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Abstract: The hydrological cycle is altered by climate change and human activities, amplifying
extreme precipitation and heightening the flood risk regionally and globally. It is imperative to
explore the future possible alterations in flood risk at the regional scale. Focusing on the Hanjiang
river basin (HRB), this study develops a framework for establishing a scientific assessment of spatio-
temporal dynamics of future flood risks under multiple future scenarios. In this framework, a GCMs
statistical downscaling method based on machine learning is used to project future precipitation,
the PLUS model is used to project future land use, the digitwining watershed model (DWM) is
used to project future runoff, and the entropy weight method is used to calculate risk. Six extreme
precipitation indices are calculated to project the spatio-temporal patterns of future precipitation
extremes in the HRB. The results of this study show that the intensity (Rx1day, Rx5day, PRCPTOT,
SDII), frequency (R20m), and duration (CWD) of future precipitation extremes will be consistently
increasing over the HRB during the 21st century. The high values of extreme precipitation indices in
the HRB are primarily located in the southeast and southwest. The future annual average runoff in
the upper HRB during the near-term (2023–2042) and mid-term (2043–2062) is projected to decrease in
comparison to the baseline period (1995–2014), with the exception of that during the mid-term under
the SSP5-8.5 scenario. The high flood risk center in the future will be distributed in the southwestern
region of the upper HRB. The proportions of areas with high and medium–high flood risk in the
upper HRB will increase significantly. Under the SSP5-8.5 scenario, the area percentage with high
flood risk during the future mid-term will reach 24.02%. The findings of this study will facilitate local
governments in formulating effective strategic plans for future flood control management.

Keywords: extreme precipitation; runoff projection; flood risk assessment; CMIP6; climate change;
Hanjiang River Basin

1. Introduction

The regional hydrological cycles have been altered by global climate change through
the influence of meteorological and hydrological factors, leading to significant changes
in runoff processes, which have triggered a series of hydroclimatic extremes. Regional
hydroclimatic extremes (extreme precipitation and floods), which have constrained coordi-
nated and sustainable socio-economic development, constitute one of the most prevalent
and destructive climate hazards under global climate change [1–4]. Extreme precipitation
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and flooding disasters have caused 129,180 deaths and USD 614.53 billion in economic
losses globally between 2000 and 2020, as reported in the Emergency Events Database
(EMDAT) [5]. In addition, the World Meteorological Organization (WMO) in 2021 reported
that the number of disasters, such as extreme climate and floods, had increased fivefold
over the past 50 years, with total losses amounting to USD 3.64 trillion [6]. Therefore,
exploring regional extreme precipitation, runoff and flood disaster risk in future is very
essential to supply useful information to reduce the impacts of climate change and attain
sustainable development goals [7–9].

The sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC)
states that the frequency and intensity of extreme precipitation events on global mainland
have significantly increased since the 1980s, and there is a severe tend that will be seen
in the future [10]. In recent years, numerous studies on extreme precipitation events at
the global and regional scales have indicated that the rainy days and extreme precipi-
tation events all over the world will significantly increase in the future compared with
historical periods [4,11–14]. The increasing extreme precipitation events in the future will
cause serious flood events, which will lead to severe socio-economic losses [8]. Therefore,
investigating future extreme precipitation events is very essential to supplying useful infor-
mation for mitigating flood disaster risk under climate change. There are two main types
of methods for defining and quantifying extreme precipitation events, one using extreme
value theory and the other based on extreme precipitation indices (EPIs) [15,16]. The EPIs
are a set of 27 extreme climate change indices defined by the Expert Team on Climate
Change Detection and Indices (ETCCDI) (https://etccdi.pacificclimate.org/, accessed on
10 April 2024) of the WMO regarding intensity, frequency and duration [17]. This method
has been widely used for monitoring and predicting precipitation extreme feature, as it
is conducive to the horizontal comparison of different climate models and regions [8,18].
Because of the complexity and variability of climate change, as well as its strong uncertainty,
it is impossible to accurately predict future precipitation in the regional area. The current
prediction of future precipitation is generally based on a series of scientific assumptions,
and then the definition and quantification methods of extreme precipitation events are used
to further anticipate possible changes in the future [19]. General circulation models (GCMs)
developed under the auspices of the Coupled Model Intercomparison Project (CMIP) of
the World Climate Research Programme (WCRP) are the major tools for exploring future
precipitation based on recognized principles of physics and chemistry [7,20]. CMIP6 GCMs
are the latest version released by CMIP, and they provide new possibilities for forecasting
climate variables. CMIP6 GCMs have supplemented a number of improvements compared
with the previous CMIP generations, such as finer spatial resolution, improved param-
eterization schemes for cloud microphysical processes, and enriched climate projection
scenarios (Shared Socioeconomic Pathways and Representative Concentration Pathways,
SSP-RCP) [21,22]. Despite decades of development, systematic biases and uncertainties in
GCMs still exist in predicting future climate patterns at the regional scale. Therefore, nu-
merous downscaled methods have been developed and widely used to solve this problem,
like the empirical quantile mapping method (EQM), delta, machine learning algorithms,
etc. [23–27].

Projecting future runoff patterns in a river basin is not only dependent on future
climate scenarios, but also requires land use change scenarios, as well as hydrologic model-
ing. There are numerous models to simulate future land use, such as PLUS, CA-Markov,
FLUS, CLUE-S, etc. Among them, the PLUS model can provide a better interpretation of
different types of land use change influencing factors, and is more effectively applicable to
large regions [28,29]. Hydrological models are important tools for studying hydrological
laws and predicting hydrological phenomena. There are numerous hydrological models
developed in previous studies, such as HBV, Tank, the Digitwining Watershed Model
(DWM), TOPMODEL, SWAT, VIC, and the XAJ-RR model [30–33]. Under the impacts of
global climate change and human activities, the hydrological cycle process of the watershed
has changed significantly, the spatial heterogeneity of climate characteristics has become
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more obvious, and the underlying surface has become increasingly complex. DWM, a
distributed hydrological model, utilizes spatial interpolation methods and distributed
parameter extraction techniques based on remote sensing images to characterize the spatial
heterogeneity of meteorological data and capture the uniformity of underlying surface
characteristic parameters [34,35]. After more than 20 years of development, DWM has been
widely used in hydrological modeling in different areas and has become an important tool
for hydrological cycle studies under the changing environments [34–41].

Projecting future flood disaster risk is based on the results of scientific forecasts of
precipitation, runoff, GDP, population, and other elements, combined with flood disaster
risk assessment methods, to predict flooding dynamics in future periods. Methods of
assessing the flood risk can be categorized into four types: mathematical and statistical
methods, indicator system methods, uncertainty analysis methods and scenario simulation
methods [42]. The indicator system method intends to construct a flood disaster risk
assessment indicator system from the aspects of disaster causing factors, disaster bearing
environment, and disaster bearing bodies, and then quantify the regional flood disaster risk
using the weight allocation method [43,44]. Shi et al. [45] used the indicator system method
to assess the flood disaster risk of Xiamen in China under a large typhoon scenario. Mitra
and Das [46] comparatively assessed the flood vulnerability of Koch Bihar using three
multi-objective decision-making techniques, GIS techniques and the constructed indicator
system. However, previous studies on assessing flood disaster risks mainly focused on
historical periods, and the estimation of future risk situations is still relatively limited.
There is an urgent need to conduct research on predicting future flood disaster risks in
various areas of the world.

The Hanjiang River, largest tributary of the Yangtze River in China, lies in the climatic
transition area between northern and southern regions, which is strongly affected by
climate change. The Hanjiang river basin (HRB) is also the water resource for the middle
route of the South-to-North Water Diversion Project (SNWD), China. In recent years,
flood disasters have occurred frequently in the HRB [47]. Extreme precipitation is the
primary factor contributing to flood disasters in the HRB, and the effective projection
of future extreme precipitation is crucial for flood prevention in the middle reaches of
the Yangtze River and water resource management in the middle route of the SNWD [48].
Therefore, changes in extreme precipitation, runoff and flooding have attracted the attention
of researchers [47–50]. However, scholars have mostly focused on extreme precipitation,
runoff, and floods in the HRB during the historical period, and limited studies have focused
on projecting one aspect of future extreme precipitation, runoff, and flood disasters, without
considering them comprehensively.

In this study, we primarily aim to establish a framework for the scientific assessment
of flood disaster risk in the HRB under future scenarios. We use a statistical downscaling
method developed in our previous study that combines EQM and machine learning algo-
rithms for bias correction of the GCM precipitation outputs, and apply the EPIs to project
the spatio-temporal aspects of precipitation extreme events over the HRB under future
scenarios. We use the PLUS model to project the land use maps over the HRB. Then, we
utilize DWM to project the future runoff in the study region. Finally, we apply the indicator
system method to project the future flood disaster risk in the HRB, by integrating precipita-
tion, land use, runoff, GDP, and population datasets under future scenarios. The objective
of this study is to explore spatio-temporal dynamics of future extreme precipitation, runoff,
and flood risk in the HRB under SSP-RCP scenarios.

2. Materials and Methods
2.1. Study Area

The HRB, located between 106◦12′E~114◦14′E and 30◦8′N~34◦11′N, has a drainage
area of about 1.59 × 105 km2 (Figure 1). The length of the Hanjiang River is 1577 km, and the
upper reaches of the Hanjiang River = bounded by the Danjiangkou Reservoir are 925 km
long, with a drainage area of 9.52 × 104 km2 (Figure 1) [51]. The upper reaches of the HRB
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are predominantly characterized by mountainous and semi-mountainous regions, whereas
the middle and lower reaches consist of plain areas [52]. The elevation in these regions
ranges from 0 to 3577 m (Figure 1). The HRB is in the subtropical monsoon climate zone,
with obvious continental monsoon climate characteristics. The average annual temperature
is between 15 and 17 ◦C, the average annual evaporation is 800~1300 mm, and the average
annual precipitation is 700~1800 mm [53]. The precipitation occurring from May to October
constitutes 70% to 80% of the total annual rainfall. Hence, approximately 75% of the annual
runoff is generated by the precipitation during this period [49,52,54]. Precipitation in the
HRB is mostly characterized by high intensity, short duration and a concentrated area.
In addition, the slope of the upper HRB is large. The result is that the HRB is highly
susceptible to floods with fast convergence rates, concentrated flood volumes and large
flood peaks, causing severe flood disasters.
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2.2. Data Acquisition
2.2.1. Hydrological Modeling Data

The data required for hydrological modeling in this study can be divided into spatial
attribute data and hydrological data, as listed in Table 1. The DEM with a spatial resolution
of 30 m × 30 m was obtained from the ASTER GDEM V3 elevation data shared by NASA
on the Earthdata network. The land use data of the HRB for 2010 and 2020 were derived
from GlobeLand30, which is extensively utilized in hydrological simulation and land
use prediction [55,56]. The 2020 land use data were used for the construction of DWM
in the HRB, and the two periods of 2010 and 2020 were used for the following land
use simulation. The Harmonized World Soil Database 1.1 (HWSD), developed by the
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Food and Agriculture Organization of the United Nations (FAO), was used to create soil
parameters. Leaf area index (LAI) is a crucial parameter affecting the canopy interception
and evapotranspiration processes in a watershed, and is one of the essential data types
for DWM runoff calculation. For reflecting the spatial heterogeneity of LAI parameters
and improving the accuracy of DWM hydrological simulation, GLASS-LAI datasets with a
spatial resolution of 0.05◦ × 0.05◦ and a duration of 1995–2018 was used in this study [57].
The dataset has a high quality compared with others [58]. Since the time resolution of the
GLASS-LAI dataset is 8 days, Python scripts were used to synthesize it to the monthly
scale, and the difference between common year and leap year should be paid attention in
the processing process. The observational precipitation data from the CN05.1 dataset for
the period of 1970–2018 were utilized to conduct hydrological simulations and assess the
precipitation outputs of GCMs. The CN05.1 dataset, obtained from [59], is a gridded daily
observed dataset developed using the ANUSPLIN method in conjunction with the angular
distance weighting technique. This dataset provides a spatial resolution of 0.25◦ × 0.25◦,
and it is based on observational data collected from 2416 national meteorological stations.
Numerous studies have shown that the CN05.1 dataset features data relatively close to
those obtained from meteorological stations, and have demonstrated its reliability [60,61].
A monthly potential evapotranspiration dataset (1990–2021) with a resolution 1 km × 1 km
from the National Tibetan Plateau Data Center, China, was used in this study. The observed
daily streamflow data of Hanzhon, Ankang, Shiquan and Baihe hydrological stations
during the period of 2015–2018 were collected from the Hydrological Statistical Yearbook
of the People’s Republic of China for DWM parameters’ calibration and model validation.

Table 1. List of hydrological modeling data.

Type Resolution Time Resource

Spatial attribute
data

DEM 30 m × 30 m -- www.earthdata.nasa.gov,
accessed on 5 March 2024

Land use 30 m × 30 m 2010, 2020 https://www.webmap.cn,
accessed on 5 September 2024

Soil 1 km × 1 km -- www.fao.org/soils-portal/so,
accessed on 5 March 2024

LAI 0.05◦ × 0.05◦ 1995–2018 www.glass.umd.edu/LAI,
accessed on 5 March 2024

Hydrological data

Observed daily
precipitation 0.25◦ × 0.25◦ 1970–2018 CN05.1 dataset

Monthly potential
evapotranspiration 1 km × 1 km 1995–2018 https://data.tpdc.ac.cn,

accessed on 5 March 2024

Observed daily streamflow -- 2015–2018
Hydrological Statistical

Yearbook of the People’s
Republic of China

2.2.2. GCMs Outputs

Due to the data availability at the beginning of our previous study [52,62], daily
precipitation outputs of six GCMs from CMIP6 during historical (1970–2014) and future
(2015–2100) periods under three SSP-RCP scenarios, namely, SSP1-2.6, SSP2-4.5 and SSP5-
8.5, were selected for projecting future precipitation patterns in this study. The precipitation
outputs of CMIP6 GCMs can be obtained from https://esgf-node.llnl.gov/search/cmip6/,
accessed on 5 July 2023. The basic information about the six CMIP6 GCMs is listed
in Table S1, and the details can be found at https://esgf-node.llnl.gov/projects/input4
mips/, accessed on 5 July 2023. The horizontal resolution of the GCMs ranges from
1.125◦ to 3.75◦ (Table S1). To ensure consistency, the precipitation output data from all
GCMs were resampled to a uniform grid of 0.25◦ × 0.25◦ using bilinear interpolation in
accordance with many other CMIP studies [63,64], aligning them with the observed CN05.1

www.earthdata.nasa.gov
https://www.webmap.cn
www.fao.org/soils-portal/so
www.glass.umd.edu/LAI
https://data.tpdc.ac.cn
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/projects/input4mips/
https://esgf-node.llnl.gov/projects/input4mips/
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resolution. It is widely recognized that the bilinear interpolation method represents the
most efficient technique for resampling a grid dataset [65,66]. However, in the absence of a
standardized spatial resolution, assessing the precipitation simulation capabilities of GCMs
and projecting future precipitation using multi-model ensembles would be unfeasible.

2.2.3. Driving Factors of Land Use

Land use change is a complex, non-linear process that is influenced by a variety of
driving factors, which can be categorized into environmental factors and socio-economic
factors. Based on the actual situation in the study area, six natural environmental factors and
nine socio-economic factors were selected, with reference to relevant literature [28,67] and
the principles of comprehensiveness, accessibility and quantifiability. Detailed information
and the data sources of driving factors are listed in Table 2. Each driving factor is processed
uniformly as a 30 m × 30 m raster file in ArcGIS 10.8 under the same coordinate system,
using historical land use data as the baseline. The distances to railways, railway stations,
roads, and river were computed using the Euclidean distance tool in ArcGIS.

Table 2. List of the selected driving factors.

Type Data Resolution/Unit Resource

Natural environmental factors

DEM 30 m × 30 m www.earthdata.nasa.gov, accessed on
5 March 2024Slope 30 m × 30 m

Average annual precipitation 1 km × 1 km/mm www.resdc.cn, accessed on
10 May 2024Average annual temperature 1 km × 1 km/◦C

Soil 1 km × 1 km www.fao.org/soils-portal/so,
accessed on 5 March 2024

River m Extracted from Globle 30 land
use data

Socio-economic factors

Railway m

OpenStreetMap
www.openstreetmap.org, accessed on

10 May 2024

Railway station m
Primary road m

Secondary road m
Tertiary road m
Trunk road m

GDP 1 km × 1 km
www.resdc.cn, accessed on

10 May 2024POP 1 km × 1 km
Night lights 1 km × 1 km

2.3. Methods

This section presents a comprehensive framework of quantifying future flood disaster
risks under SSP-RCP scenarios that combines a GCMs statistical downscaling method based
on EQM and multiple machine learning algorithms for projecting future precipitation,
a PLUS model for simulating the land use distribution maps, a DWM for simulating
hydrological processes, and the method for assessing the flood disaster risks. EPIs were
used to define future extreme precipitation events based on the projection results of the
future precipitation. Using the projections of future precipitation and land use, the future
runoff process is obtained through DWM. Based on the future extreme precipitation, land
use, and runoff, the future flood disaster risk is explored using the index system method for
assessing flood disaster risk. The comprehensive framework of the methodology developed
in this study is illustrated in Figure 2. It is important to note that the anticipated future
changes in runoff and flood risk are evaluated against historical data covering a period
of 20 years, specifically from 1995 to 2014, in this study. The chosen baseline period
of 1995–2014 is in alignment with the IPCC AR6 report. Under the SSP-RCP scenarios,
the future time periods of 2023–2042 and 2043–2062 in this study were defined as “near-

www.earthdata.nasa.gov
www.resdc.cn
www.fao.org/soils-portal/so
www.openstreetmap.org
www.resdc.cn
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term” and “mid-term”, respectively. Considering the national policies control on land use
expansion, the observed land use data in 2020 and the predicted land use data in 2040 are
taken as the future land use scenarios during the near-term and mid-term, respectively.
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2.3.1. Statistical Downscaling Method for GCMs Precipitation

The statistical downscaling method used in this study integrates a bilinear spatial
interpolation method, an EQM bias correction method, and a multi-model ensemble method
based on fusion of multiple machine learning algorithms. This statistical downscaling
method was proposed in our previous study, and has been proven to be applicable using
the Taylor diagram and Taylor skill score [52]. The methodological framework can be
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divided into three main steps: (1) precipitation outputs from each GCM are bias-corrected
based on EQM method to reduce the systematic bias of the GCMs; (2) the Random Forest,
K-Nearest Neighbors, Extra Tree and Gradient Boosting Decision Tree are fused to perform
multi-model ensembles of GCMs bias-corrected results to further reduce the simulation
bias and the uncertainty of individual GCM simulations; (3) finally, the downscaled results
are evaluated and future precipitation changes in the watershed are projected. Details
about above method can be found in [52]. Additionally, the future precipitation under
SSP1-2.6, SSP2-4.5 and SSP5-8.5 in the HRB has been projected based on the GCMs outputs
using the above statistical downscaling method in our previous study [52]. In this study,
future extreme precipitation changes in the HRB will be analyzed with emphasis on the
future precipitation projection data.

2.3.2. Selection of the Extreme Precipitation Indices

Based on the environmental conditions of the HRB, six standard EPIs with high impact
on flood risk were selected in this study, namely, Rx1day, Rx5day, PRCPTOT, SDII, R20,
and CWD, to quantify the precipitation extremes in HRB over 1995–2100. The detailed
information is listed in Table 3 [8,68]. The six selected EPIs can be categorized into three
types, i.e., intensity index, duration index, and frequency index. The EPIs were calculated
based on the R Programming Language. The Mann–Kendall method and the Theil–Sen
Median method were used to calculate the inter-annual change trends and to determine
the significance of each index.

Table 3. List of the selected EPIs.

Type Index Definition Unit

Intensity index

RX1day Maximum daily precipitation mm

RX5day Maximum consecutive
5-day precipitation mm

PRCPTOT Total precipitation during wet days mm
SDII Average precipitation during wet days mm/day

Frequency index R20mm Number of days with precipitation
equal to or exceeding 20 mm day

Duration index CWD
Maximum number of consecutive

days with precipitation measuring at
least 1 mm

day

2.3.3. Future Land Use Projection by PLUS Model

The PLUS model was selected to project the future land use maps in the HRB. The main
steps of PLUS modeling are as follows (Figure 2): (1) Each land use change area is extracted
based on the two periods of observed land use data. Then, the Random Forest model driven
by the natural environment and socio-economic driving factors is used to excavate the
impacts of various factors on land use change, and to generate the potential development
probability for each type of land use. (2) The Markov Chain model is utilized to forecast
land use development demand. Combining with the potential development probability,
a CA model that utilizes multiple types of stochastic patch seeds is employed to forecast
future spatial distributions of land use. The details can be found in [9,28]. Compared with
other models, it can be better applied to large-scale regions and the simulation results are
more accurate [28,29].

In this study, we initially validated the accuracy of the PLUS model and subsequently
predicted the land use map in 2040. The entire process can be categorized into the following
steps: (1) The prediction of land use in 2020 was conducted using the observational land use
maps in 2010 and 2020, and then the model’s accuracy was assessed through a comparison
with the observed land use in 2020. (2) The land use development demand over the HRB
in 2040 was calculated using the Markov Chain. In this step, the conversion probabilities
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of forest land, grass land and water to urban land were reduced by 20% based on a series
of programs and policies for ecological conservation. (3) The land use map over the HRB
in 2040 was projected by using the PLUS model based on the 2020 land use data, the
development probability and the development demand.

The Kappa indices were selected to assess the accuracy of land use simulation results
produced by the PLUS model. The value of Kappa indices spans from 0 to 1. A value closer
to 1 indicates a higher level of simulation accuracy. In general, when the Kappa indices are
greater than or equal to 0.75, it indicates a strong correlation between the simulated map
and the observed map [69]. The comprehensive details of the Kappa indices can be found
in [70].

2.3.4. Hydrological Simulation by DWM

The DWM was developed by Tsinghua University in China, and is a distributed
hydrological model mainly composed of hillside hydrological simulation and river network
routing [71–73]. This model uses high-resolution digital drainage networks extracted from
DEM data and encoded using the binary tree coding method to simulate hydrological
processes. Furthermore, parameter extraction technology utilizing remote sensing imagery,
along with dynamic parallelism techniques based on sub-basin decomposition, have been
developed to efficiently extract distributed parameters of the sub-basins and expedite the
hydrological simulation process.

The DWM employs the hillslope-channel as a fundamental hydrological response
unit, regarding the distinct hydrological response mechanisms in both hillslopes and
channels [39]. The runoff generation process of the DWM is carried out on an individual
hillslope, including sub-processes such as vegetation retention, evapotranspiration and
infiltration. The flow concentration of the DWM is the evolution of water flow to the outlet
of the basin step by step according to the sequence of the river network, and the simulation
time step can be as fine as 6 min. The detailed information about DWM will not be
repeated in this study. However, it is worth noting that the parameters in DWM are mainly
divided into two categories. One is the fixed parameters used to describe hydrogeological
information such as soil type, vegetation cover, and land use type. These parameters can
be obtained through the observed data or field experiments. The other is the sensitivity
parameters that need to be calibrated and validated using observed precipitation and runoff
data, such as saturated hydraulic conductivity, water content, Manning’s coefficient, etc.

The DWM was used in this study to simulate the hydrological processes in the upper
HRB. To ensure the model accurately reflects hydrological processes, it was calibrated
and validated during the historical period before being employed to simulate future
hydrological changes. Observed daily streamflow data during the period of 2015–2018
from four hydrological stations (Hanzhong, Ankang, Shiquan, and Baihe) in the upper
HRB were used for DWM parameters calibration. Hanzhong station, located at the source
of Hanjiang River, is less affected by human activities such as reservoir storage. Therefore,
this study utilizes the observed streamflow data from Hanzhong station during 2015–2016
to calibrate the parameters, focusing on the simulation effect of Hanzhong station. The
daily streamflow data during 2017–2018 from Hanzhong, Shiquan, Ankang and Baihe
stations were utilized to validate the reliability of DWM in the upper HRB. To evaluate the
performance of hydrological simulation using DWM, the coefficient of determination (R2),
the Nash–Sutcliffe coefficient of efficiency (NSE), and PBIAS were used in this study. The
equations are as follows:

R2 =


n
∑

i=1

(
Oi − O

)(
Si − S

)
(

n
∑

i=1

(
Oi − O

)2 n
∑

i=1

(
Si − S

)2
)0.5


2

(1)
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NSE = 1 −


n
∑

i=1
(Oi − Si)

2

n
∑

i=1

(
Oi − O

)2

 (2)

PBIAS =


n
∑

i=1
(Oi − Si)× 100

n
∑

i=1
(Oi)

 (3)

where Oi and Si refer to the observed and simulated daily runoff, respectively, and
O and S refer to the mean values of the observed and simulated daily runoff, respec-
tively. The evaluation standards are as follows: good (R2 > 0.8, NSE > 0.7), satisfactory
(0.5 < R2 ≤ 0.8, 0.4 < NSE ≤ 0.7) and unsatisfactory (R2 ≤ 0.5, NSE ≤ 0.4) [74]. In addition,
when PBIAS ≤ 25%, it indicates that the simulation results are acceptable.

2.3.5. Flood Disaster Risk Projection and Analysis Method

The flood disaster risk projection and its analysis method over the HRB used in this
study include the following: (1) Establishment of a flood disaster risk evaluation indicators
system that incorporates hazard, sensitivity, and vulnerability factors. (2) Determination of
each indicator weight utilizing the entropy weight method based on multi-source projection
dataset. (3) Visualization of the spatial dynamics of flood risk in the upper HRB during the
near-term (2023–2042) and mid-term (2043–2062) under SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios. The flood disaster risk in this study is a comprehensive function of the hazard,
sensitivity and vulnerability [75]. The flood disaster risk level was defined as high level,
medium–high level, medium level, and low level using the natural breakpoint method in
the ArcGIS. The equations are as follows:

H(x) =
i

∑
j=1

wi Hji(x) (4)

S(x) =
i

∑
j=1

wiSji(x) (5)

V(x) =
i

∑
j=1

wiVji(x) (6)

R(x) = H(x) × S(x) × V(x) (7)

where R(x), H(x), S(x), and V(x) are the comprehensive flood disaster risk, hazard risk, sensi-
tivity risk and vulnerability risk, respectively. Hji(x), Sji(x) and Vji(x) are the standardized
values of each indicator. wi is the weight assigned to each indicator using the entropy
weight method.

Starting from the formation mechanism of flood disaster, 13 flood risk assessment
indicators were selected in this study considering the natural–social factors and the avail-
ability of indicator data based on the reference of existing flood disaster risk assessment
studies [43,76]. The hazard factors included the Rx1day, Rx5day, PRCPTOT, SDII, R20
and CWD, which were calculated based on the precipitation data during the period of
1995–2062 (Figures S1–S4). The sensitivity factors included the runoff depth, elevation
(DEM) (Figure 1), slope (Figure S5c), and distance to river (DR) (Figure S5d). The runoff
depth was calculated by the ratio of the runoff results simulated by DWM and the area of
hillslope (left slope, right slope and source slope). The vulnerability factors included the
GDP, POP, and land use. The GDP and POP data were obtained from a gridded dataset
developed by Nanjing University of Information Engineering, China under different SSPs
scenarios (https://cstr.cn/31253.11.sciencedb.01683, accessed on 5 July 2023). The dataset
was produced after a long period of research and exploration supported by several interna-

https://cstr.cn/31253.11.sciencedb.01683
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tional and national projects, and includes global POP and GDP grid point projection for
2020–2100 under SSP1 to SSP5 scenarios at a resolution of 0.5◦ × 0.5◦ [77] (Figure S6). Each
factor was converted to a raster file and the resolution was resampled to 1 km × 1 km with
a total grid count of 95,200, depending on the size of the study area.

The entropy weight method was applied to assign the weights of each indicator in this
study. Before determining the weight values, it is necessary to normalize the raw data. In
this study, the min–max standardization method was used to normalize the source data
of each indicator. The standardized value is located between 0 and 1, with a value closer
to 1 indicating higher risk. Among the selected indicators, Rx1day, R95p, PRCPTOT, SDII,
R25, CWD, runoff depth, land use, GDP, and POP are positive indicators, and DEM, slope,
and DR are negative indicators. Due to the different degrees of disaster losses for different
land use types, cultivated land and urban land were set as high risk, wet land and water
were set as medium–high risk, grass land was set as medium level risk, and wood land and
bare land were set as low risk. The entropy weight method included the following: (1) A
judgment matrix with m × n evaluation indicators is constructed, shown in Equation
(8). (2) The weight pij of the ith indicator in the jth indicator is determined by Equation
(9). (3) The entropy value ej of the jth indicator is determined by Equation (10). (4) The
information entropy redundancy dj of the jth indicator is determined by Equation (11).
(5) Finally, the entropy weights wj of each indicator can be obtained by Equation (12).

X =
(
Zij

)
m×n (8)

pij =
Zij

∑n
i=1 Zij

(9)

ej = − 1
ln m

m

∑
i=1

pij ln pij (10)

dj = 1 − ej (11)

wj =
dj

∑n
j=1 dj

(12)

3. Results
3.1. Future Projection of Extreme Precipitation

The temporal evolutions of Rx1day, Rx5day, PRCPTOT, SDII, R20 and CWD in HRB
during the period of 2023–2100 under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios are
presented in Figure 3. The tables in Figure 3 show the Mann–Kendall test statistic Z and
Sen’s slope for each index, respectively. It is evident that the EPIs in HRB will show
fluctuating changes in the future compared with the historical period, indicating that the
extreme precipitation events will become unstable. The Rx1day, Rx5day, PRCPTOT, SDII,
and R20 under the SSP5-8.5 scenario are more destabilizing than the two scenarios. The
six EPIs in HRB over 2023–2100 under the three scenarios show a rising trend. Except
for no significant increase in Rx5day under SSP1-2.6 scenario, and CWD under SSP1-2.6
and SSP2-4.5 scenarios, the other extreme precipitation indicators in HRB over 2023–2100
under the three scenarios show a significant increase trend. It also can be found from the
Figure 3 that the increase in the magnitude of the six EPIs in HRB from 2023 to 2100 is
most pronounced under the SSP5-8.5 scenario, followed by the SSP2-4.5 scenario, while
the smallest increase is seen under the SSP1-2.6 scenario. Except for the CWD, the increase
trends of all other EPIs for SSP5-8.5 are more than those for SSP2-4.5 and SSP1-2.6, especially
during the period of 2070–2100. The increases in Rx1day, Rx5day, PRCPTOT, SDII, R20
and CWD under the SSP5-8.5 scenario are 4.6 mm/10 a, 7.2 mm/10 a, 61.6 mm/10 a,
0.3 mm/day/10 a, 1 day/10 a and 0.2 day/10 a, respectively.
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Mann–Kendall test statistic Z and Sen’s slope.

The spatial distributions of the six EPIs in HRB during future (2023–2100) and historical
(1995–2014) periods under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios are illustrated
in Figure 4. It can be found that spatial patterns of the six EPIs in future under the three
SSP-RCP scenarios are consistent with historical distributions. The high values of Rx1day,
Rx5day, SDII and R20mm during periods of 1995–2014 and 2023–2100 are concentrated in
the southeast and west of the basin, which are areas with high urbanization. The values
of PRCPTOT in the southeastern and southwestern regions of the basin are higher than
in other areas. As to CWD, the southwest of the study region has a higher value than
other areas. Figure 4 also illustrates Box–Whisker plots of the EPIs during 2023–2100 and
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1995–2014. The Boxes illustrate the range encompassed by the 25th and 75th quantiles,
while the Whiskers indicate the span between the minimum and maximum values. The
mean values of Rx1day, Rx5day, PRCPTOT, and SDII projected for the future under the
three SSP-RCP scenarios are significantly higher than in historical times. The values of these
four EPIs are the highest under the SSP5-8.5 scenario, which were 101.36 mm, 170.82 mm,
1262.53 mm, and 10.95 mm/day, respectively. The mean of R20mm is the highest over
16 days in a future period of 2023–2100 under the SSP5-8.5 scenario, followed by the
historical period from 1995 to 2014, and is lowest in a future period under the SSP1-2.6 and
SSP2-4.5 scenarios. As to CWD, the mean value in the future is highest at 12.13 days under
the SSP2-4.5 scenario.
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3.2. Future Projection of Land Use

Based on land use maps in 2010 (Figure 5a) and 2020 (Figure 5b), the land use distribu-
tion in 2040 (Figure 5d) under the combined influence of the above 15 driving factors and
the series of policies for ecological conservation are simulated. By setting the parameters of
the PLUS model, the land use pattern in 2020 (Figure 5c) was simulated and the observed
land use data in 2020 were compared with the simulation results. The Kappa coefficient is
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0.796, indicating a higher level of prediction accuracy. The simulation of a land use map in
2040 (Figure 5d) is reliable. It can be seen that the wood land, grass land and other areas be-
ing occupied by urban land are reduced in the 2040 simulated land use map, and the rapid
expansion of urbanization will be controlled under the ecological conservation scenario.
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Figure 6a shows the contribution of each driving factor to the expansion of different
land use types. It is observable that the principal driving factors influencing the expan-
sion of cultivated land are the distance to water, DEM, and average annual precipitation.
Among these, the distance to water has the most significant impact on the expansion of
cultivated land, as the survival of crops is highly dependent on the water supply. The
expansion of wood land is primarily influenced by DEM, distance to water, POP and slope,
with DEM exerting the most significant impact on the expansion. In addition, DEM also
constitutes the most influential driving factor for grass land expansion, followed by average
annual precipitation and distance to water. Regarding urban land, its expansion is closely
associated with night lights, and is also influenced by DEM and distance to water, followed
by distances to roads at all levels and GDP. Night lights data can reflect the degree of
population aggregation. It can be seen that population aggregation plays a leading role
in urban expansion. Figure 6b presents the variation of land use types during the period
from 2020 to 2040. Between 2020 and 2040, 0.77% of cultivated land, 0.83% of wood land,
and 0.22% of grass land convert to urban land under the ecological environment protection
scenario, while 1.06% of grass land converts to wood land.
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3.3. Future Projection of Runoff
3.3.1. Calibration and Validation of DWM

Based on the observed daily streamflow data from Hanzhong, Ankang, Shiquan, and
Baihe stations in the upper HRB, the DWM was calibrated and validated. The calibrated
values of sensitivity parameters in DWM are shown in Table 4. The runoff simulation
capacity of DWM during the calibration and validation periods was quantitatively assessed
through the utilization of R2, NSE, and PBIAS, whose calculation results are presented in
Table 5. It can be seen that both R2 and NSE of Hanzhong Station exceeded 0.7 during
the calibration period, and PBIAS amounted to 22.34%, which is less than 25%. Although
the PBIAS of Hanzhong Station during the calibration period was marginally larger, it
remained within an acceptable range, suggesting that the calibrated uncertain parameters
can better mirror the actual situation in the upper reaches of the HRB. The application of
this set of parameters for runoff simulation yields a favorable effect. The R2 and NSE of all
stations during the validation period exceeded 0.6, and the absolute values of PBIAS were
less than 15%. Among these, the NSE of Hanzhong Station reached as high as 0.81, and
the R2 reached as high as 0.83 during the validation period. However, the NSE values of
Ankang and Baihe were marginally lower, both at 0.64. This might be influenced by the
regulation and storage of large reservoirs in Shiquan and Ankang. The reservoir capacity of
Ankang Reservoir can reach 2.585 billion m3, exerting a significant influence on the runoff
of the downstream basin.

Figure 7 depicts the daily simulated and measured runoff process curves at each
station during the calibration and validation periods. It can be seen that the simulated and
measured daily discharge process curves at the four hydrological stations are in accordance
during the calibration and validation periods, indicating that DWM is capable of better
capturing the daily runoff variations of the hydrological stations in the basin. The simulated
trend of runoff is essentially consistent with the measured trend, and the simulation effect is
favorable. Additionally, DWM possesses a remarkable capacity to capture runoff during the
wet season, particularly with regard to the recurrence of peak values. It is worth noting that
the capacity of DWM to capture the actual runoff is moderately weak during the dry season
spanning from December to March of the subsequent year, particularly at the Ankang and
Baihe stations. This is primarily attributed to the regulation and storage functions of large
reservoirs such as Shiquan and Ankang in the upper reaches.
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Based on the validated DWM, the downscaling results of precipitation data from
2023 to 2062 under the three SSP-RCP scenarios, the observed land use data in 2020 and
the simulated land use data in 2040 were employed to drive DWM. The daily runoff
processes under the three SSP-RCP scenarios over the upper HRB during the future near-
term (2023–2042) and mid-term (2043–2062) were simulated. The measured data of land
use in 2020 were employed in the near-term, and the simulated data of land use in 2040
were utilized in the mid-term.
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Table 4. List of the DWM sensitivity parameters.

ID Name Range Initial Value Calibrated Value

1 Kzus 10−4~10−1 4.5 × 10−4 8.5 × 10−4

2 Ku-ds 10−3~10−1 2 × 10−4 1.3 × 10−4

3 Khu 10−8~10−1 9.8 × 10−8 9.9 × 10−3

4 Khd 10−8~10−1 6 × 10−8 6 × 10−4

5 θu,1 0.1~0.5 0.2 0.42
6 θu,2 0.15~0.6 0.3 0.58
7 θd,1 0.1~0.5 0.2 0.475
8 θd,2 0.15~0.6 0.3 0.325
9 n -- 0.1 0.029

Table 5. Performance assessment of DWM simulation results.

Indices
Calibration
(2015–2016) Validation (2017–2018)

Hanzhong Hanzhong Shiquan Ankang Baihe

R2 0.75 0.83 0.72 0.72 0.68
NSE 0.73 0.81 0.70 0.64 0.64

PBIAS/% 22.34 −14.03 5.05 9.16 1.46

3.3.2. Trend Analysis of Future Runoff Variation

Figure 8 presents the variations of precipitation and runoff in the upper HRB during the
near-term (2023–2042) and mid-term (2043–2062) under the SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios in comparison with the baseline period (1995–2014). The table in Figure 8 shows
the Mann–Kendall test statistic Z and Sen’s slope of runoff change from 2023 to 2062 under
the three scenarios. It can be found that the annual runoff changes during 2023–2062 under
the three scenarios show an insignificant increasing trend over time. The increase rates
of annual runoff under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios are 0.43%/a, 0.36%/a,
and 0.49%/a, respectively. Based on the temporal evolution processes of precipitation and
runoff in the upper HRB, a strong response relationship exists between them. Under the
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the ranges of annual precipitation variations
in the upper reaches of the HRB from 2023 to 2062 are −22.60% to 39.67%, −32.04% to
43.68%, and −19.98% to 61.87%, respectively, and the ranges of annual runoff alterations
are −57.40% to 37.02%, −62.81% to 35.33%, and −48.28% to 68.05%, respectively. In
comparison to the baseline period, the annual average runoff in the upper HRB during the
near-term under the three SSP-RCP scenarios decreased by −19.64%, −19.33%, and −6.63%,
respectively. Moreover, the annual average runoff in the mid-term under the SSP1-2.6 and
SSP2-4.5 scenarios also showed decreases, with magnitudes of −9.33% and −10.48%,
respectively. However, under the SSP5-8.5 scenario (extremely high emission), the annual
average runoff in the mid-term demonstrates an increase of 15.66%. Overall, the annual
average runoff of the upper HRB in the near-term and mid-term will decline compared
with the baseline period. However, the trend in runoff from 2023 to 2062 will show a
non-significant increasing trend, and its variation will be consistent with precipitation.
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3.3.3. Spatial Distribution of Future Runoff Variation

Figure 9 presents the spatial patterns of the average annual runoff depth during the
baseline period (1995–2014), near-term (2023–2042) and mid-term (2043–2062) under three
SSP-RCP scenarios. It can be found that the spatial patterns of average annual runoff
depth in the upper HRB during the near-term and mid-term under the three SSP-RCP
scenarios are consistent with the baseline period. The spatial patterns of average annual
runoff depth in each period show a gradient decreasing trend from southwest to northeast.
In the baseline period, the annual runoff depth in the upper HRB ranges from 218.92 to
706.68 mm, and the average annual runoff depth is 377.66 mm. In the near-term, the annual
runoff depth in virtually all regions of the upper HRB will diminish in contrast to the
baseline period, except for a minor area under the SSP5-8.5 scenario. The variations of
the annual runoff depth during the near-term under the SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios relative to the baseline period are −29.06% to −10.60%, −35.28% to −13.33%, and
−16.44% to 4.86%, respectively. The area with the largest reduction in annual runoff depth
is primarily situated in the source region of the HRB. Furthermore, it can be discerned
that the decline in annual runoff depth in the near-term is most pronounced under the
SSP2-4.5 scenario, followed by the SSP1-2.6 scenario, and it is least significant under the
SSP5-8.5 scenario. The variations in annual runoff depth during the mid-term under the
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios relative to the baseline period are −19.86% to
9.90%, −22.49% to 5.98%, and −11.27% to 55.77%, respectively. The proportion of the area
where the annual runoff depth will increase in the mid-term is highest under the SSP5-8.5
scenario, followed by the SSP1-2.6 scenario, and lowest under the SSP2-4.5 scenario. By
comparing variations of the annual runoff depth during the near-term and nid-term under
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the same precipitation scenario, it can be found that the area where runoff will decrease in
the near-term is greater than that in the mid-term. In other words, the runoff in the upper
HRB will recover during the mid-term, especially under the SSP5-8.5 scenario.
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baseline period (1995–2014), near-term (2023–2042) and mid-term (2043–2062) under the three
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3.4. Future Projection of Flood Risk
3.4.1. Hazard Indicators

Figure 10 presents the spatial maps of hazard indicators in the upper HRB during
the baseline period (1995–2014), near-term (2023–2042) and mid-term (2043–2062) under
the three SSP-RCP scenarios. The maps illustrate the areas that are likely to experience
flood events with greater frequency. It can be seen that the spatial distributions of flood
hazards across different periods and under different scenarios exhibit a consistent pattern.
The high-risk areas are predominantly concentrated in the southwestern area of the basin,
while the risk in the northern area is low. The flood hazard risks exhibit a tendency of
gradually decreasing from the high-risk center to the surrounding regions. Figure 10 also
shows the area percentage of different risk zones under different scenarios during different
periods. It can be seen that the proportion of high-risk and medium–high-risk areas in
the future period will be higher than that in the baseline period, indicating that the flood
hazard of the upper HRB will further increase during the future near-term and mid-term.
In the future near-term, the area percentage of high-risk areas will be the largest under
the SSP5-8.5 scenario (21.98%), followed by the SSP1-2.6 scenario (20.20%), while it will be
smallest under the SSP2-4.5 scenario (18.17%). In the future mid-term, the area percentage
of high-risk areas will be the largest under the SSP5-8.5 scenario (23.46%), followed by
the SSP2-4.5 scenario (22.82%), and it will be the smallest under SSP1-2.6 (19.04%). Under
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the SSP2-4.5 and SSP5-8.5 scenarios, the proportion of high-risk areas will further increase
during the future mid-term compared with that during the near-term.
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3.4.2. Sensitivity Indicators

Figure 11 shows the maps of the sensitivity of the environment to flooding in the
upper HRB during the baseline period (1995–2014), the near-term (2023–2042) and the
mid-term (2043–2062) under the three SSP-RCP scenarios. It can be seen that the spatial
patterns of environmental sensitivity exhibit consistency across different periods and
under different scenarios. The areas of high sensitivity are predominantly located in the
southwestern region of the basin, whereas the northern regions have lower sensitivity
to flooding, which is similar to the spatial distributions of flood hazard. Figure 11 also
shows the area percentages of different sensitivity zones across different periods and
under different scenarios. The area percentages of high-, medium–high-, medium-, and
low-sensitivity areas during the baseline period are 21.16%, 28.39%, 29.19%, and 21.02%,
respectively. In the future near-term, the area percentage of high-sensitivity areas will be
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the largest under the SSP1-2.6 scenario (22.47%), followed by the SSP5-8.5 scenario (21.57%),
and will be the smallest under the SSP2-4.5 scenario (20.61%). In the future mid-term, the
area percentage of high-sensitivity areas will be the largest under the SSP5-8.5 scenario
(24.17%), followed by the SSP1-2.6 scenario (22.49%), and will be the smallest under the
SSP2-4.5 scenario (20.32%). Under the SSP5-8.5 and SSP1-2.6 scenarios, the proportion of
high-sensitivity areas will further increase during the future mid-term compared with that
during the near-term. The high-sensitivity areas under the SSP2-4.5 scenario during the
future near-term and mid-term will be lower than those during the baseline period.
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3.4.3. Vulnerability Indicators

Figure 12 shows maps of the flood vulnerability in the upper HRB during the baseline
period (1995–2014), the near-term (2023–2042) and the mid-term (2043–2062) under the
three SSP-RCP scenarios. Overall, the regions characterized by high and medium–high
vulnerability are predominantly located in the eastern and western regions of the basin,
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where population density is concentrated. Figure 12 also shows the area percentages of
different vulnerability zones under different scenarios during different periods. Relative to
the baseline period, the proportions of high- and medium-vulnerability areas are projected
to experience a significant increase in future periods, while the proportions of medium–
high and low-vulnerability areas will decrease in future periods. Comparing different
periods, the proportions of high-, medium–high, and medium-vulnerability areas in the
near-term will be greater than in the mid-term under the same SSP-RCP scenario. In
terms of different scenarios, the area percentages of high-, medium–high-, and medium-
vulnerability areas during the same period under the SSP5-8.5 scenario will account for the
largest proportion, followed by the SSP1-2.6 scenario, and the smallest will be seen under
SSP2-4.5 the scenario. This is primarily due to the fact that SSP1 and SSP5 represent more
optimistic socio-economic development scenarios, whereas SSP2 serves as a middle-ground
pathway. The proportions of medium-, medium–high-, and high-vulnerability areas during
the future near-term under the SSP5-8.5 scenario are projected to account for the largest
proportions, at 35.58%, 18.59%, and 5.75%, respectively.
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3.4.4. Projection of Future Flood Risk

Figure 13 shows the maps of flood risk in the upper HRB during the baseline period
(1995–2014), near-term (2023–2042) and mid-term (2043–2062) under the three SSP-RCP
scenarios, which were obtained by integrating hazard, sensitivity, and vulnerability indi-
cators using the entropy weight method and GIS environment. Overall, high-flood-risk
zones in different scenarios and periods are predominantly situated in the southwest-
ern region of the basin, while a secondary high-risk center is projected to develop near
the Danjiangkou Reservoir in the eastern part of the basin during future near-term and
mid-term. As Figure 13 shows, the risk level progressively diminishes from high-risk
areas to their surrounding regions. Figure 13 also shows the area percentages of different
flood risk zones under different scenarios during different periods. It is evident that the
proportions of high-risk and medium–high-risk areas in the upper HRB are projected to
increase significantly during the future periods relative to that during the baseline period.
The proportion of high-flood-risk areas under the SSP5-8.5 scenario will be largest during
future mid-term, at 24.02%. Comparing different periods, the proportion of high-risk areas
under the same SSP-RCP scenario in the future mid-term is projected to surpass that in the
future near-term. Comparing different scenarios, the proportion of high risk areas will be
the highest under the SSP5-8.5 scenario, followed by the SSP1-2.6 scenario, and lowest in
the SSP2-4.5 scenario.
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4. Discussion

The HRB, situated in the transitional zone between the northern and southern climates
of China, is one of the areas that are most vulnerable to flooding disasters [48]. Forecasting
precipitation, particularly extreme precipitation events, plays a crucial role in mitigating
flood risks associated with such weather phenomena [47]. Therefore, this study used a
statistical downscaling method combing EQM and four machine learning algorithms to bias-
correct the GCM precipitation outputs, and applied six EPIs to define future precipitation
extreme events in the HRB during the period of 2023–2100 under three SSP-RCP scenarios.
The findings indicate that extreme precipitation is projected to exhibit increased instability
in the future when compared to historical periods, and will show an increasing trend
during 2023–2100 under the three scenarios, which is in agreement with the previous
climate projection studies based on the CMIP5 under RCP2.6, RCP 4.5 and RCP 8.5 [78].
Regarding the spatial patterns of precipitation extremes, the high values of six EPIs during
the periods of 1995–2014 and 2023–2100 are concentrated in the southeast and southwest of
the HRB, which is also in line with other studies [49,54,78]. It is notable that the prediction
of the spatio-temporal pattern of future extreme precipitation events is inseparable from the
accuracy of future precipitation projection. However, the projection of future precipitation
is influenced by various factors and has strong uncertainty, especially at the regional
scale [65]. In general, the main sources of uncertainty in future precipitation projection
include the uncertainty of GCMs selection, the uncertainty of natural variability inherent
in the climate system, and the uncertainty of emission scenarios [79]. Therefore, more
climate simulation models and superior downscaling methods need to be developed in
future research.

Based on future precipitation and land use projections, the spatio-temporal evolution
of runoff in the upper HRB was projected using DWM in this study. The results show that
variability in runoff is strongly associated with variability in precipitation. Typically, a
rising trend in precipitation results in a corresponding rise in runoff. However, the average
annual runoff in the upper HRB reveals a decrease in the future, with the exception of that
under the SSP5-8.5 scenario during the future mid-term, which is in line with the previous
study [50]. The main reasons for the decrease in runoff in the upper HRB are the increasing
temperature, the construction of water transfer projects, the operation of reservoirs and
the influence of other human activities [50,80]. However, the forecast of future runoff is
often uncertain due to the influence of various factors, such as uncertainties in hydrological
models, uncertainties in climate scenarios, and uncertainties in land use predictions [81,82].

Utilizing projections of future precipitation and runoff, along with a grid dataset
of GDP and POP under the SSP scenarios, a flood disaster assessment index system was
established, and the entropy method was used to assess the hazard, sensitivity, vulnerability,
and the comprehensive risk of flood disasters in the upper HRB during the future near-
term (2023–2042) and the mid-term (2043–2062). The results show that the high-risk and
medium–high-risk areas will expand further in the near-term (2023–2042) and mid-term
(2043–2062), with more areas facing a higher flood risk. In the future, regions identified
as high-risk will be situated in the southwestern and eastern areas of the upper HRB
(Figure 13). Combining the spatial distribution of risk indicators (Figures S1–S6), these
locations are characterized by flat terrain, proximity to rivers, high population density,
concentrated property holdings and advanced economic development levels, and are also
the center of high-frequency heavy rainfall. Furthermore, the land use types in these areas
are mainly urban land and cultivated land. Under the combined effects of multiple factors,
these areas exhibit a high level of hazard, sensitivity, and vulnerability, which can easily
cause serious flood disasters losses. The northern region of the upper HRB presents the
lowest flood risk, due to being far away from rivers and at a higher elevation. Moreover,
the land types in these areas are mostly wood land, which is not in line with the needs
of social-economic development and human life, presenting a sparse population and low
social activity intensity. Therefore, these areas are not prone to causing serious flood losses.
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There are some limitations in this study. In this study, extreme precipitation and land
use in the HRB were projected. In terms of the projection and assessment of runoff and
flood disaster risk, the focus was on the upper HRB. The middle and lower reaches of the
watershed may be more susceptible to flood disaster. The runoff and flood disaster risk
are not only affected by climate change, but also by human activities. The middle and
lower reaches of the HRB are human settlement areas, which belong to regions with intense
human activities. Large-scale water diversion projects, multi-level reservoir regulation, land
use change, water withdrawal activities, water resources utilization, disaster prevention
and mitigation measures and other human activities will have an impact on the projection
of runoff and flood disaster risks. Due to the availability of these data, this study focuses
on analyzing the runoff and flood disaster risk in the upper HRB. In the future, relevant
information will be collected to conduct research on the projection of runoff and flood
disaster risk in the middle and lower reaches of the HRB. In addition, projecting seasonal
cycles of future extreme precipitation will help to more clearly examine the flood disaster
risk. The periodic characteristics of extreme precipitation at the monthly and seasonal scales
will be further explored, and the spatio-temporal response relationship between interannual
fluctuations in extreme precipitation and flood disaster risk will also be discussed in a
future study. Furthermore, it is essential to explore the physical mechanisms of future
increases in flood disaster risk caused by extreme precipitation, which is important for
decision makers to mitigate future flood disaster risk.

5. Conclusions

In this study, we explored the future spatio-temporal patterns of the extreme precipita-
tion, runoff, and flood risk in the HRB during future periods under SSP1-2.6, SSP2-4.5, and
SSP5-8.5 scenarios. The principal conclusions can be summarized as follows:

(1) The simulations of GCMs predict a consistent increase in intensity (Rx1day, Rx5day,
PRCPTOT, SDII), frequency (R20m), and duration (CWD) of precipitation extremes
over the HRB during the 21st century. The intensity and frequency of extreme pre-
cipitation events are projected to increase more significantly under higher-emission
scenarios. The increases in Rx1day, Rx5day, PRCPTOT, SDII, R20 and CWD under the
SSP5-8.5 scenario are 4.6 mm/10 a, 7.2 mm/10 a, 61.6 mm/10 a, 0.3 mm/day/10 a,
1 day/10 a and 0.2 day/10 a, respectively. The spatial distributions of precipitation
intensity, frequency, and duration in future (2023–2100) are consistent with those in
the baseline period (1995–2014). The mean values of precipitation intensity indices in
future are higher than those in the baseline period;

(2) The changes in annual runoff over the upper HRB during period of 2023–2062 under
three SSP-RCP scenarios will exhibit a nonsignificant upward trend over time in
comparison with the baseline period. In the future near-term (2023–2042), the average
annual runoff is projected to decline under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenar-
ios when compared to the baseline period, with amplitudes of −19.64%, −19.33%, and
−6.63%, respectively. In the future mid-term (2043–2062), the average annual runoff
will decrease under SSP1-2.6 and SSP2-4.5 scenarios, with amplitudes of −9.33% and
−10.48%, respectively, while under the SSP5-8.5 scenario, it will show an increase,
with an amplitude of 15.66%. The spatial patterns of average annual runoff depth in
the upper HRB show a gradient-based decreasing trend from southwest to northeast;

(3) The high-flood-risk center in the future near-term (2023–2042) and mid-term
(2043–2062) will be distributed in the southwestern region of the upper HRB, and a
second high-flood-risk center will be formed near the Danjiangkou Reservoir in the
eastern region of the basin. The proportions of high- and medium–high-flood-risk
areas are projected to increase significantly in the future relative to those seen during
the baseline period. The proportion of high-flood-risk areas in the future will be the
highest under the SSP5-8.5 scenario, followed by the SSP1-2.6 scenario, and the lowest
in the SSP2-4.5 scenario. The proportion of high-flood-risk areas under the SSP5-8.5
scenario will be the largest during the future mid-term, at 24.02%.
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bution of projected Rx1day, Rx5day in the upper HRB during near-term (2023–2042) and mid-term
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