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Abstract: SegContrast first paved the way for contrastive learning on outdoor point clouds. Its original
formulation targeted individual scans in applications like autonomous driving and object detection.
However, mobile mapping purposes such as digital twin cities and urban planning require large-scale
dense datasets to capture the full complexity and diversity present in outdoor environments. In
this paper, the SegContrast method is revisited and adapted to overcome its limitations associated
with mobile mapping datasets, namely the scarcity of contrastive pairs and memory constraints.
To overcome the scarcity of contrastive pairs, we propose the merging of heterogeneous datasets.
However, this merging is not a straightforward procedure due to the variety of size and number of
points in the point clouds of these datasets. Therefore, a data augmentation approach is designed to
create a vast number of segments while optimizing the size of the point cloud samples to the allocated
memory. This methodology, called CLOUDSPAM, guarantees the performance of the self-supervised
model for both small- and large-scale mobile mapping point clouds. Overall, the results demonstrate
the benefits of utilizing datasets with a wide range of densities and class diversity. CLOUDSPAM
matched the state of the art on the KITTI-360 dataset, with a 63.6% mIoU, and came in second place
on the Toronto-3D dataset. Finally, CLOUDSPAM achieved competitive results against its fully
supervised counterpart with only 10% of labeled data.

Keywords: self-supervised; contrastive learning; label-efficient learning; mobile mapping; LiDAR
point cloud

1. Introduction

In recent years, LiDAR technology has emerged as a valuable tool for capturing
detailed 3D environmental geometry [1–3]. However, labeling outdoor 3D LiDAR point
clouds is a time-consuming and labor-intensive process, which significantly limits their
practical utility in various applications, such as urban planning, smart cities, autonomous
driving, and environmental monitoring [4–6]. Consequently, the task of semantic labeling
for outdoor LiDAR point clouds holds great importance in the fields of computer vision and
3D data analysis. Previous advancements in this area have relied on supervised learning
techniques based on labeled datasets such as SemanticKITTI [7] and KITTI-360 [8]. These
datasets contain over 6 billion manually labeled points, providing valuable training data.
However, the manual labeling process not only hinders scalability but also introduces
inconsistencies in the labeled data, challenging the overall effectiveness of supervised
learning approaches [4].

To address these challenges, recent research has focused on developing self-supervised
learning methods that leverage unlabeled LiDAR point clouds for semantic segmentation [4].
Self-supervised learning is a machine learning technique that allows systems to learn data
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representations without explicit human supervision. To this end, a pretext task needs to be
designed to guide the networks to capture the inherent structure and relationships within
the data [4,9]. Among these self-supervised methods, contrastive learning has demon-
strated promising results in various downstream tasks, such as semantic segmentation,
classification, and object detection [9–16]. Their pretext task aims to pull together, in latent
space, representation of similar samples (positive pairs) while pushing them apart from
representations of different samples (negative pairs) [11].

While contrastive learning has shown potential for 3D LiDAR point clouds, most
existing works have primarily focused on indoor datasets [10,12,17]. Some studies have
attempted to apply contrastive learning to unlabeled outdoor point clouds, such as Seg-
Contrast [13]. These approaches were only designed for individual scans in the context
of autonomous driving and object detection [13,15]. The data structure of individual scan
datasets is fundamentally different from that of mobile mapping datasets. The former
contains multiple point clouds, spanning a few square kilometers, with an average point
density of 10 pts/m2, while the latter is composed of a few point clouds spanning more
than 100 square kilometers, with an average range of 200 pts/m2. As such, individual
scans fail to capture the full complexity and diversity present in outdoor environments
due to their limited density, range, and coverage. Class distribution and class diver-
sity are also wildly different and further emphasize the need for tailored approaches in
contrastive learning [7,8].

Two constraints arise from this disparity in the data structures of mobile mapping
point clouds. The first is the scarcity of contrastive pairs. With fewer point clouds, the
number of positive and negative pairs is reduced, hindering the richness brought by the
contrastive learning pre-training phase. The second concerns memory limitations, owing to
which point density is drastically increased compared to scan point clouds. Thus, fitting the
same number of points as the scan point clouds in memory means sampling smaller areas
and smaller contexts, resulting in weaker features describing the neighborhood. A naive
solution to this constraint could be downsampling. However, contrastive learning, as a
self-supervised method, relies on the capture of strong features from the scene to learn data
representations without labels. Downsampling is inadequate in this context, as it would
eliminate important details and local features, preventing the network from fully learning
the intricate aspects of the scene.

In summary, existing contrastive learning methods cannot be applied directly to
large-scale mobile mapping point clouds and need to be re-thought specifically for mobile
mapping applications.

In this paper, we present a solution to bridge the gap in contrastive learning for real-
world applications by addressing the challenges posed by mobile mapping datasets. To
overcome the above-mentioned constraints, we propose the merging of heterogeneous
datasets, specifically KITTI-360 [8], Toronto-3D [18], and Paris-Lille-3D [19]. This approach
enriches the pool of positive and negative pairs, improving the model’s versatility and
generalization during pre-training. However, directly merging these datasets is not straight-
forward is expected to worsen the second constraint. The point clouds from these datasets
vary significantly in size, and directly merging them would result in an excessively large
number of points, exceeding memory capacity. To address these issues, we developed a
novel data augmentation strategy that increases the number of point clouds, standardizes
their size to fulfill the memory constraints, and provides enough positive and negative
pairs for contrastive loss.

To assess the benefit of the proposed approach and strategy, we used it to adapt a
contrastive learning method. SegContrast was selected because it was the state of the
art at the time of this research. By applying this data augmentation approach, the Seg-
Contrast framework was successfully adapted to mobile mapping datasets, enhancing its
effectiveness for real-world applications. This methodology guarantees the performance of
self-supervised learning for small-scale datasets (with fewer than 100 million points, such
as the Toronto3D dataset). This learning strategy is named “CLOUDSPAM: Contrastive
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Learning On Unlabeled Data for Segmentation and Pre-training using Aggregated point
clouds and MoCo”, as depicted in Figure 1. CLOUDSPAM was evaluated against a classical
supervised approach and with different labeled data ratios and matched the state of the
art on the KITTI-360 dataset. In short, the key contributions of this work are outlined
as follows:

• We adapt a contrastive learning approach, namely SegContrast, to address the chal-
lenges of large-scale, mobile mapping with 3D LiDAR point cloud;

• We design a data augmentation approach for mobile mapping point clouds;
• We leverage merged heterogeneous mobile mapping datasets during the pre-training

phase of self-supervised learning to provide enough positive and negative pairs for
contrastive learning, thereby improving accuracy and generalizability.

A review of existing works related to contrastive learning applied to large-scale mobile
mapping LiDAR point clouds is provided below.

Figure 1. An overview of CLOUDSPAM. Leveraging the proposed data augmentation method,
heterogeneous mobile mapping point clouds are merged for pre-training with MoCo (Momentum
Contrast). During the pre-training phase, the “query partitions” represent the positive pairs processed
by the encoder, while the “memory Bank” contains the negative pairs input into the momentum en-
coder. Subsequently, fine-tuning is conducted separately for each dataset using the labeled partitions
generated by the proposed data augmentation method.

Literature Review

Recently, researchers have been exploring the performance of contrastive learning
for 3D LiDAR point clouds [4]. In a contrastive learning approach, the representation
learning procedure starts with the selection of positive and negative pairs. This selection
process involves augmenting the original data to create two different augmented versions.
These augmented versions are referred to as “query” and “key” datasets. For each data
point in the query dataset, the positive pair is defined as another data point that shares
the same semantic label. On the other hand, the negative pairs are selected by randomly
sampling data points from the key dataset that does not have the same semantic label as the
corresponding query data point [11]. By contrasting positive and negative pairs during the
training process, the model learns to map similar data points close together in the feature
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space while pushing them away from dissimilar data points [4]. This contrast helps the
model learn to distinguish data points with different semantic meanings.

PointContrast [12], a pioneering method, introduces PointInfoNCE loss, inspired by
InfoNCE loss [20], to learn effective representations from unlabeled point clouds. PointCon-
trast employs a strategy to select positive pairs for the query point within a certain radius in
the key point cloud. This encourages the model to learn representations that capture the lo-
cal geometry and semantic information of the point cloud. While PointContrast has shown
promising results for unsupervised pre-training of 3D point clouds, there are some limita-
tions associated with this method. One of them is its disregard for spatial contexts during
pre-training. This can be problematic for tasks that require an understanding of the spatial
relationships and dependencies between points, such as semantic segmentation. Moreover,
the method may face scalability challenges when applied to large-scale point clouds. As the
size of the point cloud increases, the number of negative samples also increases, making
contrastive loss more computationally expensive and memory-intensive [10].

To address such limitations, contrastive scene contrast [10] was proposed, offering a
novel approach to positive and negative pair selection inspired by ShapeContext [21–23].
This approach effectively utilizes both point-level correspondences and spatial contexts
within a scene. By dividing the space into different cells based on the relative distances
and angles between points, contrastive scene contexts enable contrastive learning to be
performed independently within each spatial cell. To incorporate spatial information,
negative samples are sampled within these spatial cells. The performance of this method is
highly influenced by the selection of hyperparameters, particularly the radius used to create
the spatial cells for the selection of negative pairs. The choice of the radius should be context-
dependent, taking into consideration the characteristics of the point cloud data. Contrastive
scene contrast [10] considers a relatively small radius based on the specific context of
indoor point clouds utilized in the experiments. However, applying contrastive learning
to mobile mapping LiDAR point clouds presents its own challenges. The diversity of
mobile mapping LiDAR point clouds in terms of point density poses difficulties in defining
meaningful negative and positive samples for contrastive loss. Additionally, a small radius
is insufficient to cover complex and large objects in outdoor point clouds, while increasing
the radius is impractical in terms of memory and time efficiency. Furthermore, uneven
density and incomplete coverage of outdoor LiDAR data, stemming from differences in
angles and distances of data collection, makes it challenging to develop a robust and
generalizable model [17].

Most existing research on self-supervised contrastive learning for semantic labeling
of 3D LiDAR point clouds has predominantly focused on indoor datasets [4,17]. How-
ever, the challenge of large-scale, outdoor 3D LiDAR point clouds has received limited
attention until recently. Pair selection poses a significant challenge in contrastive learning,
particularly in the context of outdoor point clouds. The inherent diversity and sparsity
of such point clouds in terms of density and class make it even more demanding to iden-
tify meaningful and true positive and negative pairs. While sphere-based methods like
those employed in [10,12] fall short in producing comprehensive object representations
due to the limited size of receptive fields and excessive focus on fine-grained features,
region-based approaches such as SegContrast prove more suitable for semantic segmen-
tation tasks in outdoor environments. SegContrast [13] stands out as a state-of-the-art
method utilizing self-supervised contrastive learning to acquire representations from 3D
LiDAR data. SegContrast introduces a unique approach for selecting positive and negative
pairs. It begins by extracting class-agnostic segments from the point cloud and utilizes
segment-wise contrastive loss on augmented pairs of these segments. This approach allows
SegContrast to exploit contextual information, resulting in superior performance compared
to other contrastive learning methods. Notably, SegContrast demonstrates remarkable
advantages, even when provided with limited labeled data, such as only 1% of the total
data. It generates robust and detailed feature representations and exhibits strong transfer-
ability across diverse datasets [17]. Nevertheless, its application to mobile mapping 3D
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LiDAR point clouds has not yet been explored. Hence, this paper specifically addresses this
particular challenge by investigating the adaptability of SegContrast to mobile mapping
LiDAR point clouds.

The rest of this paper is organized as follows. Section 2 presents the methodology and
the datasets used in the experiments. The results are presented in Section 3, and a thorough
analysis and discussion of the results are presented in Section 4.

2. Materials and Methods

In this section, the methodology employed in this study is described, starting with
revisiting of the pre-training methodology proposed in the SegContrast paper and outlining
its limits regarding its application to mobile mapping LiDAR point clouds. Subsequently,
the specific adaptations and approaches developed to overcome the challenges posed
by such datasets and enhance the performance of SegContrast within this application
are presented.

2.1. Revisiting SegContrast the Pre-Training Pipeline

SegContrast uses Momentum Contrast (MoCo) [11] as the pre-training pipeline. MoCo
offers a highly effective and scalable approach to unsupervised representation learning. By
contrasting positive and negative pairs and leveraging a large memory bank for negative
sampling, MoCo efficiently learns high-quality representations from large-scale unlabeled
datasets. Its robustness to data augmentation, memory-efficient training, and strong
transfer learning performance make it a versatile and powerful framework for pre-training,
facilitating effective generalization to downstream tasks without the need for labeled data,
thereby significantly reducing annotation costs and data dependencies in various computer
vision applications [4].

To employ MoCo to 3D point cloud learning, the SegContrast method implements
a pair selection strategy by extracting segments from unlabeled point clouds and uti-
lizing them as positive and negative pairs. The process begins with ground removal
using RANSAC [24] and clustering of the remaining points with DBSCAN [25] to obtain
segments. The segmented point indices are preserved through the pre-training process.
Two augmented views are generated through random transformations of the point cloud.
These augmented views are then processed by a backbone network to compute point-wise
features. Then, augmented segments are extracted from these point-wise features based on
the point segment indices. Finally, the contrastive loss is calculated to differentiate between
positive and negative pairs, enabling effective pre-training for segmentation tasks.

2.2. Adapting the SegContrast Pre-Training Pipeline for Mobile Mapping Point Clouds

To adapt the SegContrast pre-training pipeline to the context of mobile mapping
LiDAR point clouds, it is imperative to acknowledge and address the shortcomings encoun-
tered when applying SegContrast to aggregated point clouds. Using the KITTI-360 dataset
as an example, an aggregated cloud is formed by combining hundreds of significantly
overlapping scans, creating a large-scale mobile mapping point cloud. Consequently, the
number of segments extracted from this single aggregated cloud is significantly lower than
the total number of segments extracted in all the individual scans. Thus, as mentioned
in the introduction, the contrastive approach applied to aggregated point clouds faces a
scarcity of contrastive pairs. Moreover, during the backbone’s forward pass, the model
needs to consider the relationship between the segments and the scene, leveraging the con-
textual information from the entire point cloud [13]. However, due to memory limitations,
processing the complete aggregated point cloud in the forward pass can lead to memory
overflow and hinder the training process. Finally, the reliability of RANSAC for ground
segmentation is limited when dealing with sloped terrain or complex surfaces [26]. While
individual scans typically cover small areas with minimal slope complexity, aggregated
point clouds can span larger areas with diverse terrain and topographies. To illustrate this
issue, Figure 2a shows the segmentation of an aggregated point cloud using RANSAC
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and DBSCAN. As can be seen, RANSAC could not separate the ground properly from
other classes, such as cars, buildings, and vegetation. Thus, the majority of the points were
segmented as ground.

(a)

(b)
Figure 2. Segmentation of the KITTI-360 dataset (a) without the proposed data augmentation and
(b) with the proposed data augmentation. The ground segment, computed using RANSAC, is displayed
in gray. All the other segments, computed using the DBSCAN algorithm, are shown in colors other
than gray.

2.2.1. Dedicated Data Augmentation Approach

Addressing these limitations and adapting SegContrast to the context of mobile map-
ping LiDAR point clouds requires strategies carefully designed to partition the aggregated
point clouds, augment the number of segments, decrease the number of input points, and
reduce the complexity of the ground topography to be able to successfully apply RANSAC
and DBSCAN.

To this end, a dedicated data augmentation approach tailored for efficient segmen-
tation is introduced, drawing from a two-step guideline outlined in [27]. The first step
involves selecting seed points as initial representatives for partitioning, followed by the
identification of neighboring points around each seed point to form partitions. Building
upon these two steps, a partitioning method is devised that is customized to the charac-
teristics of the dataset. For seed point selection, the enhanced Furthest Point Sampling



Remote Sens. 2024, 16, 3984 7 of 18

(FPS) method proposed in [27] is leveraged, which involves splitting the point cloud into
smaller blocks before applying FPS. This optimization significantly reduces computing
time while ensuring robust seed point selection, which is a crucial aspect, especially for
large-scale mobile mapping point clouds, where computational efficiency is paramount.
Figure 3a illustrates the distribution of selected seed points (purple squares) in an aggre-
gated point cloud, showcasing coverage across both low- and high-density areas, leading
to diverse partitions in terms of point density and class distribution, which are essential for
the pre-training process.

(a) (b)

Figure 3. Visualization of (a) one partition extracted from the aggregated KITTI-360 dataset using the
proposed partitioning approach and (b) its associated segments. White and purple squares represent
the seed points selected with the FPS approach over this area. Colors in (a) represent true labels,
while those in (b) represent different segments.

Subsequently, neighboring points are grouped by selecting the K nearest neighbors
(KNN) of each seed point. This approach offers several advantages, particularly for datasets
with uneven point density, the like Toronto-3D and KITTI-360 datasets. By selecting the
K nearest neighbors of each seed point, irrespective of their distances, we ensure com-
prehensive coverage of the point cloud, capturing both local and global contextual infor-
mation. This comprehensive grouping strategy contributes to the creation of partitions
that accurately represent the underlying structure of the point cloud, which is essential
for subsequent pre-training and fine-tuning tasks. Using these partitions at the network
input addresses the memory limitation, as each partition contains a fixed number of
points (K points), preventing memory overflow. Additionally, employing the proposed
partitioning approach allows us to create sets of both labeled and unlabeled point cloud par-
titions for self-supervised pre-training and supervised fine tuning, respectively. Figure 3b
depicts a partition and its associated segments, showcasing the effectiveness of KNN in
selecting points to obtain a relevant representation of the scene contents while simplifying
its complexity for RANSAC and DBSCAN segmentation, yielding high-quality segments
for pre-training. The impact of the dedicated data augmentation approach on the efficiency
of RANSAC and DBSCAN segmentation is shown in Figure 2a. We named this approach
“data augmentation” because it involves cropping the mobile mapping point clouds and
generating multiple partitions from a scene, thereby augmenting the dataset with additional
points for training. Additionally, unlike conventional data augmentation techniques that occur
during each training iteration, this process is conducted offline before training begins.

2.2.2. Heterogeneous Dataset Merging

As underlined in the previous paragraph, the benefit of the dedicated data augmen-
tation approach is the relevance of the segments for pre-training. However, the scarcity
of segments remains an issue for small-scale datasets, such as Toronto-3D, for contrastive
learning. To overcome this problem, we propose the merging of heterogeneous mobile
mapping datasets. Dataset merging presents an opportunity to combine the strengths
of multiple sources, enhancing the diversity and richness of the pre-training data. By
combining datasets, the pool of available segments is augmented, thereby enhancing the
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generalization and performance of pre-trained models. It is important to stress that this
merging of heterogeneous datasets is not possible with SegContrast, as its architecture is
unable to absorb such a massive volume of points. The point cloud partitioning approach
proposed in our adaptation of SegContrast allows us to overcome this obstacle.

A comparative study was conducted to demonstrate the feasibility of self-supervised
contrastive learning on mobile mapping datasets. We utilized the proposed data augmen-
tation method and examined the benefits of leveraging merged heterogeneous datasets.
This study involved three learning strategies. The first one, called Baseline, is a super-
vised baseline with MinkUNet [28] trained with aggregated point clouds. MinkUnet was
chosen because it is the network used in the SegContrast pipeline. The second, called
DA-supervised, is the same supervised network as the Baseline but trained with parti-
tions from the aggregated point clouds computed using the proposed data augmentation
method. The third, called CLOUDSPAM, is our adaptation of SegContrast. Thus, it consists
of self-supervised pre-training with MoCo using unlabeled partitions from the merged
heterogeneous datasets, followed by supervised fine-tuning using labeled partitions from
the aggregated point clouds of the targeted dataset using the proposed data augmentation
method. The three learning strategies are shown in Figure 4. The first aim of this com-
parative study is to highlight the improvement brought about by diversity-rich labeled
data using the proposed data augmentation approach in the context of supervised learning.
Secondly, it aims to demonstrate the ability of the contrastive approach conditioned by
our adaptations in comparison with that of the supervised approach. The three learning
strategies are outlined as follows:

1. Baseline: a classical supervised baseline with MinkUNet [28] trained with original data.
2. DA-supervised: A classical supervised baseline with MinkUNet [28] trained with

augmented partitions.
3. CLOUDSPAM: A self-supervised pre-training algorithm with MoCo [11] using un-

labeled partitions from merged heterogeneous datasets, followed by supervised
fine-tuning with labeled partitions from the targeted dataset.

Figure 4. Overview of three learning strategies used in the comparative study. “Baseline” strategy
refers to a supervised training. “DA supervised” is equivalent to the “Baseline” but using labeled
partitions generated with the proposed data augmentation approach. The “CLOUDSPAM” strategy
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refers to self-supervised pre-training with MoCo using unlabeled partitions, followed by supervised
fine-tuning using labeled partitions, with both labeled and unlabeled partitions provided by the
proposed data augmentation approach.

2.3. Data and Experimental Configuration

For the comparative study, three datasets were chosen that were collected in three
cities in Europe and Canada, namely the KITTI-360, Paris-Lille 3D, and Toronto 3D datasets.
The following paragraphs describe these datasets and their main differences:

• KITTI-360: This dataset covers a 73.7 km of medium-population-density streets in
Karlsruhe, Germany. It consists of 9 labeled sequences containing over 1.2 billion
points for training and more than 340 million points for validation. This dataset en-
compasses 46 classes grouped into 7 categories. The point clouds were post-processed,
and point density was uniformized. A single aggregated point cloud of this dataset
has an average of 2.5 million points, with a density of around 500 pts/m2.

• Paris-Lille3D: This dataset covers 1.9 km of urban streets of Paris and Lille in France
and contains 119.8 million points. The dataset encompasses 50 classes grouped into
9 categories. It is split into 4 point clouds, with point density ranging from 1000 pts/m2

to 2000 pts/m2. The test datasets were published as an add-on, and have different
locations; 1 point cloud was acquired in Dijon, and 2 were acquired in Ajaccio, France.
Each of them consists of exactly 10 million points.

• Toronto-3D: This dataset covers a 1 km road in a dense suburban area of Toronto,
Canada. It contains 78.3 million points split into 8 classes. The dataset is divided into
4 sections within a driving distance of 250 m. In addition, there is overlap among
the sections. The second section is kept as a test and contains 6.7 million points. The
Toronto-3D dataset differs from the two other datasets due to its significant disparity
in point density. In Toronto-3D, every point is detected within a 100 m LiDAR range,
while a 20 m range is used in the other datasets. Moreover, there no post-processing
trimming or downsampling was applied to this dataset.

MinkUNet is used was the backbone architecture for all experiments. MinkUNet
works with sparse voxels thanks to its Minkowski engine [28] and requires voxelization of
the point space. A voxel size of 5 centimeters was selected for all experiments. In order
to input the point clouds into MinkUNet for the classical supervised baseline, we did not
apply any data pre-processing other than the default MinkUnet voxelization and random
selection. A value of 600K was chosen for the random point selection of MinkUNet, with
a batch size of 2 in all of the baseline experiments. For the Paris-Lille-3D and Toronto-
3D datasets, each point cloud was divided into sub-clouds of around 2 million points.
For each of the learning strategies, the supervised phases were implemented using the
following six labeled data regimes: 1%, 2%, 10%, 20%, 50%, and 100% availability of
labeled data. As a result, 6 experiments were carried out for each of the three datasets
and each of the three learning strategies, for a total of 54 experiments. In KNN point
selection in the data augmentation approach, a K value equal to 131,072 (217) was chosen
to generate partitions representing scene with diverse classes. This value is also close to
the average number of points per scan in datasets such as SemanticKITTI [7]. DBSCAN
segmentation uses two parameters—namely, Epsilon, a distance measure used to locate
the points in the neighborhood of any point, and the minimum number of points clustered
together for a region to be considered dense. Different combinations of values were tested
to maximize the purity of segments, as well as the total number of segmented points. Here,
purity refers to the property of a segment only containing points from one class. Selecting
0.25 for Epsilon and 10 for the minimum number of points yielded the best results. For
self-supervised pre-training, a learning rate of 0.12 was used, and for all of the supervised
training and fine-tuning experiments, a learning rate of 0.24 was chosen. All experiments
were performed using an NVIDIA V100 Volta graphics card.
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3. Results

Table 1 presents the semantic segmentation results for each of the three datasets,
namely KITTI-360, Toronto-3D, and Paris-Lille-3D, and for three learning strategies,
namely Baseline, DA-supervised, and CLOUDSPAM. For each dataset and strategy, the
table reports segmentation performance for the following percentages of labeled data:
1%, 2%, 10%, 20%, 50%, and 100%. The segmentation performance is measured in terms of
Intersection over Union (IoU). The results of the table highlight improvements achieved
by the DA-supervised and CLOUDSPAM methods over the baseline approach across
all datasets, confirming the benefit of the proposed data augmentation approach and
contrastive learning adaptation in enhancing the performance of semantic segmentation
models in urban scene understanding tasks, especially when labeled data are limited or
expensive to obtain.

Table 1. Semantic segmentation results (% mIoU) on the validation set of KITTI-360 and the test sets
of Toronto-3D and Paris-Lille-3D. “Baseline” denotes supervised training using MinkUNet without
any preprocessing. “DA-supervised” is the proposed supervised training approach with augmented
data and MinkUNe. “CLOUDSPAM” is our self-supervised pre-training approach using the three
merged datasets, followed by supervised fine tuning using only the targeted dataset.

Labeled Dataset Method 1% 2% 10% 20% 50% 100%

KITTI-360
Baseline 23.1% 29.1% 37.9% 39.1% 41.3% 51.0%

DA-supervised 38.1% 42.4% 52.4% 58.3% 61.9% 64.1%
CLOUDSPAM 41.3% 46.3% 53.3% 59.0% 61.9% 63.6%

Toronto-3D
Baseline 27.7% 29.8% 38.4% 39.9% 41.9% 57.0%

DA-supervised 47.8% 54.4% 59.2% 66.0% 69.7% 69.3%
CLOUDSPAM 49.3% 65.1% 62.7% 70.4% 71.3% 71.8%

Paris-Lille-3D
Baseline 32.7% 45.9% 52.1% 57.2% 69.1% 68.9%

DA-supervised 33.4% 44.6% 52.9% 55.2% 66.5% 63.8%
CLOUDSPAM 44.1% 55.5% 60.1% 66.7% 70.8% 73.8%

4. Discussion

In the subsequent subsections, we offer a comprehensive analysis of the results, focusing
on the outcomes of each learning strategy. This detailed examination aims to provide deeper
insights into the performance variations and effectiveness of the investigated approaches.

4.1. DA-Supervised

The effectiveness of the proposed data augmentation approach is underscored by
the notable improvements observed across the KITTI-360 and Toronto-3D datasets. As
illustrated in Table 1, substantial increases in mIoU scores of 15% and 20% at the lowest
data regime can be observed on the KITTI-360 and Toronto-3D dataset, respectively. While
these performance boosts slightly diminish with full data training, they still contributes
significant gains of 13% and 12% for the KITTI-360 and Toronto-3D datasets, respectively.
For the Paris-Lille-3D dataset, a different pattern is observed. Indeed, data augmentation
appears to impede learning outcomes across all data regimes. A closer examination of the
cloud statistics presented in Table 2 reveals a notable distinction between Paris-Lille-3D
and the other two datasets; the average radius of point clouds is smaller than the radius
for the KITTI-360 and Toronto-3D datasets (12 m, 20 m, and 25 m, respectively). This
discrepancy suggests that the proposed data augmentation method struggles with high-
density point clouds, resulting in the extraction of smaller segments. Nevertheless, for
the KITTI-360 and Toronto-3D datasets, the proposed data augmentation approach proves
highly effective, particularly in scenarios with limited data availability. These findings
underscore the critical role of meticulous data preparation and selection in the context of
deep learning-based point cloud semantic segmentation.
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4.2. CLOUDSPAM

CLOUDSPAM showcases significant performance improvements over the baseline,
even surpassing the DA-supervised consistently. Notably, in the case of the Paris-Lille-3D
dataset, where the proposed data augmentation approach hindered the learning quality,
the contrastive learning process achieved superior results, yielding enhancements ranging
from 5% to 12% compared to the baseline across various data regimes.

Regarding label-efficient learning, the findings in this research demonstrate the ad-
vantages of dataset merging in self-supervised pre-training. This merging strategy enables
the network to start the supervised phase (fine tuning) from a more favorable initialization
state compared to random initialization. Consequently, the network achieves notable gains
in mIoU scores, ranging from 11% to 18%, with only 1% of labeled data available across all
three datasets.

CLOUDSPAM has achieves a lower mIoU score than DA-supervised only when train-
ing with 100% of the KITTI-360 dataset. Upon closer examination of Table 2, it becomes
evident that, post data augmentation, the KITTI-360 dataset contains approximately 1.9 bil-
lion points, which is four times more than the Paris-Lille-3D dataset and eleven times more
than the Toronto-3D dataset. This substantial amount of labeled data appears sufficient for
efficient training under the 100% data regime. Additionally, pre-training of CLOUDSPAM
was conducted using the merged datasets, potentially resulting in a less specialized pre-
trained network state for the KITTI-360 dataset. The architecture of MinkUNet might
not have been sufficiently deep to guarantee the learned features during the pre-training
stage from being overwritten during fine tuning using 100% of labeled data. Consequently,
employing a deeper network architecture could potentially yield better results for the
CLOUDSPAM process, particularly in this specific scenario.

Table 2. Statistical analysis of the data augmentation approach applied to the three datasets.

KITTI-360 Toronto-3D Paris-Lille-3D

Original Ours Original Ours Original Ours

# of segments 11,950 552,012 1348 46,426 2405 48,532
# of clouds 239 14,340 3 1231 4 1580
Avg. # of pts per cloud 2,689,600 131,072 12,866,207 131,072 29,945,846 131,072
Avg. radius of clouds (m) 113 20 125 25 300 12
Total # of points (in millions) 1200.0 1,879.5 78.3 161.3 119.8 205.9

4.3. Impact of Pre-Training

To delve deeper into the implications of the pre-training step, fine tuning iterations
were conducted every five epochs, evaluating the mIoU score without voting. This analysis
was performed across various data regimes with the Paris-Lille-3D validation set and
the Toronto-3D test set. Due to computational constraints, similar experiments were not
conducted with the KITTI-360 dataset. The results, as depicted in Figure 5, highlight
the effectiveness of pre-training, particularly on data regimes with limited labeled data.
Notably, the initial 100 epochs are pivotal for lower-data regimes, whereas prolonged
pre-training demonstrates greater efficiency for higher-data regimes. In summary, these
findings underscore the following two key points: Firstly, the contrastive self-supervised
pre-training facilitated by the proposed data augmentation method proves highly effective;
secondly, dataset merging serves to create a versatile network suitable for label-efficient
learning tasks.
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(a)

(b)
Figure 5. Comparison of mIoU (%) scores of CLOUDSPAM per epoch of pre-training for each
of 6 data regimes on (a) the test set of the Toronto-3D dataset and (b) the validation set of the
Paris-Lille-3D dataset.

4.4. Impact of Data Augmentation

As previously emphasized, the availability of numerous positive and negative pairs is
pivotal for meaningful pre-training via contrastive learning, requiring both segment purity
and quantity.

In terms of segment quantity, Table 2 provides a comparison of statistics before and
after implementing the proposed data augmentation method. This approach substantially
boosts the number of segments across all three datasets. Specifically, for the KITTI-360
dataset, a significant increase can be witnessed, multiplying the number of segments by 45.
Similarly, for Toronto-3D and Paris-Lille-3D datasets, there are 34 and 20 times as many
segments, respectively. Visual assessment, as depicted in Figure 2, confirms this increase in
the number of segments.

Given that point cloud partitions overlap, the total number of points per dataset is
effectively increased. A uniform distribution of seed points is achieved for partitioning
using FPS, ensuring that overlapping points only pertain to the external zone of partitions.
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Additionally, Figure 6 demonstrates how segments at the same location can differ from one
partition to another. Consequently, duplicated points provide new information to facilitate
the refinement of feature representation for negative and positive pairs.

Regarding segment purity, a purity analysis was conducted for the KITTI-360 dataset. It
involved comparing true labels against segments generated by the proposed data augmentation
method. Impressively, 94.28% of the points were segmented while creating only 18.72% mixed
segments. It is statistically logical that mixed segments tend to be larger than pure ones, as the
probability of containing points from different classes correlates with the segment’s size.

In summary, by enhancing both segment quantity and purity, the execution of con-
trastive learning on mobile mapping datasets was enabled.

Figure 6. Two overlapping partitions generated by the proposed data augmentation approach. Each
color represents a different segment. The same objects can appear in two different segments in
two partitions, such as the car outlined by a red square.

4.5. Comparison Against the State of the Art

For each dataset, a comparative analysis of the two learning strategies, namely DA-
supervised and CLOUDSPAM, is provided against current state-of-the-art and formerly highly
ranked architectures. Both mIoU and class-wise IoU scores are presented for the validation
set of the KITTI-360 dataset and the test sets of the Toronto-3D and Paris-Lille-3D datasets in
Tables 3–5, respectively. For visual analysis purposes, images of the inference results of the
CLOUDSPAM strategy on the test sets of all three datasets are provided in Figure 7. It can be
assessed that scene coherence is achieved, even for the smallest data regimes. If some obvious
errors still remain, most of them are corrected when a level of 10% labeled data is reached.
This can be seen in the Toronto-3D dataset, where poles are correctly segmented, and in the
KITTI-360 dataset, where ground segmentation mistakes disappear when 10% labeled data
is available. Nevertheless, some errors still remain, especially for the Paris-Lille-3D dataset,
such the faulty segmentation of a central car in the middle of the street. In the following
paragraphs, the results obtained for each dataset are analyzed one after the other.

KITTI-360: When utilizing 100% of the available labeled data, CLOUDSPAM achieved
state-of-the-art performance for KITTI-360, surpassing the results of SPT by 0.1%. Further-
more, DA-supervised achieved a higher mIoU score and outperformed SPT by 0.6%. Even
for a dataset as extensive as KITTI-360, where transformer architectures might be expected
to excel due to their ability to extract more robust features, strategic statistical data selection
can be equally effective. Examining class-wise IoU scores, a significant difference can be
observed relative to SPT scores only for the traffic light and bicycle classes. For all other
classes, CLOUDSPAM either achieved superior IoU scores or came close to matching them.

Toronto-3D: Both DA-supervised and CLOUDSPAM reached achieved second position
in the state-of-the-art ranking, just behind RandLA-Net, with mIoU scores of 67.9% and
71.8%, respectively. This illustrates that the proposed methodology enabled the use of
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self-supervised learning for a relatively small-scale dataset. However, both strategies failed
to detect road marks, as depicted in Figure 7, row 2. This could be related to the network
architecture that CLOUDSPAM uses. MinkUnet voxelizes the point clouds and creates a
coarser representation of the point space. As such, the network is unable to pick up very
fine geometrical details like road marks (less than 2.5 cm).

KITTI-360 Toronto-3D Paris-Lille-3D

1%

2%

10%

20%

50%

100%

GT

Figure 7. Inference results of the CLOUDSPAM strategy on the KITTI-360 (KIT-360), Toronto-3D
(T3D) and Paris-Lille-3D (PL3D) test sets for every investigated data regime compared to the ground
truth (GT). The ground truth of the Paris-Lille-3D test set was not provided by the authors.
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Table 3. Comparison of mIoU (%) and class-wise IoU (%) scores for the validation set of KITTI-360.
Results for MinkUnet come from the DeepViewAggregation paper [29].
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MinkUNet* 54.2 90.6 74.4 84.5 45.3 42.9 52.7 0.5 38.6 87.6 70.3 26.9 87.3 66.0 28.2 17.2
DeepViewAgg 57.8 93.5 77.5 89.3 53.5 47.1 55.6 18.0 44.5 91.8 71.8 40.2 87.8 30.8 39.6 26.1

SPT 63.5 93.3 79.3 90.8 56.2 45.7 52.8 20.4 51.4 89.8 73.6 61.6 95.1 79.0 53.1 10.9

DA-supervised 64.1 95.6 83.3 90.4 56.2 50.2 60.9 0.0 53.7 90.7 75.7 73.4 96.4 82.5 47.5 4.5
CLOUDSPAM 63.6 95.6 83.4 90.4 56.2 48.7 60.6 10.4 52.7 90.7 75.5 62.0 96.3 75.6 49.3 6.9

Table 4. Comparison of mIoU (%) and class-wise IoU (%) scores for the test set of Toronto-3D.

Method mIoU Road Road
Mark Natural Building Utility

Line Pole Car Fence

PointNet++ [30] 56.5 91.4 7.6 89.8 74.0 68.6 59.5 54.0 7.5
PointNet++(MSG) [30] 53.1 90.7 0.0 86.7 75.8 56.2 60.9 44.5 10.2

DGCNN [31] 49.6 90.6 0.4 81.2 93.9 47.0 56.9 49.3 7.3
KPConv [32] 60.3 90.2 0.0 86.8 86.8 81.1 73.1 42.8 21.6

MS-PCNN [33] 58.0 91.2 3.5 90.5 77.3 62.3 68.5 53.6 17.1
TGNet [34] 58.3 91.4 10.6 91.0 76.9 68.3 66.2 54.1 8.2

MS-TGNet [18] 61.0 90.9 18.8 92.2 80.6 69.4 71.2 51.0 13.6
RandLA-Net [35] 77.7. 94.6 42.6 96.9 93.0 86.5 78.1 92.8 37.1

DA-supervised 69.3 94.9 0.0 94.9 90.0 84.4 73.8 89.7 26.5
CLOUDSPAM 71.8 95.0 0.0 95.7 90.5 85.7 77.1 91.7 38.7

Table 5. Comparison of mIoU (%) and class-wise IoU (%) scores for the test set of Paris-Lille-3D.

Method mIoU Ground Building Pole Bollard Trash
Can Barrier Pedestrian Car Nature

RF_MSSF [36] 56.3 99.3 88.6 47.8 67.3 2.3 27.1 20.6 74.8 78.8
MS3_DVS [37] 66.9 99.0 94.8 52.4 38.1 36.0 49.3 52.6 91.3 88.6

HDGCN [38] 68.3 99.4 93.0 67.7 75.7 25.7 44.7 37.1 81.9 89.6
MS-RRFSegNet [39] 79.2 98.6 98.0 79.7 74.3 75.1 57.9 55.9 82.0 91.4

ConvPoint [40] 75.9 99.5 95.1 71.6 88.7 46.7 52.9 53.5 89.4 85.4
KPConv [32] 82.0 99.5 94.0 71.3 83.1 78.7 47.7 78.2 94.4 91.4
FKACon [41] 82.7 99.6 98.1 77.2 91.1 64.7 66.5 58.1 95.6 93.9

RandLA-Net [35] 78.5 99.5 97.0 71.0 86.7 50.5 65.5 49.1 95.3 91.7

DA-supervised 63.8 99.1 95.8 55.8 48.6 35.4 37.9 23.7 86.3 91.8
CLOUDSPAM 73.8 99.4 95.7 56.7 66.4 64.4 58.0 39.8 92.5 91.0

Paris-Lille-3D: This dataset stands out as the only one where neither DA-supervised
nor CLOUDSPAM achieved state-of-the-art performance. The point density in this dataset
significantly influences the efficiency of the semantic segmentation strategies. As observed
by Mahmoudi Kouhi et al. [27], radius search pre-processing is more optimal for high-
density point clouds than KNN search or random sampling. Table 2 reveals that the average
partition radius for the Paris-Lille-3D dataset is 12 m, compared to 20 m and 25 m for the
KITTI-360 and Toronto-3D datasets, respectively. The smaller partitions hindered training
quality by reducing the receptive field. As shown in Figure 7, the car was incorrectly
segmented in the Paris-Lille-3D dataset. This mistake can be linked to the small receptive
field, as the middle of the road is the densest part of the scans. Similarly, RandLA-Net,
which uses random sampling, outperformed KPConv by more than 17% in mIoU on the
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Toronto-3D dataset. However, KPConv, utilizing radius search, nearly matched the state-of-
the-art performance on the Paris-Lille-3D dataset and surpassed RandLA-Net by 3.5%.

These comparative results highlight the competitiveness of CLOUDSPAM with state-
of-the-art approaches, especially in limited-label scenarios, as well as the superior per-
formance of DA-supervised compared to the state of the art on the KITTI-360 dataset.
Two limitations emerge—one from the KNN search, restricting the capabilities of the learn-
ing strategies in areas with very high point density (more than 1000 points/m2), and the
other from voxelization, which creates a coarser representation of the point space and ren-
ders the networks unable to capture very fine geometrical details such as road marks (less
than 2.5 cm). To address these limitations, future work could explore alternatives to KNN
search to handle areas with extremely high point density, such as radius search techniques,
which could be adjusted to the neighborhood size based on point density. This would allow
the network to better capture local context. Additionally, to overcome the limitations of
voxelization and improve the network’s ability to capture fine geometrical details, networks
such as transformers could be implemented as the backbone. These approaches would
preserve finer details, such as road marks, while maintaining computational efficiency.

5. Conclusions

In conclusion, this paper addresses the challenges of semantic segmentation for mo-
bile mapping LiDAR point cloud datasets. Through the implementation of innovative
methodologies and adaptations of existing techniques, we have demonstrated significant
advancements in self-supervised pre-training and label-efficient learning strategies. The
proposed data augmentation approach, leveraging merged heterogeneous datasets and
contrastive self-supervised pre-training (CLOUDSPAM), shows notable effectiveness in
enhancing semantic segmentation performance across various datasets. By augmenting
segment quantity and purity, we successfully unlocked the potential for contrastive learn-
ing on mobile mapping datasets, even in scenarios with limited labeled data. Furthermore,
the experiments showcased the importance of careful data selection and preparation in
deep learning-based point cloud segmentation. Thanks to such a data preparation ap-
proach, we were able to merge heterogeneous mobile mapping datasets to enhance the
versatility and generalizability of the networks. This led to the achievement of performance
on par with that of state-of-the-art transformer architectures. While adapted contrastive
learning demonstrated competitive performance across different datasets, there remain
avenues for future exploration. Deepening our understanding of pre-training initialization
and investigating the effectiveness of deeper networks could further enhance segmen-
tation performance, particularly for datasets with uneven densities and characteristics.
Overall, this study contributes valuable insights and methodologies to the field of 3D
LiDAR point cloud segmentation, paving the way for improved understanding and utiliza-
tion of large-scale outdoor datasets in various applications, such as urban planning and
environmental monitoring.
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