Multi-Static Radar System Deployment Within a Non-Connected Region Utilising Particle Swarm Optimization
Abstract
:1. Introduction
1.1. Overview
1.1.1. MSRS Deployment
1.1.2. Constraint Handling Mechanisms with PSO
1.1.3. MIP Solution with PSO
1.2. Motivation
1.3. Original Contributions
1.4. Organization
2. Problem Formulation
2.1. Mathematical Modeling
2.2. Model Extending
3. MOPSO-Based Deployment Algorithm
Algorithm 1: MSRS Deployment algorithm within non-connected region. | ||
| ||
Step 0: Problem transformation | ||
for | do | |
Map segmented variable to a combination of integer variable and a connected variable using (9); Encode into a linear combination of binary variables by means of binary encoding; | ||
end | ||
Step 1: Initialization | ||
for do | ||
for | do | |
Randomly initialize particle position and the individual best solution ; Initialize | ||
end Calculate optimization objectives ; Initialize as the non-dominated solutions in initialized solutions and global best solution as randomly selected from ; | ||
end | ||
for | do | |
Step 2: Sort the non-dominated solutions in in descending CD; Step 3: Particle position update with modified velocity formula For MOPSO-Sigmoid, follow the Algorithm 2 and for MOPSO-Gene, follow the Algorithm 3; Step 4: Perform mutation operator proposed in [37]; Step 5: Boundaries check for each dimension; | ||
for | do | |
Step 6: Calculate ; Step 7: Replace with the non-dominated solutions of ; Step 8: Replace with the non-dominated solutions of ; | ||
end | ||
Step 9: Sort the solutions in in descending CD and randomly select the for each particle from a specified top portion of the sorted ; | ||
end | ||
Step 10: Solution output; | ||
For each solution in , calculate according to and using (9); | ||
Step 11: Output the final solutions in ; |
3.1. Problem Transformation for MOMIP Model
3.2. Velocity Formulas for Integer Variables
3.2.1. MSRS Deployment Algorithm Based on Sigmoid Function (MOPSO-Sigmoid)
Algorithm 2: The modified dynamics based on the sigmoid function. |
3.2.2. MSRS Deployment Algorithm Based on Genetic Operation (MOPSO-Gene)
Algorithm 3: The modified dynamics based on genetic operation. |
3.3. Comparing Algorithms for MOSDVP
3.3.1. MSRS Deployment Algorithm for AC Model (MOPSO-Penalty)
3.3.2. MSRS Deployment Algorithm for MOMIP Model (MOPSO-Round)
4. Numerical Study
4.1. Numerical Study on Benchmark Testing Set
4.1.1. Performance Metrics
4.1.2. Parameter Settings
4.1.3. Experimental Results and Comparative Analysis
4.2. Numerical Study on MSRS Deployment Problem
4.2.1. Simulation Model
4.2.2. Parameter Settings
4.2.3. Result Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, C.; Hume, A. Netted radar sensing. IEEE Aerosp. Electron. Syst. Mag. 2003, 18, 3–6. [Google Scholar] [CrossRef]
- Godrich, H.; Haimovich, A.M.; Blum, R.S. Target localization accuracy gain in MIMO radar-based systems. IEEE Trans. Inf. Theory 2010, 56, 2783–2803. [Google Scholar] [CrossRef]
- Javadi, S.H.; Farina, A. Radar networks: A review of features and challenges. Inf. Fusion 2020, 61, 48–55. [Google Scholar] [CrossRef]
- He, Q.; Lehmann, N.H.; Blum, R.S.; Haimovich, A.M. MIMO radar moving target detection in homogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1290–1301. [Google Scholar] [CrossRef]
- Chen, W.J.; Narayanan, R.M. Antenna placement for minimizing target localization error in UWB MIMO noise radar. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 135–138. [Google Scholar] [CrossRef]
- Radmard, M.; Chitgarha, M.M.; Majd, M.N.; Nayebi, M.M. Antenna placement and power allocation optimization in MIMO detection. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1468–1478. [Google Scholar] [CrossRef]
- Zhang, T.; Cui, G.; Kong, L.; Yi, W.; Yang, X. Phase-modulated waveform evaluation and selection strategy in compound-Gaussian clutter. IEEE Trans. Signal Process. 2012, 61, 1143–1148. [Google Scholar] [CrossRef]
- Yi, W.; Morelande, M.R.; Kong, L.; Yang, J. A computationally efficient particle filter for multitarget tracking using an independence approximation. IEEE Trans. Signal Process. 2012, 61, 843–856. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.; Kong, L.; Ma, Z. A Stochastic Simulation Optimization based Range Gate Pull-off Jamming Method. IEEE Trans. Evol. Comput. 2022, 27, 580–594. [Google Scholar] [CrossRef]
- Zhu, R.; Yu, D.; Ji, S.; Lu, M. Matching RGB and Infrared Remote Sensing Images with Densely-Connected Convolutional Neural Networks. Remote Sens. 2019, 11, 2836. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, F.; Zhang, L.; Cao, Y.; Qian, J.; Xu, J.; Yang, L. Fast Frequency-Diverse Radar Imaging Based on Adaptive Sampling Iterative Soft-Thresholding Deep Unfolding Network. Remote Sens. 2023, 15, 3284. [Google Scholar] [CrossRef]
- Yang, Y.; Yi, W.; Zhang, T.; Cui, G.; Kong, L.; Yang, X.; Yang, J. Fast optimal antenna placement for distributed MIMO radar with surveillance performance. IEEE Signal Process. Lett. 2015, 22, 1955–1959. [Google Scholar] [CrossRef]
- Pizzuti, C. Evolutionary computation for community detection in networks: A review. IEEE Trans. Evol. Comput. 2017, 22, 464–483. [Google Scholar] [CrossRef]
- Li, H.; Zhao, G.; Qin, L.; Yang, Y. Design and optimization of a hybrid sensor network for traffic information acquisition. IEEE Sens. J. 2019, 20, 2132–2144. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Raval, S. A Particle Swarm Optimization Based Approach to Pre-tune Programmable Hyperspectral Sensors. Remote Sens. 2021, 13, 3295. [Google Scholar] [CrossRef]
- Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major advances in particle swarm optimization: Theory, analysis, and application. Swarm Evol. Comput. 2021, 63, 100868. [Google Scholar] [CrossRef]
- Chen, T.; Qi, J.; Xu, M.; Zhang, L.; Guo, Y.; Wang, S. Deployment of Remote Sensing Technologies for Effective Traffic Monitoring. Remote Sens. 2023, 15, 4674. [Google Scholar] [CrossRef]
- Pradhan, P.M.; Panda, G. Connectivity constrained wireless sensor deployment using multiobjective evolutionary algorithms and fuzzy decision making. Ad Hoc Netw. 2012, 10, 1134–1145. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, T.; Yi, W.; Kong, L.; Li, X.; Wang, B.; Yang, X. Deployment of multistatic radar system using multi-objective particle swarm optimisation. Iet Radar Sonar Navig. 2018, 12, 485–493. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, J.; Yang, Y.; Cui, G.; Kong, L.; Yang, X. Antenna deployment method for multistatic radar under the situation of multiple regions for interference. Signal Process. 2018, 143, 292–297. [Google Scholar] [CrossRef]
- Liang, J.; Ban, X.; Yu, K.; Qu, B.; Qiao, K.; Yue, C.; Chen, K.; Tan, K.C. A Survey on Evolutionary Constrained Multiobjective Optimization. IEEE Trans. Evol. Comput. 2023, 27, 201–221. [Google Scholar] [CrossRef]
- Runarsson, T.P.; Yao, X. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 2000, 4, 284–294. [Google Scholar] [CrossRef]
- Ray, T.; Singh, H.K.; Isaacs, A.; Smith, W. Infeasibility driven evolutionary algorithm for constrained optimization. In Constraint-Handling in Evolutionary Optimization; Springer: Berlin/Heidelberg, Germnay, 2009; pp. 145–165. [Google Scholar]
- Homaifar, A.; Qi, C.X.; Lai, S.H. Constrained optimization via genetic algorithms. Simulation 1994, 62, 242–253. [Google Scholar] [CrossRef]
- Farmani, R.; Wright, J.A. Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. Comput. 2003, 7, 445–455. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, Y.; Lu, J.; Cao, J.; Rutkowski, L. Penalty method for constrained distributed quaternion-variable optimization. IEEE Trans. Cybern. 2020, 51, 5631–5636. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, A.; Das, S. Utilizing dependence among variables in evolutionary algorithms for mixed-integer programming: A case study on multi-objective constrained portfolio optimization. Swarm Evol. Comput. 2021, 66, 100928. [Google Scholar] [CrossRef]
- Juang, C.F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. B 2004, 34, 997–1006. [Google Scholar] [CrossRef]
- Liao, T.; Socha, K.; de Oca, M.A.M.; Stützle, T.; Dorigo, M. Ant colony optimization for mixed-variable optimization problems. IEEE Trans. Evol. Comput. 2013, 18, 503–518. [Google Scholar] [CrossRef]
- Nema, S.; Goulermas, J.; Sparrow, G.; Cook, P. A hybrid particle swarm branch-and-bound (HPB) optimizer for mixed discrete nonlinear programming. IEEE Trans. Syst. Man Cybern. A 2008, 38, 1411–1424. [Google Scholar] [CrossRef]
- De Maio, A.; Lops, M. Design principles of MIMO radar detectors. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 886–898. [Google Scholar] [CrossRef]
- Cui, G.; De Maio, A.; Piezzo, M. Performance prediction of the incoherent radar detector for correlated generalized Swerling-chi fluctuating targets. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 356–368. [Google Scholar] [CrossRef]
- Richards, M.A. Fundamentals of Radar Signal Processing; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Skolnik, M.I. Radar Handbook; McGraw-Hill Education: New York, NY, USA, 2008. [Google Scholar]
- Raquel, C.R.; Naval, P.C., Jr. An effective use of crowding distance in multiobjective particle swarm optimization. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC, USA, 25–29 June 2005; pp. 257–264. [Google Scholar]
- Miettinen, K. Nonlinear Multiobjective Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 12. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; IEEE: New York, NY, USA, 1997; Volume 5, pp. 4104–4108. [Google Scholar]
- Yang, S.; Wang, M.; Jiao, L. A quantum particle swarm optimization. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 19–23 June 2004; IEEE: New York City, NY, USA, 2004; Volume 1, pp. 320–324. [Google Scholar]
- Afshinmanesh, F.; Marandi, A.; Rahimi-Kian, A. A novel binary particle swarm optimization method using artificial immune system. In Proceedings of the EUROCON 2005—The International Conference on “Computer as a Tool”, Belgrade, Serbia, 21–24 November 2005; IEEE: New York, NY, USA, 2005; Volume 1, pp. 217–220. [Google Scholar]
- Pampara, G.; Franken, N.; Engelbrecht, A.P. Combining particle swarm optimisation with angle modulation to solve binary problems. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; IEEE: New York, NY, USA, 2005; Volume 1, pp. 89–96. [Google Scholar]
- Gao, W.F.; Yen, G.G.; Liu, S.Y. A dual-population differential evolution with coevolution for constrained optimization. IEEE Trans. Cybern. 2014, 45, 1108–1121. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Coelho, L. An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications. Reliab. Eng. Sys. Safe. 2009, 94, 830–837. [Google Scholar] [CrossRef]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef]
- Knowles, J.D.; Thiele, L.; Zitzler, E. A tutorial on the performance assessment of stochastic multiobjective optimizers. Comput. Eng. Netw. Lab. (TIK) 2006, 214. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [Google Scholar] [CrossRef]
Algorithm Name | Problem Model | Decision Variables (Variable Number) |
---|---|---|
MOPSO -Penalty [42] | AC model (18) | XS ∪ XC (NC + NS) |
MOPSO -Round [28] | MOMIP model (21) | |
MOPSO -Sigmoid | MOMBP model (13) | |
MOPSO -Gene |
Null Hypothesis | p-Value | Statistical Conclusion | |
---|---|---|---|
MOPSO-Gene | HV | 2.863 × 10−14 | Reject |
No better than | |||
MOPSO-Sigmoid | Iϵ+ | 6.247 × 10−26 | |
MOPSO-Gene | HV | <1 × 10−50 | Reject |
No better than | |||
MOPSO-Round | Iϵ+ | <1 × 10−50 | |
MOPSO-Gene | HV | <1 × 10−50 | Reject |
No better than | |||
MOPSO-Penalty | Iϵ+ | <1 × 10−50 | |
MOPSO-Sigmoid | HV | 1.295 × 10−29 | Reject |
No better than | |||
MOPSO-Penalty | Iϵ+ | 2.480 × 10−14 | |
MOPSO-Sigmoid | HV | 5.483 × 10−19 | Reject |
No better than | |||
MOPSO-Round | Iϵ+ | <1 × 10−50 | |
MOPSO-Round | HV | 4.779 × 10−3 | Reject |
No better than | |||
MOPSO-Penalty | Iϵ+ | 4.616 × 10−5 |
MOPSO -Penalty | MOPSO -Round | MOPSO -Sigmoid | MOPSO -Gene | |||
---|---|---|---|---|---|---|
4 nodes | HV | Bes. | 50.54 | 50.37 | 50.24 | 50.72 |
Ave. | 48.23 | 47.91 | 48.60 | 49.48 | ||
Wor. | 7.595 | 42.11 | 45.28 | 44.78 | ||
Var. | 59.19 | 4.869 | 1.147 | 0.7427 | ||
Iϵ+ | Bes. | 6.053 | 6.068 | 6.004 | 5.966 | |
Ave. | 6.306 | 6.259 | 6.167 | 6.080 | ||
Wor. | 10.29 | 6.853 | 6.495 | 6.546 | ||
Var. | 0.5777 | 4.733 × 10−2 | 1.123 × 10−2 | 7.333 × 10−3 | ||
6 nodes | HV | Bes. | 84.64 | 84.85 | 84.97 | 85.15 |
Ave. | 78.49 | 82.49 | 83.01 | 83.69 | ||
Wor. | 57.64 | 76.86 | 81.28 | 81.92 | ||
Var. | 57.16 | 2.905 | 0.4514 | 0.3894 | ||
Iϵ+ | Bes. | 2.694 | 2.670 | 2.665 | 2.650 | |
Ave. | 3.296 | 2.906 | 2.856 | 2.792 | ||
Wor. | 5.351 | 3.462 | 3.027 | 2.968 | ||
Var. | 57.16 | 2.905 | 0.4514 | 0.3894 | ||
Var. | 0.5526 | 2.813 × 10−2 | 4.408 × 10−3 | 3.848 × 10−3 | ||
8 nodes | HV | Bes. | 95.99 | 96.39 | 96.87 | 96.87 |
Ave. | 90.15 | 94.42 | 95.29 | 96.08 | ||
Wor. | 78.67 | 92.71 | 93.76 | 94.80 | ||
Var. | 18.23 | 0.4259 | 0.3010 | 0.1557 | ||
Iϵ+ | Bes. | 1.640 | 1.593 | 1.554 | 1.545 | |
Ave. | 2.201 | 1.793 | 1.703 | 1.634 | ||
Wor. | 3.326 | 1.961 | 1.852 | 1.759 | ||
Var. | 0.1748 | 4.001 × 10−2 | 2.957 × 10−2 | 1.557 × 10−2 | ||
10 nodes | HV | Bes. | 100.8 | 102.0 | 102.6 | 103.0 |
Ave. | 95.75 | 101.0 | 101.6 | 102.4 | ||
Wor. | 91.41 | 100.1 | 100.6 | 101.2 | ||
Var. | 6.234 | 0.2132 | 0.1455 | 9.571 × 10−2 | ||
Iϵ+ | Bes. | 1.105 | 1.030 | 1.021 | 1.013 | |
Ave. | 1.698 | 1.202 | 1.131 | 1.093 | ||
Wor. | 2.116 | 1.296 | 1.231 | 1.197 | ||
Var. | 5.944 × 10−2 | 2.002 × 10−3 | 1.390 ×10−3 | 9.483 × 10−4 |
Null Hypothesis | p-Value | Statistical Conclusion | |
---|---|---|---|
MOPSO-Gene | HV | 0.2785 | Accept |
No better than | |||
MOPSO-Sigmoid | Iϵ+ | 0.1576 | |
MOPSO-Gene | HV | 6.557 × 10−5 | Reject |
No better than | |||
MOPSO-Round | Iϵ+ | 6.787 × 10−6 | |
MOPSO-Gene | HV | 7.431 × 10−5 | Reject |
No better than | |||
MOPSO-Penalty | Iϵ+ | 3.922 × 10−6 | |
MOPSO-Sigmoid | HV | 1.419 × 10−2 | Reject |
No better than | |||
MOPSO-Round | Iϵ+ | 1.803 × 10−2 | |
MOPSO-Sigmoid | HV | 9.575 × 10−3 | Reject |
No better than | |||
MOPSO-Penalty | Iϵ+ | 9.649 × 10−3 | |
MOPSO-Round | HV | 3.922 × 10−2 | Reject |
No better than | |||
MOPSO-Penalty | Iϵ+ | 1.712 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Li, X.; Zhang, T.; Yang, X. Multi-Static Radar System Deployment Within a Non-Connected Region Utilising Particle Swarm Optimization. Remote Sens. 2024, 16, 4004. https://doi.org/10.3390/rs16214004
Han Y, Li X, Zhang T, Yang X. Multi-Static Radar System Deployment Within a Non-Connected Region Utilising Particle Swarm Optimization. Remote Sensing. 2024; 16(21):4004. https://doi.org/10.3390/rs16214004
Chicago/Turabian StyleHan, Yi, Xueting Li, Tianxian Zhang, and Xiaobo Yang. 2024. "Multi-Static Radar System Deployment Within a Non-Connected Region Utilising Particle Swarm Optimization" Remote Sensing 16, no. 21: 4004. https://doi.org/10.3390/rs16214004
APA StyleHan, Y., Li, X., Zhang, T., & Yang, X. (2024). Multi-Static Radar System Deployment Within a Non-Connected Region Utilising Particle Swarm Optimization. Remote Sensing, 16(21), 4004. https://doi.org/10.3390/rs16214004