
these two parameters (yield and quality) are significantly correlated with the cover-cropuav,
and thus, a Sentinel-2 mixed pixel is capable of describing the variation in grape quality
parameters due to both vine and cover-crop spectra being beneficial for modelling.

In summary, this study finds no evidence that cover-crop spectra inhibits the ability to
monitor grape yield and quality and should be considered within future airborne remote
sensing monitoring. With cover-crop spectra being viewed as useful, the value of moderate-
resolution satellite imagery for monitoring grape yield and quality then increases. Despite
operating at lower spatial resolutions than UAV imagery, open access sensors such as
Sentinel-2 and Landsat-9 could provide yield and quality prediction models for very low
material costs; and over larger spatial scales. As discussed by Matese et al. [4], compared to
UAV which requires trained operators and equipment, monitoring vineyards over 50 ha is
significantly more cost-effective using satellite imagery.

4.3. Limitations and Recommendations

Within viticultural remote sensing, there are many factors which complicate data
acquisition and analysis, affecting the clarity of the results. Within this study, a prominent
issue was the use of a multi-vineyard and multi-year strategy. This approach introduced
significant variation within remote sensing data which likely had a bearing on machine
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learning methodologies, clustering the data and likely inflating R2 values. It is possible that
the results represent the variance between sample years and sample vineyards more than
the inter-vineyard variance. Whilst confidence remains in the ability of this methodology to
identify inter-vineyard variation, future work would be more impactful, focusing on inter-
field variation from a single survey. However, generating a yield and quality sample size
large enough for training machine learning models remains a challenge due to the impact
of sampling upon the commercial operations of the vineyard. Alternatively, exploring
methodologies to normalise variance between sample years and vineyards could also be
impactful research.

A second difficulty encountered throughout this work was the effect of vine shadows
cast across the cover crop. This issue is discussed at length by Sozzi et al. [41], and despite
targeting high-noon for data capture, shadows often persisted within UAV orthomosaics
and could be exacerbating the spectral difference between vineyards. Whilst ratio nor-
malisation VIs such as the NDVI largely mitigate the presence of shadows and variation
in illumination levels across the scene, shadows likely remained a significant driver of
difference in UAV surveys between the three vineyards. This impact of shadows could be
minimised through selective UAV survey timings and sun position, but this is complex
planning for large or commercial vineyards.

A prominent discussion within the literature also focuses on the timing of monitoring.
Whilst UAV surveys in this study were completed one to two weeks prior to harvest,
evidence suggests that targeting the veraison period (approximately 1 month prior to
harvest) produces the strongest correlations with grape quality parameters [42]. Future
works focusing on a multi-temporal monitoring design, collating the results of multiple
remote sensing data collections per growing season, could lead to significant improvements
in the modelling of grape yield and quality. Whilst also providing data to inform manage-
ment decisions, this could allow for varied canopy management, selective harvesting, and
improved harvest timing [43].

5. Conclusions

This paper investigated the ability of vine and cover-crop data acquired by high-
resolution UAV and mixed-feature Sentinel-2 data to predict grape yield and quality
parameters within an English vineyard. Successful modelling presents novel evidence of
the link between cover-crop spectra and grape yield and quality data. Moreover, demon-
strating the significance of cover-crop spectra then provides a mechanism through which
Sentinel-2 mixed pixels can be used for yield- and quality-monitoring. This work has built
on previous research which states the significant roles that inter-row space and cover crop
play in viticultural remote sensing. Yet, it has also demonstrated that cover-crop spectra
are not just noise and can be exploited to innovate remote sensing solutions within viticul-
ture. Whilst moderate-resolution satellite imagery provides a very-low-cost monitoring
solution, the importance of cover-crop spectra will also be vital for rapidly developing
hyperspectral satellite solutions. Operating at a moderate resolution (8–30 m), the effect
and possible value of cover-crop spectra will be increasingly prominent within future
viticultural remote sensing.

Author Contributions: M.W. and N.G.B. undertook the fieldwork for the project. M.W., N.G.B.,
C.B.J. and M.B. developed the concepts and developed data analysis, and all authors reviewed the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The funding provided by University of Brighton and NIAB.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to the sensitivity of data collection at a commercial vineyard.

Acknowledgments: We would like to thank the contributions of my supervisors, Niall Burnside,
Matthew Brolly, and Chris Joyce throughout this study. Also, we are grateful for the external
contributions of Julien Lecourt and Mark Else at the National Centre of Agricultural Botany (NIAB).



Remote Sens. 2024, 16, 3942 17 of 18

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fernández-Novales, J.; Saiz-Rubio, V.; Barrio, I.; Rovira-Más, F.; Cuenca-Cuenca, A.; Santos Alves, F.; Valente, J.; Tardaguila, J.;

Diago, M.P. Monitoring and mapping vineyard water status using non-invasive technologies by a ground robot. Remote Sens.
2021, 13, 1828. [CrossRef]

2. Di Gennaro, S.F.; Matese, A.; Gioli, B.; Toscano, P.; Zaldei, A.; Genesio, L. A low-cost and unsupervised image recognition
methodology for yield estimation in a vineyard. Front. Plant Sci. 2019, 10, 559. [CrossRef] [PubMed]

3. Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing
vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy.
Remote Sens. Environ. 2005, 99, 271–287. [CrossRef]

4. Matese, A.; Di Gennaro, S.F.; Genova, G.; Orlandini, S.; Valentini, R. Intercomparison of UAV, aircraft, and satellite remote sensing
platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [CrossRef]

5. Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Tortia, C.; Gay, P. Comparison of satellite and UAV-based multispectral
imagery for vineyard variability assessment. Remote Sens. 2019, 11, 436. [CrossRef]

6. Kasimati, A.; Kotsopoulos, S.; Ntanos, S. Investigating a selection of methods for the prediction of total soluble solids among
wine grape quality characteristics using normalized difference vegetation index data from proximal and remote sensing. Front.
Plant Sci. 2021, 12, 627974. [CrossRef]

7. Caspari, H.; Neal, S.; Naylor, A. Cover crop management in vineyards to enhance deficit irrigation in a humid climate. II Int.
Symp. Irrig. Hortic. Crops 1996, 449, 313–320. [CrossRef]

8. Afonso, J.; Monteiro, A.; Lopes, C.; Lourenço, J. Enrelvamento do solo em vinha na região dos vinhos verdes. Três anos de estudo
na casta ‘Alvarinho’. Ciência Técnica Vitivinícola 2003, 18, 47–63. Available online: https://www.passeidireto.com/arquivo/1457
93470/enrelvamento-do-solo-em-vinha-na-regiao-dos-vinhos-verdes-tres-anos-de-estudo-na (accessed on 25 October 2023).

9. Chan, K.Y.; Fahey, D.J.; Nandra, H.S. Using composted mulch in vineyards—Effects on grape yield and quality. Int. J. Fruit Sci.
2010, 10, 441–453. [CrossRef]

10. Weste, N.; Harris, D. CMOS VLSI Design: A Circuits and Systems Perspective, 3rd ed.; Pearson/Addison-Wesley: Boston, MA,
USA, 2004.

11. Sensefly. Parrot Sequoia 2004, Multispectral Camera. Sensefly. 2022. Available online: https://www.parrot.com/uk/support/
documentation/sequoia (accessed on 3 May 2022).

12. Franklin, S.E.; Ahmed, O.S.; Williams, G. Northern conifer forest species classification using multispectral data acquired from an
unmanned aerial vehicle. Photogramm. Eng. Remote Sens. 2017, 83, 501–507. [CrossRef]

13. Franzini, M.; Dubbini, M.; Zani, D.; Gattelli, M. Geometric and radiometric consistency of Parrot Sequoia multispectral imagery
for precision agriculture applications. Appl. Sci. 2019, 9, 5490. [CrossRef]

14. Negash, L.; Kim, H.-Y.; Choi, H.-L. Emerging UAV applications in agriculture. In Proceedings of the 2019 7th International
Conference on Robot Intelligence Technology and Applications (RiTA), Daejeon, Republic of Korea, 1–3 November 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 175–180. [CrossRef]

15. Pix4D. Pix4Dmapper User Manual (Revision 4.1); Pix4D. 2017. Available online: https://support.pix4d.com/hc/en-us/articles/
205751415 (accessed on 25 October 2023).

16. Hardy, P.J. Metabolism of sugars and organic acids in immature grape berries. Plant Physiol. 1968, 43, 224–228. [CrossRef]
[PubMed]

17. van Leeuwen, C.; Destrac Irvine, A. Modified grape composition under climate change conditions requires adaptations in the
vineyard. OENO One 2017, 51, 147–154. [CrossRef]

18. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
19. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

20. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;
et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238.

21. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef]

22. Scikit-Image (nd). SSIM. Structural Similarity Index—Skimage 0.24.0 Documentation. Available online: https://scikit-image.org/
docs/stable/api/skimage.metrics.html#skimage.metrics.structural_similarity (accessed on 16 November 2023).

23. Foss. OenoFoss. Foss Analytics. 2022. Available online: https://www.fossanalytics.com/en/products/oenofoss (accessed on
22 January 2023).

24. Tsegay, Z.T. Total titratable acidity and organic acids of wines produced from cactus pear (Opuntia-ficus-indica) fruit and Lantana
camara (L. camara) fruit blended fermentation process employed response surface optimization. Food Sci. Nutr. 2020, 8, 4449–4462.
[CrossRef]

25. Urraca, R.; Sanz-García, A.; Tardaguila, J.; Diago, M.P. Estimation of total soluble solids in grape berries using a hand-held NIR
spectrometer under field conditions. J. Sci. Food Agric. 2016, 96, 3007–3016. [CrossRef]

https://doi.org/10.3390/rs13091828
https://doi.org/10.3389/fpls.2019.00559
https://www.ncbi.nlm.nih.gov/pubmed/31130974
https://doi.org/10.1016/j.rse.2005.09.002
https://doi.org/10.3390/rs70302971
https://doi.org/10.3390/rs11040436
https://doi.org/10.3389/fpls.2021.683078
https://doi.org/10.17660/ActaHortic.1997.449.44
https://www.passeidireto.com/arquivo/145793470/enrelvamento-do-solo-em-vinha-na-regiao-dos-vinhos-verdes-tres-anos-de-estudo-na
https://www.passeidireto.com/arquivo/145793470/enrelvamento-do-solo-em-vinha-na-regiao-dos-vinhos-verdes-tres-anos-de-estudo-na
https://doi.org/10.1080/15538362.2010.530135
https://www.parrot.com/uk/support/documentation/sequoia
https://www.parrot.com/uk/support/documentation/sequoia
https://doi.org/10.14358/PERS.83.7.501
https://doi.org/10.3390/app9245490
https://doi.org/10.1109/RITAPP.2019.8932853
https://support.pix4d.com/hc/en-us/articles/205751415
https://support.pix4d.com/hc/en-us/articles/205751415
https://doi.org/10.1104/pp.43.2.224
https://www.ncbi.nlm.nih.gov/pubmed/16656755
https://doi.org/10.20870/oeno-one.2017.51.2.1647
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/TIP.2003.819861
https://scikit-image.org/docs/stable/api/skimage.metrics.html#skimage.metrics.structural_similarity
https://scikit-image.org/docs/stable/api/skimage.metrics.html#skimage.metrics.structural_similarity
https://www.fossanalytics.com/en/products/oenofoss
https://doi.org/10.1002/fsn3.1745
https://doi.org/10.1002/jsfa.7470


Remote Sens. 2024, 16, 3942 18 of 18

26. Fairbairn, S.; McKinnon, A.; Musarurwa, H.T.; Ferreira, A.C.; Bauer, F.F. The impact of single amino acids on growth and volatile
aroma production by Saccharomyces cerevisiae strains. Front. Microbiol. 2017, 8, 2554. [CrossRef]

27. Usseglio-Tomasset, L. Chimica Enologica; HOEPLI: Milan, Italy, 1995.
28. Margalit, Y. Concepts in Wine Chemistry (Rev. ed.); Ringgold Inc.: Bristol, UK, 2005.
29. Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Principles and Practices of Winemaking; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2013.
30. Vilela, A. Use of nonconventional yeasts for modulating wine acidity. Fermentation 2019, 5, 27. [CrossRef]
31. Trimble, S. Brix as a Metric of Fruit Maturity. Felix Instruments. 2022. Available online: https://felixinstruments.com/blog/brix-

as-a-metric-of-fruit-maturity/ (accessed on 5 April 2019).
32. Koone, R.; Harrington, R.J.; Gozzi, M.; McCarthy, M. The role of acidity, sweetness, tannin and consumer knowledge on wine and

food match perceptions. J. Wine Res. 2014, 25, 158–174. [CrossRef]
33. Naylor, R.E.L.; Lutman, P.J.W. What is a weed. Weed Res. 2007, 47, 375–383. [CrossRef]
34. Pérez-Álvarez, E.; Garde-Cerdan, T.; Santamaría, P.; García-Escudero, E.; Peregrina, F. Influence of two different cover crops on

soil N availability, N nutritional status and grape yeast assimilable N (YAN) in a Cv. Tempranillo vineyard. Plant Soil 2015, 390,
143–156. [CrossRef]

35. Chou, M.-Y.; van Heuvel, J.; Bell, T.H.; Panke-Buisse, K.; Kao-Kniffin, J. Vineyard under-vine floor management alters soil
microbial composition, while the fruit microbiome shows no corresponding shifts. Sci. Rep. 2018, 8, 11039. [CrossRef]

36. Wheeler, S.J.; Black, A.; Pickering, G. Vineyard floor management improves wine quality in highly vigorous Vitis vinifera
‘Cabernet Sauvignon’ in New Zealand. N. Z. J. Crop Hortic. Sci. 2005, 33, 117–128. [CrossRef]

37. Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar,
vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [CrossRef]

38. Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols, I.; Diaz-Losada, E. Influence of cover crop treatments on the performance of a vineyard
in a humid region. Span. J. Agric. Res. 2015, 13, e0907. [CrossRef]

39. Bouzas-Cid, Y.; Díaz-Losada, E.; Trigo-Córdoba, E.; Orriols, I. Effect of vegetal ground cover crops on wine anthocyanin content.
Sci. Hortic. 2016, 211, 399–404. [CrossRef]

40. Pérez-Expósito, J.P.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. VineSens: An eco-smart decision-support viticulture
system. Sensors 2017, 17, 465. [CrossRef]

41. Sozzi, M.; Kayad, A.; Marinello, F.; Taylor, J.; Tisseyre, B. Comparing vineyard imagery acquired from Sentinel-2 and unmanned
aerial vehicle (UAV) platform. OENO One 2020, 54, 189–197. [CrossRef]

42. Lamb, D.W.; Bramley, R.G.V.; Hall, A. Precision Viticulture—An Australian Perspective; International Society for Horticultural
Science (ISHS): Leuven, Belgium, 2004. [CrossRef]

43. Cunha, M.; Marçal, A.R.S.; Silva, L. Very early prediction of wine yield based on satellite data from VEGETATION. Int. J. Remote
Sens. 2010, 31, 3125–3142. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3389/fmicb.2017.02554
https://doi.org/10.3390/fermentation5010027
https://felixinstruments.com/blog/brix-as-a-metric-of-fruit-maturity/
https://felixinstruments.com/blog/brix-as-a-metric-of-fruit-maturity/
https://doi.org/10.1080/09571264.2014.899491
https://doi.org/10.1111/j.1365-3180.2007.00582.x
https://doi.org/10.1007/s11104-015-2387-7
https://doi.org/10.1038/s41598-018-29346-1
https://doi.org/10.1080/01140671.2005.9514365
https://doi.org/10.1073/pnas.1317377110
https://doi.org/10.5424/sjar/2015134-8265
https://doi.org/10.1016/j.scienta.2016.09.026
https://doi.org/10.3390/s17030465
https://doi.org/10.20870/oeno-one.2020.54.1.2557
https://doi.org/10.17660/ActaHortic.2004.652.10
https://doi.org/10.1080/01431160903154382

	Introduction 
	Methodologies 
	Study Site and Sampling Design 
	Remote Sensing Data Collection 
	UAV Image Acquisition 
	Sentinel-2 Data Download 

	Image Processing and Analysis 
	Grape Quality Assessment 

	Results 
	Sentinel-2 and UAV Imagery 
	Airborne Remote Sensing for Identifying Grape Yield and Quality Variation 
	The Spectral Similarity Between UAV and Sentinel-2 Acquired Data 

	Discussion 
	Grape Quality Modelling Using Cover Crops and Machine Learning 
	The Influence of Cover-Crop Spectra within Sentinel-2 Imagery 
	Limitations and Recommendations 

	Conclusions 
	References

