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Abstract: Droughts in the Weihe River Basin are occurring more frequently and are becoming more
intense. These events negatively affect industrial production, economic development, and ecosystems.
Studying how vegetation changes in response to them is of practical significance. We report temporal
and spatial trends in vegetation cover, use a copula function to analyze relationships between drought
and vegetation cover, and assess the probability of vegetation loss in different drought scenarios. A
vegetation index trends upwards from north to south in this basin; from 2001 to 2017, vegetation
cover also trends upward in most areas, although it decreases in areas with high vegetation cover.
An escalated susceptibility to drought has been observed in the southern and eastern sectors, where
proximity to the riverbank correlates with heightened drought sensitivity, particularly in zones of
intensified vegetation density. The probability of vegetation loss at the same vegetation loss preset
point gradually increases with increased drought severity. These results will facilitate the formulation
of countermeasures to prevent and combat the effects of drought on vegetation and land management.

Keywords: Weihe River Basin; meteorological drought; hydrological drought; vegetation cover change

1. Introduction

Terrestrial vegetation plays an important role in energy exchange, hydrological cycles,
and climate regulation [1,2]. Changes in vegetation caused by climate change can be used
to assess the impact of drought [3,4]. Drought is a widespread natural disaster [5], and
prolonged drought can adversely affect ecosystems and social and national development [6].
With a changing climate, the severity, extent, and impact of a drought are increasing,
especially in arid and semi-arid areas. Drought reduces water resources and decreases
vegetation cover, and these impacts are becoming increasingly serious [7,8]. Therefore, the
study of the interaction between drought and vegetation is currently a hot topic.

Due to the impact of climate change, precipitation-related events in China in the 21st
century are becoming increasingly extreme, and the degree of drought may increase [9].
This trend is expected to exacerbate forest mortality attributed to drought [10]. At present,
satellite remote sensing technology has been extensively leveraged within the realm of
drought research, offering a robust analytical instrument for the surveillance and eval-
uation of arid events. Numerous scholars have engaged in deliberations regarding the
utilization of remote sensing datasets for drought monitoring, articulating the existing
accomplishments and prospective avenues for advancement [11,12]. They have postulated
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potential future trajectories for the discipline, including the amalgamation of multi-source
datasets, refinement of model precision, and the augmentation of real-time monitoring
competencies [13]. Studies have shown that temperature rises are intensifying drought
conditions in certain regions, affecting vegetation productivity [14], most studies have
indicated a negative feedback mechanism between vegetation and drought, where an
increase (or decrease) in vegetation corresponds to a weakening (or strengthening) of
drought [15]. However, recent studies have suggested that vegetation may also enhance
drought [16,17]. The normalized vegetation index (NDVI) has been used to quantitatively
monitor dynamic changes in vegetation. It has become one of the most effective parameters
to reflect vegetation cover and growth [18]. Zhou, et al. [19] used the Dynamic Reference
Vegetation Cover Method (DRCM) to remove the influence of interannual variations in
rainfall, with a focus on analyzing the impact of human activities on vegetation cover
changes. Mu, et al. [20] examined inter-annual and inter-monthly changes in vegetation in
different regions of inner Mongolia using rainfall and temperature data and reported that
vegetation cover generally increased, with an east-high and west-low trend. Almouctar,
et al. [21] reported a vegetation health index based on NDVI and land surface temperature
in the Niger region and concluded that severe droughts had occurred in 2013 and 2019.
In China, vegetation in most areas is positively correlated with drought, and the impact
of drought on vegetation is mostly cumulative and particularly significant in arid and
semi-arid regions [22]. Studying the combined effects of drought and land cover changes,
such as deforestation and urbanization, on vegetation greenness and productivity can help
predict the response of ecosystems to future environmental changes [23].

Many studies have investigated relationships between vegetation indices and indica-
tors of drought. A common approach involves analyzing how vegetation growth sensitivity
to drought varies across different time scales such as standardized precipitation evapo-
transpiration index (SPEI) to characterize drought conditions and normalized difference
vegetation index (NDVI) to characterize vegetation changes [24]. In addition, some scholars
use satellite remote sensing technology to monitor vegetation physiological changes and an-
alyze how drought affects plant photosynthesis and transpiration [25]. Zuo, et al. [26] used
remote sensing data, the combined deficit index (CDI) for agricultural drought assessment.
Jiang, et al. [27] investigated the drought impact on vegetation with its spatio-temporal
continuum. Guo, et al. [28] constructed a practical framework to fully assess socioeconomic
drought dynamic risk. Shi, et al. [29] examined relationships between hydrology and
meteorological drought based on coherent changes in wavelets, and reported a response
relationship between hydrology and meteorological drought by calculating the EVI; by
calculating lag-time correlation coefficients between EVI and the drought index, the re-
sponse of vegetation to drought in the Huanghuaihai Basin was determined. Xu, et al. [30]
constructed a coastal zone composite drought index based on rainfall, temperature, evapo-
transpiration, runoff, and normalized vegetation index data for the southeast coastal region,
and, after comparing it with a standardized rainfall and Palmer drought indices, concluded
that their new index was more suitable for monitoring drought in coastal regions. Copula
functions have been extensively applied in hydrological analysis, effectively integrating
remote sensing vegetation indices with ground-based drought data to statistically analyze
the duration, intensity, and frequency of drought events. This technique reveals the spa-
tiotemporal distribution characteristics of drought events and quantifies the relationships
between different types of drought [31]. Copula functions offer a sophisticated statistical
framework for the quantification of interrelations among different types of drought (for
example, meteorological drought, hydrological drought, and agricultural drought) [32].
Additionally, Dixit and Jayakumar [33] proposed a novel approach based on copula func-
tions to develop a multivariate drought index by combining various drought indicators.
In the context of climate change, the application of copula functions has been expanded
to study the relationships between vegetation cover changes and multiple meteorological
factors [34]. When investigating the association between drought and vegetation cover
changes, copula functions are utilized not only to quantify the dependency between vege-
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tation indices and drought indicators but also to uncover the specific impacts of drought
on vegetation cover.

The Weihe River Basin, a typical arid and semi-arid region in inland northwest China,
is characterized by complex topography, geomorphology, and diverse climate. It is sensitive
to climate change. Based on MODIS MOD13A2 data, we characterize spatial and temporal
changes in vegetation cover in this basin. By calculating maximum correlations between
different NDVIs and meteorological and hydrological drought indicator values at different
time scales, we establish a binary joint distribution model based on the copula function
to assess changes in vegetation cover under different drought scenarios. This model
improves our understanding of the impacts of drought on vegetation cover over time and
the vulnerability of ecosystems and provides a scientific basis for vegetation protection and
management in the Weihe River Basin.

2. Study Area and Data Sources
2.1. Study Area Description

As the first major tributary of the Yellow River, the Weihe River originates from Bird
Mouse Mountain in Weiyuan, Gansu, and flows through Gansu, Ningxia, and Shaanxi
provinces (regions). The Wei River Basin (103–110◦ E, 34–38◦ N), with an 818 km total length
and a basin area of 134,800 km2, accounts for 18% of the Yellow River Basin [35] (Figure 1).
The average annual water supply of the Weihe River Basin is about 11.056 billion m3. The
average annual natural runoff from the basin is 10.04 billion m3, which accounts for 17.3%
of the average annual natural runoff of the Yellow River Basin. Under similar rainfall
conditions, the south bank of the Weihe River (20% of the total Weihe River Basin area)
produces > 48% of all basin runoff [36,37]. Vegetation growth in this basin is closely related
to climate, topography, and soil type; it is mostly grassland, broadleaf and coniferous
forests, and crops [38].
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2.2. Data Sources

Base precipitation, runoff, and temperature data were provided by the China Meteo-
rological Administration (https://www.cma.gov.cn/ (accessed on 9 July 2022)), Chinese

https://www.cma.gov.cn/
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Academy of Sciences, and the Ministry of Water Resources, Soil and Water Conservation
Association (http://loess.geodata.cn (accessed on 10 October 2022)). Data (monthly rain-
fall, day-by-day runoff data, and average temperature) from 13 meteorological stations
(Pingliang, Huaxian, Huashan, Tianshui, Wugong, Xiji, Baoji, Xifengzhen, Changwu, Wuqi,
Tongchuan, Xi’an, and Luochuan) were obtained from 1961 to 2017. The NDVI had a
1 km resolution, month-by-month NDVI dataset from China (January 2001 to December
2017), produced by a series of processing based on MODIS MOD13A2 data, and contains
264 TIF files (monthly maximum values of NDVI data from January 2001 to December
2017). NVDI data were obtained from the National Science and Technology Infrastructure
Conditional Platform’s National Geosystems Science Data Center (http://www.geodata.cn
(accessed on 12 March 2023)). To characterize temporal and spatial changes in NDVI,
analyze its response to drought, and eliminate the effect of winter snow, vegetation data for
the growing season (March–November) were selected from 2001 to 2017. Month-by-month
data were masked using ArcGIS software (version 10.2) to obtain vegetation data for the
basin. Maximum value synthesis was performed to obtain annual average (growing season)
NDVI data.

3. Methods
3.1. Vegetation Cover

Estimates of vegetation cover using the NDVI were made using a model based on the
image element dichotomous model of Miaomiao [39]. This model assumes that there are
only two watershed surfaces (vegetated and non-vegetated) and that the ratio of the area
of the two in the image element is the weight, with the percentage of the pixel covered by
vegetation indicating the vegetation cover degree of that pixel. [40,41]. The expression of
vegetation cover FVC is presented in Equation (1):

FVC = (NDVI − NDVISoil)/
(

NDVIVeg − NDVISoil
)

(1)

where NDVIVeg is pure vegetation partial cover, and NDVISoil is pure bare soil partial
cover [42]. Under ideal conditions, the FVC of pure vegetation is approximated to be 100%,
and the FVC of pure bare soil is approximated to be 0, obtained as NDVISoil = NDVImin,
NDVIVeg = NDVImax, NDVImax, and NDVImin are the two maximum and minimum
values of NDVI in the region, respectively. To eliminate some unavoidable effects, we select
the maximum and minimum values of the 5% confidence range.

3.2. Meteorological Drought Index and Hydrological Drought Index
3.2.1. Meteorological Drought Index

In 1993, the Standardized Precipitation Index (SPI) developed by McKee, et al. [43] was
initially employed to characterize meteorological drought in Colorado, USA. Its widespread
adoption can be attributed to its methodological simplicity, robust statistical properties, and
its capacity to provide a normalized measure of drought across varying climatic regimes.
Nalbantis and Tsakiris [44] documented the meteorological drought at multiple time scales
by using SPI with hydrological years. The calculation method is as follows:

Ri,j = ∑3k
j=1 Pi,j i = 1, 2, 3 · · · n j = 1, 2 · · · 12 k = 1, 2, 3, 4 (2)

where Ri,j is the accumulated rainfall, i represents the hydrological year, and j represents
the first hydrological year.

SPIi,k =
Ri,k − Rk

Sk
i = 1, 2, 3 · · · n k = 1, 2, 3, 4 (3)

where Rk and Sk are the mean and standard deviation of accumulated rainfall under the
kth time scale, respectively.

http://loess.geodata.cn
http://www.geodata.cn
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Or
Wi,k = ln

(
Ri,j
)

i = 1, 2, 3 · · · n k = 1, 2, 3, 4 (4)

SPIi,k =
Wi,k −Wk

Sk
i = 1, 2, 3 · · · n k = 1, 2, 3, 4 (5)

where Wk and Sk are the mean and the standard deviation of this logarithmic, respectively.
The classification of meteorological droughts based on Nalbantis and Tsakiris [44]

was also used in this study: non-drought (SPI ≥ −0.5), mild drought (− 1.0 ≤ SPI < −0.5),
moderate drought (−1.5 ≤ SPI < −1.0), severe drought (−2.0 ≤ SPI < −1.5), and extreme
drought (SPI < −2.0).

3.2.2. Hydrological Drought Index

Expanding upon the foundational concepts of the Standardized Precipitation Index
(SPI), Nalbantis [45] introduced the Streamflow Drought Index (SDI) to empirically validate
hydrological data from two distinct river basins in Greece. The SDI has since been widely
recognized as a pivotal indicator for quantifying hydrological drought conditions. The
computation of the SDI is delineated by the following formula:

Vi,j = ∑3k
j=1 Qi,j i = 1, 2, 3 · · · n j = 1, 2 · · · 12 k = 1, 2, 3, 4 (6)

SDIi,k =
Vi,k −Vk

Sk
i = 1, 2, 3 · · · n k = 1, 2, 3, 4 (7)

Or
yi,k = ln

(
Vi,j
)

i = 1, 2, 3 · · · n k = 1, 2, 3, 4 (8)

SDIi,k =
yi,k − yk

Sk
i = 1, 2, 3 · · · n k = 1, 2, 3, 4 (9)

where Vi,j is the accumulated runoff, and yk and Sk are the mean and variance of the accumu-
lated rainfall under logarithmic operation, respectively. The classification of hydrological
droughts was as follows: no drought (0.0 < SDI), mild drought (−1.0 ≤ SDI < 0.0), mod-
erate drought (−1.5 ≤ SDI < −1.0), severe drought (−2.0 ≤ SDI < −1.5), and extreme
drought (SDI < −2.0).

For a comprehensive elucidation of the computational methodologies pertaining to
the Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI), Zhao,
et al. [46] and Zhao, et al. [47] offer authoritative insights and methodological frameworks

3.3. Linear Regression Trend Analysis

To analyze changes in vegetation cover throughout Weihe River Basin from 2001 to
2017, interannual trends in change were fitted image-by-image elements using linear trend
analysis in accordance with Equation (2):

θslope =
n×∑n

i i× NDVIi −∑n
i=1 i×∑n

i=1 NDVIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (10)

where θslope is the slope of the regression, n is the time span of the study (17 years), i is the ith
year among 1–n years, and NDVIi is the mean value of NDVI in the ith year. Combining
the slope of the trend and p-value, the trend in NDVI was categorized as significantly
increasing ( θslope > 0, p < 0.05

)
, significantly decreasing ( θslope < 0, p < 0.05

)
, or with no

significant change (p > 0.05).
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3.4. Pearson’s Correlation Coefficients

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(11)

where r is the correlation coefficient; Xi and Yi are drought indicator and NDVI values,
respectively; X and Y are mean values, r is in the range of [−1, 1], with r < 0 indicating a
negative correlation and r > 0 indicating a positive correlation.

3.5. Copula Function

Copula functions, as tools for constructing multivariate joint distributions with best-
fitting marginals, can describe complex structures such as nonlinearities and asymmetries,
and can also construct joint distributions of variables independent of the type of marginal
distribution [48]. Copula functions have been widely used in various disciplines through
multivariate modeling of variables and associated probabilistic prognostications (e.g., in
flood frequency and drought risk analysis, runoff and climate modeling prediction, and
financial risk and energy) [49,50]. Copula function C is a multivariate (k)-distribution
function with marginal distribution on the interval [0, 1]k [51]. The specific functional form
is expressed in Equation (12):

F(x1, x2, . . . , xk) = C(F1(x1), F2(x2), . . . , Fk(xk)) = C(u1, u2, . . . , uk) (12)

where Fk(xk) represents the cumulative distribution function of the sequence xk, the
marginal distribution function (uk).

The marginal distributions of variables were fitted using copula functions, choosing
the commonly used normal [52], T [53], Gumbel [54], Frank [55], and Clayton [56] functions
(Table 1). Optimal copula functions were fitted according to Kendall and Spearman rank
correlation coefficients [57]. The optimal copula function was then applied, with the joint
distribution between the two expressed as in Equation (13):

(P ≤ porD ≤ d, N ≤ n) = FPorD,N(pord, n) = C
(

upord, vn

)
(13)

where C( ) denotes the copula function; F denotes the cumulative distribution proba-
bility of the functional distribution; and upord and vn denote the cumulative marginal
distribution function of hydrological drought or meteorological drought and vegetation
cover, respectively.

Table 1. Copula functions and their characteristics.

Copula Copula Function C(u,v,θ) Generating Element Parameter

Normal ϕθ,ρ
(

ϕ−1(u), ϕ−1(v)
)

/ (−1, 1)
T tθ,k

(
t−1
k (u), t−1

k (v)
)

/ (−1, 1)k > 0

Clayton
(

u−θ + v−θ − 1
)−1/θ

(
t−θ − 1

)
/θ (0,+∞)

Frank −1/θ
[
ln
(

1 +
(

e−θu − 1
)(

e−θv − 1
))
− ln (e−θ − 1

)]
ln (e θt − 1

)
−ln (e θ − 1

)
(−∞,+∞)

Gumbel exp
[(
−
(
(−ln u)θ + (−ln v)θ

))1/θ
]

(−ln t)θ [1 , +∞)

Using the optimal copula function, a correlation dependence model between drought
and change in vegetation cover was established. The conditional probability magnitude
of vegetation state under different degrees of drought was deduced. The conditional
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probability that a vegetation state was lower than a preset point (0.5, 0.3, 0.1) under
different drought scenarios (SPI < spi or SDI < sdi) is expressed as in Equation (14):

P(NDVI < ndvi |SPI < spi or SDI < sdi)
= P(NDVI<ndvi,SPI<spi or SDI<sdi)

P(SPI<spi or SDI<sdi)

= FSPI or SDI, NDVI(ndvi,spi or sdi)
FSPI(spi or sdi)

(14)

It also allows for more accurate drought conditions, in accordance with Equation (15):

P(NDVI < ndvi |spi0 < SPI < spi1 or sdi0 < SDI < sdi1)
= P(spi0<SPI<spi1 or sdi0<SDI<sdi1,NDVI<ndvi)

P(spi0<SPI<spi1 or sdi0<SDI<sdi1)

= F(spi1 or sdi1,ndvi)−F(sdi0 or sdi0,ndvi)
FSPI or SDI(spi1 or sdi1)−FSPI or SDI(spi0 or sdi0)

(15)

We considered three levels of drought: the probability of loss of vegetation status
below 0.5 (moderate), 0.3 (severe), and 0.1 (extreme).

During a drought, researchers will focus on the condition of vegetation in a transient
drought phase and therefore set the conditional probability density function for the case
where SPI = spi or SDI = sdi, as in Equation (16):

FNDVI≤ndvi(ndvi|spi or sdi) = c(FNDVI(ndvi), FSPI or SDI(spi or sdi))·FNDVI(ndvi) (16)

where c( ) denotes the copula joint density function of FNDVI and FSPI or SDI . It is possible
to integrate the area at NDVI < nvdi so that the probability of change in vegetation cover
can be obtained for a given scenario.

4. Results
4.1. Characteristics of Spatial and Temporal Distribution of NDVI

The NDVI changed significantly in different regions of the Weihe River Basin (Figure 2).
NDVI values trended upwards from north to south, peaking at 0.72 and lowest at 0.04. To
better understand the spatial distribution and quantitative changes in NDVI from 2001 to
2017, average NDVI values for the last 20 years were calculated using image elements as a
unit of calculation; NDVI was reclassified into four classes and the proportion of NDVI
image elements in different regions was obtained (Figure 2b). From the spatial map of
NDVI class distribution, the proportion of NDVI image elements in the Weihe River Basin
was mostly concentrated in 0.20–0.40 (mainly in the northern and western region, 45% of
the basin area) and 0.40–0.60 (mainly in the central and southern region, accounting for
46% of the basin area). Basin topography is complex, including plains, mountains, and
hills, and different vegetation distribution types occur, leading to differences in the spatial
distribution of NDVI.
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The upward trend (~0.05 decade−1) in annual mean NDVI from 2001 to 2017 is shown
in Figure 3. Mean NDVI differs annually, possibly because of climate, but also because of a
policy to return farmland to forests.
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4.2. Characteristics of Spatiotemporal Variations in Vegetation Cover Changes

The distribution of average vegetation cover from 2001 to 2017 is shown in Figure 4.
Average vegetation cover varies significantly, annually; cover is high in the east and south,
and low in the west and north. Areas with higher vegetation cover occur mainly in the
northern foothills of Qinling Mountain, and on Liupan, Ziwuling, and Huanglong moun-
tains, where land is mostly forested. Areas with lower vegetation cover occur mainly in
barren and sparse grasslands in the northwestern watershed. Vegetation cover throughout
this basin may vary because of local natural environments. The climate in the eastern and
southern basins is favorable for crop growth, so land cultivation rates and vegetation cover
are high (mostly between 0.7 and 1.0); most of the western and northern basins occur on
the Loess Plateau, where precipitation is low, the climate is arid, deserts are common, and
vegetation cover is low (mostly between 0 and 0.3).
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Over time, vegetation cover trended upwards mostly in the northeast, central, and
most of the southwestern and northwestern areas of the basin (Figure 5). To quantify this
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change, the area and percentage of each type of change were calculated (Table 2). Areas
that trended upwards accounted for 55.26% of the total watershed area, with significant
increases occurring in 16.13% of the entire watershed (21,800 km2) and non-significant
increases occurring in 39.13%. Areas with significant decreases accounted for 10.37% of the
watershed area (14,000 km2), and areas with non-significant decreases accounted for 34.37%
(46,300 km2). The percentage of land on which trends in vegetation cover increased and
decreased was similar. Compared with the spatial distribution of annual average vegetation
cover, areas with high annual average vegetation cover had a tendency to decrease over
time, and those areas with low vegetation cover coverage tended to increase over time,
possibly because of local agricultural cultivation and ecological policies.
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Table 2. Trends in vegetation cover, Weihe River Basin, as a percentage of watershed area.

Form Area (km2) Proportion of Watershed (%)

No significant reduction 46,300 34.37
No significant increase 52,700 39.13
Significant reduction 14,000 10.37
Significant increase 21,800 16.13

4.3. Correlation Between NDVI and Drought

The effect of drought on NDVI was investigated by calculating Pearson’s correlation
coefficients between annual average NDVI and SPI and SDI values over a 12-month period
in accordance with Equation (3).

The distribution of correlation coefficients between annual average NDVI and annual-
scale drought indicator values (SPI and SDI) from 2001 to 2017 is presented in Figure 6.
The annual average NDVI was significantly and negatively correlated with SPI and mainly
occurred in the southern and western parts of the basin. Correlation coefficients between
the basin’s multi-year average NDVI and SDI were negative and mainly occurred in the
southern part of the basin. Areas with negative correlations between the two occurred
mostly in the same areas in the basin, possibly because of topography and vegetation type.
Because areas with negative correlations were mostly on plains, where most vegetation was
cultivated, cover in these areas may be related to agriculture; NDVI values of vegetation
also correlated highly with human activities.
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4.4. Analysis of Correlations Between Changes in Vegetation Cover and Drought Scales

The response of vegetation to changes in water regime differs during the growing
season, because during this time vegetation grows vigorously, water demand is high, and
plants are sensitive to drought. During the non-growing season, growth is less vigorous and
water demand is reduced. Accordingly, we selected vegetation during the growing season
(March–November) for study. To investigate correlations between the effects of drought
and vegetation cover over different lengths of time, meteorological or hydrological drought
(SPI-3, SPI-6, SPI-9, SPI-12, or SDI-3, SDI-6, SDI-9, and SDI-12) sequences were subjected
to Pearson’s correlation analysis with growing season NDVI sequences (Figures 5 and 6).
Differences in the effects of drought on vegetation occur at different time scales. Based on
changes in vegetation cover, the response time of vegetation to drought can be determined.
Because meteorological and hydrological drought over a 3-month period of time more
closely affect vegetation, vegetation responds to drought in about 3 months; the close
relationship between drought and vegetation state tends to slow down with increased time.

To better study seasonal differences in the effects of drought on vegetation, to establish
a foundation for the distributions of drought and vegetation using copula functions, and
to simulate the probability distribution of changes in vegetation cover under different
drought conditions, Pearson correlation analysis was performed between monthly scale
NDVI series and drought series at different time scales. Line graphs of correlations between
drought and monthly scale NDVI for different drought durations are shown in Figure 7.
Correlation coefficients between NDVI in spring and drought index values for each time
scale gradually increased; correlation coefficients between NDVI in summer and drought
index values over a 3-month time scale gradually decreased; correlation coefficients with
meteorological drought data for the 6-month time scale gradually increased; and their
correlation coefficients with hydrological drought gradually increased. Correlation co-
efficients of NDVI with drought indicator values at 3 months gradually increased, as
do those for meteorological drought at 6 months, while those for hydrological drought
decreased slightly.

During spring, with increased temperature, snow melts in some areas of the Weihe
River Basin, replenishing surface and groundwater. During this time, vegetation becomes
more sensitive to changes in precipitation. During summer, with increased temperature,
evapotranspiration in the basin increases, and vegetation responds to a greater extent
to changes in precipitation and runoff. During fall, the various activities of vegetation
decrease, demand for water decreases, and vegetation responses to changes in precipita-
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tion and runoff also change. Meteorological and hydrological drought (SPI-3, SDI-3) at
3 months are more closely related to vegetation status (Figure 8). Meteorological drought
at 3 months also correlated most with vegetation status in June, and hydrological drought
at 3 months correlated most with vegetation status in May (Figure 2). Therefore, meteo-
rological (SPI-3) and hydrological drought (SDI-3) data most closely related to changes in
vegetation cover, and the impact lag time of 3 months was selected. Vegetation data for June
were selected based on meteorological drought, and, for May, they were selected based on
hydrological drought.
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5. Discussion
5.1. Impact of Drought Scenarios on Change in Vegetation Cover by Binary Copula Analysis Based
on SPI–NDVI and SDI–NDVI

Based on correlation analysis between NDVI, SPI, and SDI data series corresponding
to different time scales from 2001 to 2017, the lag in change in vegetation cover in response
to drought at different time scales was obtained. Pearson’s correlations between monthly
NDVI data during the growing period and SPI and SDI data series for the scale with the
largest correlation were obtained.
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Meteorological or hydrological drought and the corresponding month’s vegetation
data were selected as four random variables (x, y, w, and z, respectively). MATLAB software
(version R2021a) was used to make frequency histograms for each variable and to calculate
their skewness and kurtosis (Figure 9, Table 3).
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Table 3. Skewness and kurtosis of SPI-3, SDI-3, May NDVI, and June NDVI data.

Norm
Variant

Skewness Kurtosis

SPI-3 −0.63 2.17

June NDVI 0.28 2.17

SDI-3 0.08 2.44

May NDVI 0.16 2.42

Through the skewness and kurtosis of these four variables and frequency histograms,
the distributions of the two are asymmetric. Normal, T-copula functions can be excluded
to further analyze to determine the type of distribution of drought indicators and NDVI
and to select the optimal copula function. We used a nonparametric method to estimate the
overall distribution type (Figure 10).

Parameters θ and their rank correlation coefficients were calculated for three selected
copula functions (Gumbel, Frank, and Clayton) (Table 4). Distribution function plots
of these functions are presented in Figure 11, and density function plots are plotted in
Figure 12.

Table 4. Parameters θ and corresponding rank correlation coefficients for three copula functions.

Parameter
Function Type

Gumbel-Copula Clayton-Copula Frank-Copula

SPI-3 and June NDVI θ 2.32 2.13 6.39
SDI-3 and May NDVI θ 2.57 2.05 7.24
SPI-3 and June NDVI Kendall 0.5685 0.5155 0.5338
SPI-3 and June NDVI Spearman 0.76 0.70 0.73
SDI-3 and May NDVI Kendall 0.61 0.51 0.57
SDI-3 and May NDVI Spearman 0.80 0.69 0.77
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Taking the joint distribution of SPI-3 with June NDVI as an example, where the Kendall
and Spearman coefficients of the Gumbel-copula function are 0.57 and 0.76, the Kendall
and Spearman coefficients of the Clayton-copula function are 0.52 and 0.70, and the Kendall
and Spearman coefficients of the Frank-copula function are 0.53 and 0.72, respectively.
Similarly, the Kendall and Spearman coefficients of the Gumbel-copula function for the
joint distribution of SDI-3 and May NDVI are 0.61 and 0.80, respectively. The Kendall
and Spearman coefficients of the Clayton-copula function are 0.51 and 0.69, respectively,
and the Kendall and Spearman coefficients of the Frank-copula function are 0.57 and 0.77,
respectively. The Clayton-copula function appears to better fit the joint distribution of
SPI-3 and June NDVI and SDI-3 and May NDVI. To confirm the optimal copula function,
the three copula functions were tested for goodness-of-fit using the Akaike information
criterion (AIC) (Table 5).
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Table 5. AIC test values for Gumbel-copula, Clayton-copula, and Frank-copula functions.

Joint Distribution Function AIC

Gumbel-copula −2.23 × 103

SPI-3 and June NDVI Clayton-copula −2.54 × 103

Frank-copula −1.85 × 103

Gumbel-copula −2.15 × 103

SDI-3 and May NDVI Clayton-copula −2.63 × 103

Frank-copula −1.96 × 103

AIC values of the Clayton-copula function are minimized for both types of joint
distributions (−2.54 × 103 and −2.63 × 103, respectively). Therefore, the Clayton-copula
function optimally fits the two types of joint distributions (Table 5).

We selected the Clayton-copula function to fit the two types of joint distributions
of SPI and NDVI and SDI and NDVI. Relationships between drought and vegetation
cover changes in the watershed under the joint distributions were analyzed based on
corresponding density function plots (Figures 11 and 12). Probability density function
plots of the Clayton-copula function are “L-shaped”. The upper tail is low and the lower
tail is high and thick (the correlation between drought and vegetation cover change is
obvious). There is a high correlation between drought and change in vegetation cover
when the probability is very small (in the case of a very small probability of hydrolog-
ical and meteorological drought, there is a high probability of a very small change in
vegetation cover). Based on correlations between drought and vegetation cover, the real-
time drought situation can be used to predict vegetation cover. Therefore, it is conve-
nient to take corresponding measures in advance to improve vegetation cover and avoid
ecosystem damage.

5.2. Assessment of Changes in Vegetation Cover for Different Drought Stress Levels

Based on the response time of vegetation to drought, the corresponding correla-
tion response models were constructed by selecting March SPI and June NDVI, and
March SDI and May NDVI sequences using the optimal copula function. The proba-
bility of vegetation loss under different drought scenarios was deduced based on the joint
distribution relationship.
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Based on the derivation of Equations (15) and (16), the magnitude of the conditional
probability of loss of vegetation condition < 0.50, 0.30, and 0.10 under different drought
severities were calculated (Figures 13 and 14); average results are detailed in Tables 5
and 6. Changes in vegetation cover under different drought scenarios were assessed by
quantifying the probability of loss of vegetation, which differed under different drought
scenarios. The probabilities of loss of vegetation characterized by NDVI < 0.50, 0.30, and
0.10 preset points of extreme drought were 0.56, 0.33, and 0.21, respectively; values for
severe drought were 0.48, 0.31, and 0.18, respectively, and those for moderate drought were
0.43, 0.25, and 0.14, respectively. For the hydrological drought scenario, the probabilities of
vegetation loss characterized by NDVI < 0.50, 0.30, and 0.10 for extreme drought were 0.64,
0.45, and 0.29, respectively; these values are lower than those for the severe drought scenario
(0.47, 0.30, and 0.17, respectively). We conclude that with intense drought, vegetation is
more susceptible to influence, and the more obvious any change in vegetation cover will
be. Additionally, vegetation status is more sensitive to hydrological than meteorological
drought (hydrological drought more directly affects vegetation cover).

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 20 
 

 

cover will be. Additionally, vegetation status is more sensitive to hydrological than mete-
orological drought (hydrological drought more directly affects vegetation cover). 

 
Figure 13. Probability of vegetation loss in June when vegetation cover at pre-determined points is 
< 0.5, 0.3, and 0.1 for different drought scenarios. 

 
Figure 14. Probability of vegetation loss in May when vegetation cover at pre-determined points is 
< 0.5, 0.3, and 0.1 for different drought scenarios. 

Table 6. Probability of vegetation loss under different drought stress levels. 

Combination 
Scenarios 

Meteorological Drought Hydrological Drought 
Moderate 
Drought 

Severe 
Drought 

Extreme 
Drought 

Moderate 
Drought 

Severe 
Drought 

Extreme 
Drought 𝑁𝐷𝑉𝐼 ≤ 0.5 0.43 0.48 0.56 0.47 0.57 0.64 𝑁𝐷𝑉𝐼 ≤ 0.3 0.25 0.31 0.33 0.30 0.42 0.45 

Figure 13. Probability of vegetation loss in June when vegetation cover at pre-determined points
is < 0.5, 0.3, and 0.1 for different drought scenarios.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 20 
 

 

cover will be. Additionally, vegetation status is more sensitive to hydrological than mete-
orological drought (hydrological drought more directly affects vegetation cover). 

 
Figure 13. Probability of vegetation loss in June when vegetation cover at pre-determined points is 
< 0.5, 0.3, and 0.1 for different drought scenarios. 

 
Figure 14. Probability of vegetation loss in May when vegetation cover at pre-determined points is 
< 0.5, 0.3, and 0.1 for different drought scenarios. 

Table 6. Probability of vegetation loss under different drought stress levels. 

Combination 
Scenarios 

Meteorological Drought Hydrological Drought 
Moderate 
Drought 

Severe 
Drought 

Extreme 
Drought 

Moderate 
Drought 

Severe 
Drought 

Extreme 
Drought 𝑁𝐷𝑉𝐼 ≤ 0.5 0.43 0.48 0.56 0.47 0.57 0.64 𝑁𝐷𝑉𝐼 ≤ 0.3 0.25 0.31 0.33 0.30 0.42 0.45 

Figure 14. Probability of vegetation loss in May when vegetation cover at pre-determined points
is < 0.5, 0.3, and 0.1 for different drought scenarios.



Remote Sens. 2024, 16, 3997 16 of 19

Table 6. Probability of vegetation loss under different drought stress levels.

Combination
Scenarios

Meteorological Drought Hydrological Drought
Moderate
Drought

Severe
Drought

Extreme
Drought

Moderate
Drought

Severe
Drought

Extreme
Drought

NDVI ≤ 0.5 0.43 0.48 0.56 0.47 0.57 0.64
NDVI ≤ 0.3 0.25 0.31 0.33 0.30 0.42 0.45
NDVI ≤ 0.1 0.14 0.18 0.21 0.17 0.23 0.29

In terms of the probability of vegetation loss, the degree of drought impact is related
to regional vegetation cover. For the probability of vegetation loss under different drought
scenarios in the same area of Weihe River Basin, the probability of vegetation loss increases
as the degree of drought intensifies (vegetation becomes more vulnerable, and when its
status is below a predefined point, the probability of vegetation loss under drought stress
decreases). The main Weihe River stream crosses the southern part of the watershed,
with vegetation around it being mostly woodland and cultivated plants. Because of the
proximity of vegetation to the river, cover in the southern part of the basin is larger and
more sensitive to water changes. During droughts, the probability of vegetation loss in the
southern watershed increases with drought intensification. The Luo River, meandering
through the eastern sector of this basin, is flanked by cultivated flora and scrubland, bearing
resemblance to the southern basin’s landscape. Consequently, the likelihood of vegetation
decline in this region escalates in tandem with the severity of drought conditions. We
report that when vegetation is exposed to different degrees of drought at different pre-
determined coverages, the probability of vegetation loss increases with drought severity.
This demonstrates that the NDVI proposed by the Copula joint distribution has a certain
lower-tailed correlation with SPI and SDI and that, when the latter two reach minimum
values (when drought is most severe), the condition of smaller values of the NDVI of the
NDVI of the normalized vegetation index probability is greater.

6. Conclusions

Utilizing MODIS MOD13A2 data along with SPI and SDI indices from 2001 to 2017,
we analyzed the spatial and temporal patterns of NDVI and vegetation cover in the Weihe
River Basin. A Copula function-based model was developed to assess vegetation loss
under various drought conditions. Our main conclusions are as follows: (1) Over two
decades, NDVI increased at a rate of 0.05 per decade, with a general upward trend in
vegetation cover. NDVI values rose from north to south, with higher cover in the eastern
and southern parts and lower in the western and northern regions. (2) No significant
overall trend in vegetation cover change was observed, but an upward trend was noted
in the northeast, central, and parts of the southwest and northwest areas (55.26% of the
basin). Over time, regions with higher vegetation cover showed a decreasing trend, while
those with lower cover showed an increasing one. (3) The southern and eastern parts of
the basin were more susceptible to vegetation loss due to drought, with proximity to the
river increasing sensitivity. The vegetation was more affected by hydrological drought than
meteorological drought. The likelihood of vegetation loss increased with drought severity,
but the probability of significant loss was lower at the same drought stress level.

Our analyses assist with the prediction of future changes in vegetation in response
to drought events. As such, they will assist in monitoring and evaluating the benefits of
ecological governance projects and levels of ecosystem restoration, and provide a basis and
guidance for future ecological environment governance in this area.
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