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Abstract: This paper is mainly devoted to studying the deployment problem of a multi-static radar
system (MSRS) within a non-connected deployment region using multi-objective particle swarm
optimization (MOPSO). By modeling and reformulating the problem, it can be represented as a multi-
objective mixed integer programming (MOMIP), which eliminates the need for additional constraints.
To enhance the algorithm performance, integer variables and continuous ones are treated separately
employing multiple velocity formulas. The velocity formulas for integer variables are modified using
the sigmoid function and genetic operation, leading to the proposal of two MSRS deployment algo-
rithms, namely MOPSO-Sigmoid and MOPSO-Gene. To evaluate the performance of the proposed
algorithms, they are compared with two existing MOPSO-based algorithms. The first algorithm is the
MSRS deployment algorithm for the non-connected deployment region that addresses the additional
constraint problem model. The second algorithm is based on an existing conventional MOPSO
algorithm and addresses the equivalent MOMIP problem model. A numerical study demonstrates
that MOPSO-Sigmoid and MOPSO-Gene exhibit promising efficiency and effectiveness.

Keywords: multi-static radar system (MSRS) deployment; non-connected deployment region; multi-
objective particle swarm optimization (MOPSO); multi-objective segmented decision variable problem
(MOSDVP); multi-objective mixed integer programming (MOMIP); multiple velocity formula

1. Introduction

In recent years, there has been a growing interest among researchers in the field of
multi-static radar system (MSRS) [1–3]. In comparison to conventional mono-static radar,
MSRS has the potential to enhance performance, yet it also introduces a multitude of new
challenges. Among these, the issue of node deployment has attracted the attention of many
researchers [4–6]. The computational burden associated with the optimal node deployment
criteria for MSRS is escalating, due to the introduction of new applications, such as ad-
vanced waveform design [7], novel tracking technology [8], advanced intelligent electronic
countermeasure [9], and remote sensing [10,11]. In order to address the computational
challenge, heuristic algorithms like particle swarm optimization (PSO) have been employed
in many studies on radar or sensor deployment [12–17]. On the other hand, in practical
applications, it is often necessary to consider multiple conflicting performance indicators
simultaneously. Consequently, some researchers have constructed unconstrained multi-
objective optimization problem models for the MSRS deployment problem and solved
them with multi-objective particle swarm optimization (MOPSO) and its variants [18,19].
Nevertheless, the aforementioned works are predicated on the assumption that the MSRS
deployment region is connected.

Due to geographical constraints, meteorological conditions, special requirements, or
other reasons, it is not uncommon for the deployment region of MSRS to be complex and
scattered. It can be said that the deployment region of MSRS is often divided into several
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non-connected subregions by the regions that are unsuitable for deployment in practice,
such as rivers, steep hills, and so on. The non-connected deployment region of MSRS
could be treated as a constrained multi-objective problem (MOP) and often solved using
constraint handling mechanisms [20,21].

However, the introduction of constraint handling mechanism may result in an increase
in algorithm complexity and a concomitant rise in computing cost when attempting to
solve the MSRS deployment problem, particularly when MOPSO is employed. To the
authors’ best knowledge, at present, this problem has not been paid enough attention by
researchers. Consequently, further research is required to investigate MSRS deployment
within non-connected deployment region. This is indeed the main topic of this paper.

1.1. Overview

The following literature overview contains three main areas of research: (1) the MSRS
deployment, (2) the constraint handling mechanism with PSO, and (3) the solving of
mixed-integer programming (MIP) solution with PSO.

1.1.1. MSRS Deployment

The deployment of nodes in MSRS has been demonstrated to enhance its performance.
The optimal location for each node is determined through traversal while adhering to strict
criteria [4,5]. A algorithm for MSRS deployment is proposed, utilizing a sequential exhaus-
tive enumeration approach. However, this method is susceptible to significant computa-
tional constraints [6]. The computational challenge has been addressed in numerous studies
by employing PSO, which has demonstrated excellent performance in solving continuous
variable problems [12–14,16]. Based on the aforementioned works, an MSRS deployment
problem with multiple conflicting performance indicators is investigated [18,19]. Another
work is devoted to the iteration convergence criterion [20]. Nevertheless, these works are
all based on the assumption that the MSRS deployment region is connected. There is a
paucity of relatively systematic studies on the case of non-connected deployment regions.

1.1.2. Constraint Handling Mechanisms with PSO

Many studies have focused on the constraints handling mechanism, which can be
broadly classified into three categories. (1) Modifying the ordering of solutions [22], which
changes the ordering rule of candidate solutions so that feasible solutions are identified.
Although intuitive, this approach may reduce the efficiency of the algorithm when solving
complex problems. (2) Modifying the constraints [23], which regards constraints as addi-
tional objectives. This mechanism could be inconvenient when the number of constraints
considered is large. (3) Modifying the objective function, which is also known as the penalty
function mechanism. Among these mechanisms, the penalty function is the most direct
and commonly used, due to the universality of PSO towards optimization problems.

The fundamental principle underlying the penalty function mechanism is punishing
the infeasible solutions during the calculation of objective functions. The penalty function
mechanism can be subclassified into two categories, static [24] and adaptive [25,26]. The
former approach is relatively simpler, which introduces a fixed penalty value to all infeasible
solutions when calculating the objective functions. In contrast, the latter approach modifies
the penalty function continuously throughout the iteration, based on the information
gathered from the search process. Although the modified criteria vary, the most commonly
used one is to determine the penalty function according to the constraint violation of each
infeasible solution. Nevertheless, the aforementioned methodologies inevitably result in
increased algorithm complexity when compared to unconstrained versions.

1.1.3. MIP Solution with PSO

To date, only a limited number of studies have focused on the application of multi-
objective mixed integer programming (MOMIP) with PSO. A real-world application of
MOMIP, multi-objective portfolio optimization is studied in [27], which is further trans-
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formed into a standard MOP by assuming dependence among integer variables and contin-
uous ones on their investment problem. This method is ingenious, but it is not appropriate
for general MOMIP like MSRS deployment.

Meanwhile, many methods have been proposed for single-objective mixed-integer
programming (SOMIP). Considering that some methods for SOMIP could offer valuable
insights for the solving MOMIP, we also investigated the heuristic algorithms based on the
SOMIP solving methodologies, as follows. The most enlightening and most commonly used
methodology for solving SOMIP is to treat the integer variables as continuous during the
iterations, and to obtain the true value of each integer variable by rounding operation [28,29].
While these methods are capable of addressing the SOMIP, their algorithm performance
is constrained due to the inability to fully leverage the characteristics of integer variables
inherent in the problem. On the other hand, some researchers have attempted to integrate
some specific mechanisms, such as the branch-and-bound method, into PSO to develop
an SOMIP customized algorithm [30]. However, it results in the optimization objective
being recalculated multiple times within each iteration, which is a challenging solution for
MOMIP, particularly in cases where the computational objective functions are complex,
such as the MSRS deployment problem. Therefore, the methods employed for SOMIP
cannot be directly employed to the domain of MOMIP.

In summary, according to the available literature, the problem of solving MOMIP with
PSO remains unresolved.

1.2. Motivation

The motivation of this paper mainly stems from engineering practice. In practical applica-
tion, the MSRS deployment region is often divided into several non-connected subregions due
to geographical limitations, meteorological conditions, or other reasons. For further details,
please refer to Figure 1 and the context provided in Section 2.1. These deployment problems,
which we refer to as MSRS deployment within a non-connected deployment region, can be
properly abstracted and modeled as a typical multi-objective segmented decision variable
problem (MOSDVP). As mentioned in our previous work [19,20], given the complexity of the
problem at hand, we model the non-connected deployment region as additional constraints
and attempt to address it, employing MOPSO with a constraint-handling mechanism to
address it. However, MOPSO is demonstrably less efficient and effective than when solving
the MSRS deployment problem with a connected deployment region. This phenomenon
promptly attracted our attention.

To eliminate the additional constraints associated with the non-connected deployment
region, we reformulate this problem into an MOMIP and employ the rounding operation
for integer variables to solve this MOMIP. The results indicate that this method remains
less efficient than conventional methods. To address this, we modify the velocity formula
for integer variables while maintaining those for continuous variables. Finally, we solve
the deployment problem in an efficient and effective manner.

1.3. Original Contributions

The original contributions of this paper are as follows.
(1) In order to address the MSRS deploying problem within a non-connected deploy-

ment region, we conducted further investigation and extended the problem model. Rather
than introducing additional constraints, we reformulated the problem into an MOMIP by
dividing the deployment region and introducing integer variables. This allows the full
potential of the matching algorithm to be realized.

(2) Furthermore, in order to effectively address the attached integer variables, we
propose two MSRS deployment algorithms for the non-connected deployment region.
These algorithms employ two altering velocity formulas for integer variables based on the
sigmoid function and genetic operation. The results of the comparative experiment results
demonstrate that the proposed algorithms exhibit a statistically significant superiority
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over traditional algorithms. Moreover, these proposed algorithms can also be applied in
general MOMIP.
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Figure 1. Sketch of the MSRS deployment problem within a non-connected deployment region.

1.4. Organization

The rest of this paper is organized as follows. Section 2 presents the problem formula-
tion of MSRS deployment within a non-connected deployment region. This formulation
includes two variations: one with additional constraints and another with additional in-
teger variables. In Section 3, the customized algorithms for MSRS deployment within a
non-connected region problem are presented. Section 4 presents the results of the proposed
algorithms on a benchmark test set and on MSRS deployment within a non-connected
deployment region. Section 5 presents a conclusion.

2. Problem Formulation

The following section outlines the methodology employed to establish and extend the
mathematical model of an MSRS deployment problem within a non-connected region, to
align with the mathematical solving tool adopted.

To fully consider this problem and to avoid overcomplicating it, we focus on the radar
detection mission in our study. For the sake of convenience in expression, this problem
will be studied in two-dimensional space. It is also worth noting that the model and
methodology proposed in this paper are readily extended to other radar application areas
by replacing the optimization objectives.

2.1. Mathematical Modeling

In light of the fact that MSRS is designed to monitor a surveillance region with potential
targets, we divide the surveillance region A into L resolution cells. The optimal deployment
scheme can then be defined as the scheme with the overall best detection probability Pd
performance of MSRS among all resolution cells.

The non-connected deployment region B can be defined as a combination of non-
connected deployable subregions, i.e., B =

⋃
Bm, where J widely separated nodes are

deployed within.
Moreover, the effective coverage region C is defined as the region where the detection

probability of the lth resolution cell Pd(l) is greater than the detection probability threshold
of the MSRS Pdt. The sketch of this optimization problem is shown as Figure 1.
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In light of the aforementioned considerations, the overall optimal Pd performance
scheme for the MSRS should simultaneously satisfy both of the following criteria: (1) the
first objective is to ensure the most reliable monitoring of all resolution cells, which means
maximizing the area of the effective coverage region, C; (2) the second objective is to ensure
the most even distribution of Pd among all resolution cells.

In practice, the optimal performance objective can be represented by effective cover
rate (ECR), which is the coverage ratio of the area of effective coverage region to the
surveillance region. The computational formulas for ECR can be expressed as:

ECR(Θ) =
area(C(Θ)

⋂
A)

area(A)
, (1)

where area(•) represents the area of this region and Θ represents the deployment scheme.
To ascertain the specific mathematical expressions of the evenly distributed perfor-

mance objective, it was necessary to conduct a study of the arbitrary resolution cell and the
value of Pd. By using a monopulse square rate detector, the detection probability of the lth
resolution cell Pd(l) can be expressed as [31,32]:

Pd(l) = QJ×J

(√
2SNRl ,

√
2γT

)
, (2)

where Qu(α, t) represents the Marcum Q function (see [33] for detail definition), SNRl
represents the ratio of total signal energy to noise power (SNR) of the lth resolution cell,
and γT represents the detection threshold of MSRS.

Given that the threshold γT is set according to a predetermined false alarm probability,
Pd(l) is solely dependent on SNRl , which is to say, the objective is to identify the scheme
that results the most evenly distributed SNRl . To facilitate the calculation, a uniform
distribution can be translated into a focus on the minimum. Hence, the objective of
distributing performance evenly can be proposed as a minimum SNR (minSNR). The
computational formula can be given as:

minSNR(Θ) = min
0<l<L

{SNRl(Θ)}. (3)

It is evident that, whilst the total energy remains constant, an increase in the minSNR
results in a more uniform energy distribution. Therefore, the uniform distribution of energy
can be converted to maximize the minSNR.

Furthermore, by assuming that the transceiver channels of each node of MSRS are
orthogonal, SNRl can be expressed as the sum of the signal energy divided by the noise
power of each transceiver channel. By jointly processing the received signals from all J × J
transceiver channels, SNRl can be expressed as:

SNRl =
J

∑
i=1

J

∑
j=1

SNRl(i, j), (4)

where J is the number of nodes of MSRS. By assuming that all J nodes of MSRS have
the same parameters, for a typical targets whose radar cross section is σ, the SNR of the
transceiver channel for transmitting from ith node and receiving at jth node SNRl(i, j) can
be expressed as [19,34]:

SNRl(i, j) = D0
σijR4

max

σ
(

Ri,l Rj,l

)2 , (5)

where D0 is the detectability factor, Rmax is the maximum detection range when radar
node works independently, σij is the bistatic radar cross section of transceiver channel for
transmitting from ith node and receiving at jth node, and Ri,l is the distance between the
ith node and the lth resolution cell.
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Given that D0 is defined in accordance with the typical characteristics of the target and
that Rmax can be regarded as a constant in the MSRS deployment problem, the performance

of MSRS is determined by σij/
σ, Ri,l and Rj,l . In other words, the optimal solution to this

problem depends on the position of each node of MSRS.
Consequently, the decision vector Θ of this problem is defined by the location of each

node, represented by the coordinates (x, y). Meanwhile, it is evident that the objective
of MSRS deployment is to identify the MSRS deployment scheme that maximizes the
aforementioned objectives. Hence, the form of MSRS deployment within a non-connected
deployment region problem is shown as:

maximize F(Θ) = { f1(Θ), f2(Θ)},

= {ECR(Θ), minSNR(Θ)},

Θ =
(
x1, y1, . . . , xJ , yJ

)T (6)

s.t.
(
xj, yj

)
∈ B =

⋃
Bm, j = 1, · · · , J.

where (•)T is the transpose operation.
Problem (6) is evidently a constrained multi-objective optimization problem, com-

prising a constraint and two conflicting optimization objective functions. It is there-
fore impossible to identify a single solution that can simultaneously optimize all of the
objective functions.

Our previous work have demonstrated that the computational complexity of the optimiza-
tion objectives for this problem exceeds that of traditional exact solution algorithms [19,20].
Therefore, we adopt the MOPSO, a well-tested heuristic algorithm architecture, to address
this deployment problem.

However, our previous works did not study the case with a non-connected deployment
region in sufficient depth, merely offering an initial conceptual solution. The numerical
simulations have demonstrated that the problem (6) constrains the performance of MOPSO,
resulting in challenges in calculation accuracy and computational cost. Therefore, it is
necessary to abstract the problem into a mathematical model and extend it into a more
appropriate form.

2.2. Model Extending

It is evident that the defining characteristic of problem (6) lies in its non-connected
solution space, i.e., the deployment region B is non-connected. Furthermore, it can be
considered a problem with several additional constraints compared to a deployment
problem within a connected deployment region. So we abbreviate this model as the
additional constraint problem model (AC model).

AC model can be abstracted as:

maximize F(Θ) = [ f1(Θ), f2(Θ)]T

subject to : Θ ∈ Ω, (7)

where Θ represents the N-dimensional decision vector, where N is the number of decision
variables (in our case N = 2 × J). Ω ⊂ RN is non-empty and non-connected, and it
represents the solution space, i.e., deployment region. In mathematics, a problem with a
non-connected solution space Ω, can be collectively referred to as MOSDVP, where some
or all of the decision variables exhibit a segmented value range.

Accordingly, the decision variables of MOSDVP can be further divided into two cate-
gories according to whether value range is segmented or connected. This can be expressed
as Θ = [ΘS; ΘC]

T , where ΘS is the vector of segmented variables and ΘC is the vector of
connected variables. They represent non-connected dimensions and connected dimensions,
respectively, in the deployment region.
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For the sake of brevity, the subsequent content is all based on the unconstrained
MOSDVPs, i.e., problems discussed below contain no constraints other than those caused
by the segmented variables. The conclusions are also applicable to constrained MOSDVPs
by introducing a proper constraint handling mechanism.

It can be argued that an unconstrained MOSDVP can be treated as a generic con-
strained MOP, which contains only linear inequality constraints. This implies that an
MOSDVP can be refined to

maximize F(ΘS, ΘC)

s.t.

 Θ ∈ [lb1, ub1]× · · · × [lbN , ubN ] ⊆ RN

θs ∈
[
lb1

s , ub1
s
]
∪ · · · ∪

[
lbKs

s , ubKs
s

]
, ∀θs ∈ ΘS

(8)

where for any segmented variable θs ∈ ΘS, its value range is divided into Ks subintervals,
and lb is the interval lower bound and ub is the interval upper bound.

To circumvent these additional constraints, we propose an alternative approach to
determine each segmented variable θs by employing a combination of a connected variable
θ̂s and an additional integer variable zs. This approach can be expressed as:

θs = lbzs + θ̂s × ∥ubzs − lbzs∥2{
θ̂s ∈ [0, 1]
zs ∈ {1, · · · , Ks}

(9)

where ∥•∥2 represents the the length of the corresponding interval. This approach can be
interpreted as first determining which segment θs is within, using zs, and then determining
the specific value in this segment using θ̂s.

Further, substituting (9) into problem (8), we can obtain the equivalent model for
MOSDVP as:

maximize F
(
Θ̂S, ΘC, Z

)
s.t.


ΘC ∈ [lb1, ub1]× · · · ×

[
lbNC , ubNC

]
⊆ RNC

Θ̂S ∈ [0, 1]× · · · × [0, 1] ⊆ RNS

ZS ∈ {1, · · · , K1} × · · · ×
{

1, · · · , KNS

}
⊆ ZNS

(10)

where Θ̂S is the vector that consists of θss, ZS is the vector that consists of zss, while NC and
NS represent the number of continuous variables and segmented variables, respectively.
Obviously, this problem model (10) contains only connected variables (i.e., θ ∈ [Θ̂S; ΘC]

T)
and integer variables (i.e., z ∈ Z), which is an MOMIP. Hence, we abbreviate this extended
model as the MOMIP model.

3. MOPSO-Based Deployment Algorithm

This section mainly concerns the customized algorithm for MSRS deployment within a
non-connected region problem. Without loss of generality, we utilize the crowding distance
based MOPSO (MOPSO-CD) [35], a well-established and widely utilized MOPSO variant,
as the fundamental algorithm framework for the subsequent customized algorithms. To
the authors’ best knowledge, the methodologies proposed in this paper can also be applied
to any MOPSO-based algorithms.

Firstly, the basic concepts related to the MOPSO-CD algorithm are defined as follows:
MOPSO adopts the Pareto optimality criterion, as outlined in [36], which involves

identifying a set of optimal trade-off solutions rather than a single optimal solution. The
set of all Pareto optimal tradeoff solutions is designated as the Pareto set PS. The set of
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optimization objective function vectors obtained by all the solutions from PS is referred to
as the Pareto front PF.

MOPSO, as a quintessential population-based heuristic algorithm, explores the solu-
tion space by changing the position of candidate solutions (also known as particles) through
iterations. In particular, P particles are randomly distributed throughout the solution space
as the initial solution. Subsequently, the location of each particle is gradually adjusted by
combining its current position (inertia component), its own experience (cognitive compo-
nent), and the optimal solution found by other particles (social component). For original
continuous variables, the velocity formula for particle p at iteration t is as:

vp
n(t + 1) = w × vp

n(t) + c1 × r1 ×
(

pbp
n(t)− θ

p
n(t)

)
+ c2 × r2 ×

(
gbn(t)− θ

p
n(t)

)
, (11)

θ
p
n(t + 1) = θ

p
n(t) + vp

n(t + 1), (12)

where xp
n(t) represents the value of the nth decision variable of the particle p at the iteration

t. w is the inertia weight and c is the acceleration constant. The random real value r is
uniformly distributed in the interval [0, 1]. pbp is the individual best solution of the particle
p (also termed as personal best or personal leader), and gb is the best solution found by the
entire swarm (also known as global best or global leader).

At each iteration, the trajectory of each particle is recorded, and the superior solutions
found up to that point are used to create and update the archive. In other words, the
superior solutions identified by the entire swarm are stored in the archive. Hence, upon the
fulfillment of the termination condition, the optimal trade-off solutions discovered by the
algorithm are preserved within the archive.

The definition of superior solutions, the selection rules for gb and pb, and the re-
lease method for inferior solutions vary across different MOPSO variants. In general, the
fundamental difference lies in the definition of the superior solution and the ranking of
candidate solutions. In this paper, the standard for evaluating the quality of solutions is the
combination of Pareto dominance and crowding distance(CD).

Which is to say the solutions are sorted into two steps.
First, the non-dominated solutions that outperform all remaining solutions in at least

one optimization objective are identified and ranked above other solutions. Second, among
these non-dominated solutions, they are arranged in descending order of CD.

This mechanism has the potential to reduce the clustering density of solutions, thereby
reducing the probability of falling into the local PS.

The overall algorithm is presented in Algorithm 1. The two major components, namely
(1) the problem transformation for MSRS deployment within a non-connected region and
(2) the modification of velocity formulas for integer variables, are described in Section 3.1
and Section 3.2, respectively. Subsequently, the extant MSRS deployment algorithms for
comparing are described in Section 3.3.
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Algorithm 1: MSRS Deployment algorithm within non-connected region.

• w is the inertia weight
• c is the acceleration constant
• Tmax is the total iteration number
• NP is the number of particles
• NC is the number of continuous variables
• NS is the number of segmented variables
• Nbin is the number of binary variables
• Θp(t) is the position of the pth particle at iteration t
• ΘS is the vector of segmented variables
• ΘC is the vector of connected variables

Step 0: Problem transformation
for s = 1, 2, . . . , NS do

Map segmented variable θs to a combination of integer variable zs and a
connected variable θ̂s ∈ [0, 1] using (9);
Encode zs into a linear combination of binary variables zbin by means of binary
encoding;

end
Step 1: Initialization
for p = 1, 2, . . . , NP do

for n = 1, 2, . . . , NC + NS + Nbin do
Randomly initialize particle position Θp(0) and the individual best
solution pbp = Θp(0);
Initialize vp

n(0) = 0;
end
Calculate optimization objectives F(Θp(0));
Initialize archive as the non-dominated solutions in initialized solutions and
global best solution gb as randomly selected from archive;

end
for t = 1, 2, . . . , Tmax do

Step 2: Sort the non-dominated solutions in archive in descending CD;
Step 3: Particle position update with modified velocity formula
For MOPSO-Sigmoid, follow the Algorithm 2 and for MOPSO-Gene, follow
the Algorithm 3;
Step 4: Perform mutation operator proposed in [37];
Step 5: Boundaries check for each dimension;
for p = 1, 2, . . . , NP do

Step 6: Calculate F(Θp(t)) ;
Step 7: Replace pbp with the non-dominated solutions of (pbp ⋃Θp(t));
Step 8: Replace archive with the non-dominated solutions of
(archive

⋃
Θp(t));

end
Step 9: Sort the solutions in archive in descending CD and randomly select the
gb for each particle from a specified top portion of the sorted archive;

end
Step 10: Solution output;
For each solution in archive, calculate θs according to zbin and θ̂s using (9);
Step 11: Output the final solutions Θ = [ΘS; ΘC]

T in archive;

3.1. Problem Transformation for MOMIP Model

As mentioned in Section 2, the deployment of MSRS within a non-connected region can
be transformed into an MOMIP like (10). In this context, the integer variables distinguish
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this problem from a standard MOP. Hence, the most critical issue to be addressed is the
handling of integer variables.

To handle integer variables, each integer variable z is encoded into a linear combi-
nation of binary variables zbins by means of binary encoding and concatenated together
by order. For further information, please refer to the following citations: [38–41]. Hence,
the problem model (10) is transformed into a multi-objective mixed binary programming
model (MOMBP model) as:

maximize F
(
Θ̂S, ΘC, Zbin

)
s.t.


ΘC ∈ [lb1, ub1]× · · · ×

[
lbNC , ubNC

]
⊆ RNC

Θ̂S ∈ [0, 1]× · · · × [0, 1] ⊆ RNS

Zbin ∈ {0, 1} × · · · × {0, 1} ⊆ ZNbin

(13)

where zbin represents a binary-encoded integer variable, which is henceforth referred to as
binary variable. Meanwhile, Zbin is the vector of zbin, Nbin = ∑

s
⌈log2(Ks)⌉ is the number

of binary variables and ⌈•⌉ represents the round up operator.
In comparison to the standard MOP, the MOMBP model exhibits a significant distinc-

tion in its binary variables. Given the inability of generic MOPSO to solve binary variables,
we proceeded to modify the algorithm.

3.2. Velocity Formulas for Integer Variables

The primary challenge in solving the MOMBP model is that the generic velocity
formulas for particle motion, i.e., (11) and (12), are designed for continuous variables and
therefore not directly applicable to discrete variables.

However, for MOPSO, it was observed that the motion of each variable is indepen-
dent, which implies that the projections of particle trajectories in different dimensions are
independent of one another. In other words, the velocity formulas for binary variables can
be modified to enhance variable adaptation, while the velocity formulas for continuous
variables adhere to the generic formulas. This methodology can be designated as the
multiple velocity formulas. The following two multiple velocity formula-based MSRS
deployment algorithms are proposed.

3.2.1. MSRS Deployment Algorithm Based on Sigmoid Function (MOPSO-Sigmoid)

The natural number operations utilized in the generic position iteration Formula (12)
are unsuitable for binary variables. However, the Boolean operations are specifically
designed for binary variables. Consequently, the inversion operator of a Boolean operation
is employed to calculate the position iteration of the binary variable zbin in the MOMBP
model (13). While the velocity v in (11) is normalized and taken as a probability, it is used
to control whether the value of the binary variable zbin changes. The detailed methodology
is as follows:

Firstly, in order to maintain the group behavior methodology of PSO, the velocity
iteration formula of zbin essentially remains the same as that given in (11), with the addi-
tion of an additional normalization operator. Among the existing velocity normalization
methods in PSO, the sigmoid function is the most widely used because it does not require
the introduction of additional parameters. Hence, this function is employed in this paper.
The specific method is to normalize the velocity with the sigmoid function, which can be
defined as:

v̄ = Sigmoid(v) =
1

1 + e−v , (14)

where v̄ is the normalized velocity. Obviously, the normalized velocity v̄ ∈ (0, 1).
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Further, the position iteration Formula (12) of binary variable motion can be re-
placed by:

zp
n(t + 1) =

{
zp

n(t), i f rand < v̄p
n(t + 1)

zp
n(t), else

(15)

where z is the inversion operator and rand is a random real number uniformly distributed
in (0, 1). The detail modified velocity formula is presented in Algorithm 2.

Algorithm 2: The modified dynamics based on the sigmoid function.

• NC is the number of continuous variables
• NS is the number of segmented variables
• Nbin is the number of binary variables
• t is the serial number of this iteration

for p = 1, 2, . . . , NP do
Step 3 (a) For continuous variables θn ∈ Θ̂S ∪ ΘC, calculate the position in the
next iteration:
for n = 1, 2, . . . , NC + NS do

Update the vp
n(t + 1) and xp

n(t + 1) using (11) and (12), respectively;
end
Step 3 (b) For binary variables zn ∈ Zbin, calculate the position in the next
iteration:
for n = 1, 2, . . . , Nbin do

Calculate the velocity of the next iteration vp
n(t + 1) using (11);

Calculate the normalized velocity v̄p
n(t + 1) using (14);

if rand < v̄p
n(t + 1) then

zp
n(t + 1) = zp

n(t);
else

zp
n(t + 1) = zp

n(t);
end

end
end

In summary, this customized algorithm is based on the sigmoid function and normal-
ized velocity, hence it can be named MOPSO-Sigmoid.

3.2.2. MSRS Deployment Algorithm Based on Genetic Operation (MOPSO-Gene)

Given the promising results achieved by genetic algorithms in optimizing binary
variables [37], we propose a novel approach combining the genetic operation (including
mutation and crossover) with the group behavior methodology of PSO (i.e., (11) and
(12)). This integration leads to the development of a modified velocity formula for binary
variables motion. The specific details of the mutation operator and crossover operator are
provided below.

The mutation operator is primarily implemented through the use of binary mutation,
which entails the execution of an inversion operator within a Boolean operation, with the
mutation probability designated as pmutate. In this paper, the mutation probability pmutate
is proportional to the inertia weight w in (11). This proportionality reflects the inertia
component observed in swarm behavior. The mutation operator can be expressed as:

zp
n(t + 1) = z̄p

n(t), i f rand < pmutate (16)

pmutate =
1

NP
× w

where NP represents the number of particles, while rand is a random real number uniformly
distributed in the interval (0, 1).
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The crossover operator is to modify the value of zp
n, which represents the nth binary

variable of particle p, to that of the personal leader pbp
n or the global leader gbn as specified

in (11). The specific crossover object between pb and gb is determined by the ratio of the
two acceleration factors c1 and c2 in (11). This ratio corresponds to the relative emphasis on
individual experience or group experience in swarm behavior. The crossover probability
pcross, is set to a relatively large constant. The crossover operator can be expressed as:

zp
n =


zp

n, i f rand1 ≥ pcross

pbp
n, i f rand1 < pcross, rand2 < c1

c1+c2

gbn, i f rand1 < pcross, rand2 ≥ c1
c1+c2

(17)

where rand1 and rand2 are random real numbers uniformly distributed in the interval
(0, 1).

Similar to MOPSO-Sigmoid, this algorithm based on the aforementioned genetic
operation is named MOPSO-Gene. The detail modified velocity formula of MOPSO-Gene
is shown in Algorithm 3.

Algorithm 3: The modified dynamics based on genetic operation.

• NC is the number of continuous variables
• NS is the number of segmented variables
• Nbin is the number of binary variables
• NP is the number of particles
• w is the crossover probability
• t is the serial number of this iteration
• pcross is the crossover probability

for p = 1, 2, . . . , NP do
Step 3 (a) For continuous variables θn ∈ Θ̂S ∪ ΘC, calculate the position in the
next iteration:
for n = 1, 2, . . . , NC + NS do

Update the vp
n(t + 1) and xp

n(t + 1) using (11) and (12), respectively;
end
Step 3 (b) For binary variables zn ∈ Zint, calculate the position in the next
iteration:
for n = 1, 2, . . . , Nbin do

Perform mutation operation using (16);
if rand < pcross then

Perform crossover operation using (17);
end

end
end

3.3. Comparing Algorithms for MOSDVP

In order to demonstrate the efficacy of the proposed algorithms, two existing MOPSO-
CD-based comparing algorithms for the MSRS deployment problem are introduced.

3.3.1. MSRS Deployment Algorithm for AC Model (MOPSO-Penalty)

The first comparing algorithm is to solve the MSRS deployment problem as an AC
model (i.e., problem model (8)) directly. The primary challenge lies in the effective handling
of the constraint that arises from the segmented decision variables. We utilize a additive
adaptive penalty factor[42], which is comprised of two components. (1) A constant penalty
factor r̃C is applied to any infeasible solution. (2) An additional adaptive penalty factor r̃S
is applied according to the distance between the solution and the nearest feasible subregion
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boundary under the Euclidean norm. Consequently, the modified optimization problem
can be expressed as:

maximize F̂(ΘS, ΘC) = F(ΘS, ΘC) + r̃

r̃ =

{
r̃C + r̃S, X /∈ Ω
0, X ∈ Ω

s.t. Θ ∈ [lb1, ub1]× · · · × [lbN , ubN ] ⊆ RN

(18)

where F̂ represents the modified optimization objectives and r̃ represents the penalty factor.
The expressions of constant penalty factor r̃C and adaptive penalty factor r̃S can be given as:

r̃C = A (19)

r̃S = A ×
NS

∑
s=1

rs (20)

where A represents the magnitude of the penalty factor chosen according to every particular
problem and rs represents the degree to which θs (i.e., the sth element within ΘS) violates
the constraint measured by Euclidean distance. We call this comparing algorithm MOPSO-
Penalty for short.

3.3.2. MSRS Deployment Algorithm for MOMIP Model (MOPSO-Round)

Another comparing algorithm is to solve the MSRS deployment problem as an MOMIP
model. In contrast to the algorithms proposed in this paper, this algorithm addresses integer
variables by employing a rounding operation, as described in [28,43]. This operation
substitutes continuous variables for discrete ones, thereby enabling the algorithm to handle
integer variables.

In this way, all decision variables can be treated uniformly throughout the iterations,
resulting in the conversion of the MOMIP to a standard MOP. When solving a problem (10),
the problem model is further reformulated as:

maximize F
(
Θ̂S, ΘC,

[
Ẑ
])

s.t.


ΘC ∈ [lb1, ub1]× · · · ×

[
lbNC , ubNC

]
⊆ RNC

Θ̂S ∈ [0, 1]× · · · × [0, 1] ⊆ RNS

Ẑ ∈ [1, K1]× · · · ×
[
1, KNS

]
⊆ RNS

(21)

where Ẑ is the vector for substituting continuous variables for discrete ones (i.e., Z) and [•]
is the rounding operation. Therefore, the core modification of this algorithm is to round
substitution variables when calculating the optimization objectives. For this reason, we
name it MOPSO-Round for short.

4. Numerical Study

This section presents a comparative analysis of the performance of the proposed
customized algorithms for MSRS deployment within a non-connected region. For the sake
of clarity, we first present a summary of the four customized algorithms proposed in the
previous section, along with a brief overview of their corresponding problem models in
Table 1. It is worth reiterating that all three problem models are, in fact, equivalent models,
despite their respective scales of variables and complexities of objective functions differing
to some extent.
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Table 1. Summary of four customized algorithms and main features of their corresponding prob-
lem models.

Algorithm
Name

Problem
Model

Decision Variables
(Variable Number)

MOPSO
-Penalty[42]

AC model
(18)

XS ∪ XC
(NC + NS)

MOPSO
-Round[28]

MOMIP
model (21)

X̂S ∪ XC ∪ Ẑ
(NC + 2 × NS)

MOPSO
-Sigmoid MOMBP

model (13)

X̂S ∪ XC ∪ Zint(
NC + NS + ∑

s
⌈log2(Ks)⌉

)
MOPSO

-Gene

The algorithms proposed in Section 3 are applied to both benchmark test functions
and the MSRS deployment problem. A quantitative comparison is conducted among
these algorithms.

4.1. Numerical Study on Benchmark Testing Set

Due to the pursuit of problem-independence by PSO, many benchmark test sets are
formed to measure the performance of the algorithm. Each benchmark test set comprises
a number of test problems exhibiting varying characteristics. The performance of an
algorithm is gauged through statistical analysis of the outcomes observed across the test
problems within the benchmark test set.

Specific to our work, since the benchmark test set specially designed for MOSDVP
is not seen yet, we employ ZDT [44], a widely used benchmark test set, cut off the value
range of part of decision variables for each test problem, and obtain the modified ZDT
(MZDT) test set.

For convenience, for MZDT1, MZDT2, and MZDT3, the value range of the last 10 de-
cision variables are cut into 2 segments (i.e., xj ∈ [0, 0.3] ∪ [0.7, 1], j = 21, · · · , 30) and
other components remain the same as shown in [38], (Equations (7)–(9)). For MZDT4 and
MZDT6, to maintain a consistent number of binary variables, 10, we cut the last 5 variables
into 3 segments (i.e., for MZDT4, xj ∈ [−5,−3] ∪ [−2, 2] ∪ [3, 5], j = 6, · · · , 10, and for
MZDT6, xj ∈ [0, 0.2] ∪ [0.3, 0.7] ∪ [0.8, 1], j = 6, · · · , 10), and other components remain the
same as shown in [38], (Equations (10) and (12)).

It is evident that the PS and PF of MZDT test problems remain unaltered in comparison
to those of the ZDT test set.

4.1.1. Performance Metrics

In order to quantitatively assess the performance of these algorithms in different
testing problems quantitatively, two performance metrics have been implemented in our
research: the Hypervolume (HV) [45] and the Additive Unary Epsilon Indicator (I+ϵ ) [46].
These performance metrics indicate the performance of an algorithm by evaluating the
quality of the final output approximation Pareto front Pt. The following paragraphs provide
further details on these performance metrics.

The quality of the approximation Pareto front Pt is determined by the size of the space
that dominates the reference point r while being dominated by Pt. It can be defined as:

HV ∆
= vol

[( ⋃
∀u∈Pt

D(u)

)
∩ D(−1)(r)

]
(22)
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where D(a) represents the space that a dominates, D(−1)(a) represents the space that
dominates a, and vol(•) represents the Lebesgue measure. A larger HV indicates a better
approximation Pareto front.

I+ϵ can be defined as:

I+ε
∆
= min

ε

{
∃u ∈ Pt|u≤ε+r

}
, (23)

where v≤ε+r means fi(v) ≤ ε + fi(r), i = 1, . . . , M. A smaller I+ε indicates a better conver-
gent Pt. Therefore, I+ε can only measures the convergence of the results.

To be fair, only feasible solutions obtained by MOPSO-Penalty are included in the
calculation of performance metrics while infeasible ones are not included.

4.1.2. Parameter Settings

The common parameters of the four algorithms are all set to be the same. Parameters
in the basic PSO velocity formula, acceleration constants c1 = c2 = 2, and inertia weight w
decrease linearly from 0.8 to 0.4 with the number of iterations and all four algorithms select
the global best gb from the top 10% sorted archive, as suggested in [35]. The magnitude of
penalty factor in MOPSO-Penalty A = 10 and for MOPSO-Gene, the Crossover probability
pcross is set to 0.9, as suggested in [37].

In terms of computational cost, the number of particles is NP = 50 while the maximum
number of iterations is Tmax = 1000. In terms of parameters of performance metrics, while
the reference points of HV and I+ϵ are (11,11) and (0,0), respectively.

4.1.3. Experimental Results and Comparative Analysis

Considering the random exploration nature of heuristic algorithms, each algorithm
was executed 100 times independently for each test problem and all the performance
metrics were subsequently measured and recorded statistically. In statistical language,
hypothesis testing is a method of statistical inference used to determine whether differences
between samples (i.e., the results obtained by each algorithm) are due to sampling error
(i.e., accidentalia) or to substantive differences. To ascertain the relative superiority of the
four algorithms, hypothesis testing was employed. Unfortunately, some of the samples
do not conform to the normality assumption. Hence, the Wilcoxon signed ranks test is
employed to assess the performance of the algorithms, as proposed in Section 3 of [47].

The four algorithms are compared in pairs. The null hypothesis, H0, is set as the
performance metrics obtained by one algorithm were not better than those obtained by
another based on overall results. The alternative assumption, H1, is that the performance
metrics obtained by one algorithm were better than those obtained. At the significance
level of α = 5%, statistical conclusions are drawn in Table 2.

In statistics, a small p-value means that the probability of observation under the null
hypothesis H0 is small. That is to say, a smaller p-value indicates a stronger evidence
against H0, and it is statistically obvious to draw such a conclusion. Therefore, the p-values
of the Wilcoxon signed ranks test are shown in Table 2. The order of superiority of the four
algorithms is as follows: MOPSO-Gene, MOPSO-Sigmoid, MOPSO-Round, and MOPSO-
Penalty. This indicates that two velocity formula modification methodologies for integer
variables are more effective than the others.

4.2. Numerical Study on MSRS Deployment Problem

In order to further substantiate the efficacy of the proposed algorithm in addressing
the actual MSRS deploying problem within the non-connected deployment region, a series
of simulation experiments was conducted, the results of which are presented below.
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Table 2. The results of Wilcoxon Signed Ranks Test on MZDTs.

Null Hypothesis p-Value Statistical
Conclusion

MOPSO-Gene
No better than

MOPSO-Sigmoid

HV 2.863 × 10−14

Reject
I+ϵ 6.247 × 10−26

MOPSO-Gene
No better than

MOPSO-Round

HV < 1 × 10−50

Reject
I+ϵ < 1 × 10−50

MOPSO-Gene
No better than

MOPSO-Penalty

HV < 1 × 10−50

Reject
I+ϵ < 1 × 10−50

MOPSO-Sigmoid
No better than

MOPSO-Penalty

HV 1.295 × 10−29

Reject
I+ϵ 2.480 × 10−14

MOPSO-Sigmoid
No better than

MOPSO-Round

HV 5.483 × 10−19

Reject
I+ϵ < 1 × 10−50

MOPSO-Round
No better than

MOPSO-Penalty

HV 4.779 × 10−3

Reject
I+ϵ 4.616 × 10−5

4.2.1. Simulation Model

For simplicity, we assume that the nodes of MSRS are deployed within a non-connected
deployment region in this simulation. This region B is composed of two non-connected
rectangular subregions each of size 100 km × 100 km. The treatment of deployment region
in a special shape other than rectangular can be found in our previous work [20].

As shown in Figure 2, the surveillance region A is also defined as a rectangular area
with size of 300 km × 300 km. In order to reduce the computational burden, the surveillance
region A was divided into 900 square resolution cells of 10 km × 10 km resolution. The
deployment region is comprised of two unconnected square deployable subregions. Hence,
the specific MSRS deployment problem of this simulation can be expressed as:

maximize F(Θ) = { f1(Θ), f2(Θ)},

= {ECR(Θ), minSNR(Θ)},

Θ =
(
θ1, ..., θJ

)T

=
(

x1, y1, . . . , xJ , yJ
)T (24)

s.t.


xj ∈ [0, 100] ∪ [200, 300]

yj ∈ [50, 150]
, j = 1, · · · , J.
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Figure 2. Sketch of surveillance region and deployable subregions.

4.2.2. Parameter Settings

Firstly, the parameters of the MSRS deployment problem are set in accordance with
the actual designed performance as follows.

The detection probability threshold value of MSRS is set at Pdt = 0.8 for each resolution
cell, the detectability factor D0 = 12.5dB, and the constant false alarm rate Pf a = 10−6.

For the typical target of MSRS with a radar cross section (RCS) of 2 m2, the power
range of each single node is set to Rmax = 30km. To assess the resilience of the proposed
algorithm to changes in problem size, four test cases were conducted, with the number of
nodes, J, set to 4, 6, 8, and 10, respectively.

In regard to the parameters of the algorithms, the magnitude of the penalty factor in the
MOPSO-Penalty is set to A = −100, which is sufficient to accommodate the maximization
problem. The maximum number of iterations is set to Tmax = 500, which is limited by
the calculation requirements of the practical application. The remaining parameters of
algorithms are consistent with the settings given in Section 4.1 and are not separately stated.

In terms of parameters of performance metrics, the reference points of HV and I+ϵ are
(0,0) and (10,10), respectively.

4.2.3. Result Analysis

Similar to the experiment on MZDTs, each algorithm was run 100 times independently
for each case. For the sake of brevity, MOPSO-Gene is abbreviated as “Gen.”, MOPSO-
Sigmoid is abbreviated as “Sig.”, MOPSO-Round is abbreviated as “Rou.”, and MOPSO-
Penalty is abbreviated as “Pen.”.

Firstly, we present the solutions obtained by the four algorithms. Due to the large
number of solutions, we only plot the best and worst solutions obtained by each algorithm
as shown in Figure 3. In the figure, the best solutions obtained by MOPSO-Gene are
abbreviated as “Gen.-Bes.”, and the worst solutions obtained by it are abbreviated as “Gen.-
Wor.”. The same abbreviation was applied to the other three groups. From this figure, the
following phenomena can be observed:

(1) There is a trade-off between the ECR and the minSNR, which means that no
solution can have the best of both performances.

(2) In the majority of cases, with the exception of the MSRS with four nodes, the red
and blue curves are situated further to the upper left. Given that this is a maximization
problem, the closer the curve is to the top left, the better the set of solutions. This evidence
indicates that MOPSO-Gene and MOPSO-Sigmoid yield superior outcomes.
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Figure 3. The best and worst of solutions obtained by four algorithms when solving MSRS with 4, 6,
8, and 10 nodes, respectively. The best solutions are drawn with a solid line, and the worst solutions
are drawn with a dashed line.

(3) As the MSRS scale increases, the performance of the solutions obtained by each
algorithm also improves, although the improvement amplitude varies. In cases of a larger
scale, it is evident that the black curve is at a disadvantage, as it is situated in the lower
right of the figure. This evidence indicates that MOPSO-Penalty, as a classical algorithm, is
deficient in its ability to address complex cases.

(4) In each case, the distance between the two black curves (i.e., Pen.-Bes. and Pen.-
Wor.) is significantly larger than the other three. This demonstrates that the disparity in
the quality of solutions yielded by MOPSO-Penalty is greater than that of the other three.
Consequently, MOPSO-Penalty is deemed to be unreliable.

In terms of computational cost, the box plots of the computational time of the four
algorithms for solving the MSRS deployment problem are shown in Figure 4. All com-
putations are performed in an AMD Ryzen 9 3950X operating at 3.5 GHz and 32 GB of
RAM operating at 3600 MHz. The figure shows that MOPSO-Penalty takes longer time
to converge, while the other three, although slightly different, have roughly the same
computational cost.

The observations presented in this paper allow for the preliminary qualitative conclu-
sion that the two algorithms proposed have advantages. However, to provide a more com-
prehensive quantitative conclusion, we introduce performance metrics in multi-objective
optimization and statistical methods. The corresponding performance metrics statistics
for each case are presented below. In order to provide a comprehensive evaluation of the
performance of each algorithm, the relationship between the average values of HV and
I+ϵ on each case and the number of iterations is presented in Figure 5. The performance
metrics of the final solutions obtained by the four algorithms are presented in Table 3. The
best values of each statistical indicator are marked in highlight, the second values are in
bold and the worst values are in red. The statistic analysis results of the Wilcoxon signed
ranks test of HV and I+ϵ statistics on four cases are presented in Table 4.
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Figure 3. The best and worst of solutions obtained by four algorithms when solving MSRS with 4, 6,
8, and 10 nodes, respectively. The best solutions are drawn with solid line, and the worst solutions
are drawn with dashed line.
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Figure 4. The box plots of computation time when solving MSRS deployment problem. All computa-
tions are performed in an AMD Ryzen 9 3950X operating at 3.5GHz and 32GB of RAM operating at
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Figure 4. The box plots of computation time when solving the MSRS deployment problem. All
computations are performed in an AMD Ryzen 9 3950X operating at 3.5 GHz and 32 GB of RAM
operating at 3600 MHz.

Table 3. Performance metrics statistics of the final approximations on the MSRS deployment problem.

MOPSO
-Penalty

MOPSO
-Round

MOPSO
-Sigmoid

MOPSO
-Gene

4
nodes

HV

Bes. 50.54 50.37 50.24 50.72

Ave. 48.23 47.91 48.60 49.48

Wor. 7.595 42.11 45.28 44.78

Var. 59.19 4.869 1.147 0.7427

I+ϵ

Bes. 6.053 6.068 6.004 5.966

Ave. 6.306 6.259 6.167 6.080

Wor. 10.29 6.853 6.495 6.546

Var. 0.5777 4.733 × 10−2 1.123 × 10−2 7.333 × 10−3

6
nodes

HV

Bes. 84.64 84.85 84.97 85.15

Ave. 78.49 82.49 83.01 83.69

Wor. 57.64 76.86 81.28 81.92

Var. 57.16 2.905 0.4514 0.3894

I+ϵ

Bes. 2.694 2.670 2.665 2.650

Ave. 3.296 2.906 2.856 2.792

Wor. 5.351 3.462 3.027 2.968

Var. 57.16 2.905 0.4514 0.3894

Var. 0.5526 2.813 × 10−2 4.408 × 10−3 3.848 × 10−3
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Table 3. Cont.

MOPSO
-Penalty

MOPSO
-Round

MOPSO
-Sigmoid

MOPSO
-Gene

8
nodes

HV

Bes. 95.99 96.39 96.87 96.87

Ave. 90.15 94.42 95.29 96.08

Wor. 78.67 92.71 93.76 94.80

Var. 18.23 0.4259 0.3010 0.1557

I+ϵ

Bes. 1.640 1.593 1.554 1.545

Ave. 2.201 1.793 1.703 1.634

Wor. 3.326 1.961 1.852 1.759

Var. 0.1748 4.001 × 10−2 2.957 × 10−2 1.557 × 10−2

10
nodes

HV

Bes. 100.8 102.0 102.6 103.0

Ave. 95.75 101.0 101.6 102.4

Wor. 91.41 100.1 100.6 101.2

Var. 6.234 0.2132 0.1455 9.571 × 10−2

I+ϵ

Bes. 1.105 1.030 1.021 1.013

Ave. 1.698 1.202 1.131 1.093

Wor. 2.116 1.296 1.231 1.197

Var. 5.944 × 10−2 2.002 × 10−3 1.390 × 10−3 9.483 × 10−4

In light of the aforementioned evidence, the following phenomena are observed:
(1) The comparative results on two performance metrics are essentially consistent,

indicating that each algorithm exhibits consistent performance in terms of the two perfor-
mance metrics across all test problems. Combined with the definition of these performance
metrics, this phenomenon implies that each algorithm proposed in this paper is consistent
in terms of convergence and uniformity.

(2) With regard to the efficiency of MSRS deployment, it can be observed that MOPSO-
Penalty requires a greater number of iterations to converge than the other three algorithms.
Meanwhile, there is no significant difference among other three algorithms. As shown in
Figure 5, the black line, which represents MOPSO-Penalty, requires the greatest number of
iterations to achieve convergence.

This phenomenon demonstrates that MOPSO-Penalty exhibits inferior convergence
rates in comparison to the other three algorithms. Moreover, it can be concluded that
MOPSO-Penalty, as a typical constraint-handling method, necessitates a greater computa-
tional complexity when attempting to resolve the MSRS deployment problem.

(3) In regard to the efficacy of the MSRS deployment, the relevant statistical indicators
of the ultimate outcomes are delineated in Table 3. Table 3 has 32 rows, each of which
represents a statistical indicator, and it has four columns, each representing an algorithm.
For the MOPSO-Gene column, 30 are highlighted. This means that MOPSO-Gene obtains
the best results of 93.75% (30 out of 32) statistical indicators on four cases. For MOPSO-
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Sigmoid, 22 of which are in bold or in highlight. This indicates that MOPSO-Sigmoid is a
top-two algorithm in 96.875% (31 out of 32) of statistical indicators, outperforming other
algorithms, besides MOPSO-Gene.

0 100 200 300 400 500
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50
4 Nodes HV

Gen.

Sig.

Pen.

Rou.

0 100 200 300 400 500
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10

4 Nodes EPSILON

0 100 200 300 400 500
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Figure 5. The relationship between average values of each performance metric and number of
iterations when solving the MSRS deployment problem. Each row is for a different case (from top to
bottom are MSRS with 4, 6, 8, and 10 nodes) and each column is for a different performance metric
(from left to right are HV and I+ϵ ).

And as indicated in Table 4, the superiority of MOPSO-Gene over MOPSO-Sigmoid
is not statistically significant at the 5% level. This suggests that there is no significant
difference between the two modifications in terms of their effectiveness in solving the
MSRS deployment problem.

With regard to MOPSO-Round and MOPSO-Penalty, MOPSO-Round exhibited smaller
variances in HV and I+ϵ and the average level is better than those data obtained by MOPSO-
Penalty in Table 3. The results demonstrate that MOPSO-Round outperforms MOPSO-
Penalty in addressing the MSRS deployment problem. And according to Table 4, this
superiority is statistically significant under the significance level at 5%. This phenomenon
indicates that the constraint handling method (i.e., MOPSO-Penalty) is inadequate in
comparison to other algorithms when addressing the MSRS deployment problem.

(4) In the terms of robustness, MOPSO-Penalty exhibits a lack of performance, as
evidenced by a decline in efficiency and effectiveness as the system scale increases. In
the larger scale case (MSRS with 8 or 10 nodes), MOPSO-Penalty is unable to complete
convergence within the given computational cost.

In conclusion, the algorithms based on the multiply velocity formula method,
(i.e., MOPSO-Gene and MOPSO-Sigmoid) have been demonstrated to have a statistically
significant advantage in terms of efficiency and effectiveness.
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In contrast, the algorithm based on the constraint handling method (MOPSO-Penalty)
has been found to be unsatisfactory when solving the MSRS deployment problem, particu-
larly when the scale of MSRS is large.

Table 4. The Results of Wilcoxon Signed Ranks Test on the MSRS deployment problem.

Null Hypothesis p-Value Statistical
Conclusion

MOPSO-Gene
no better than

MOPSO-Sigmoid

HV 0.2785
Accept

I+ϵ 0.1576

MOPSO-Gene
no better than

MOPSO-Round

HV 6.557 × 10−5

Reject
I+ϵ 6.787 × 10−6

MOPSO-Gene
no better than

MOPSO- Penalty

HV 7.431 × 10−5

Reject
I+ϵ 3.922 × 10−6

MOPSO-Sigmoid
no better than

MOPSO-Round

HV 1.419 × 10−2

Reject
I+ϵ 1.803 × 10−2

MOPSO-Sigmoid
no better than

MOPSO-Penalty

HV 9.575 × 10−3

Reject
I+ϵ 9.649 × 10−3

MOPSO-Round
no better than

MOPSO-Penalty

HV 3.922 × 10−2

Reject
I+ϵ 1.712 × 10−3

5. Conclusions

We devoted this paper to deploying MSRS within a non-connected deployment re-
gion utilising MOPSO. To eliminate the necessity for additional constraints, this MSRS
deployment problem was reformulated into a MOMIP by dividing the solution space and
introducing integer variables. Moreover, two MSRS deployment algorithms, MOPSO-
Sigmoid and MOPSO-Gene, are proposed, respectively, based on two altering velocity
formulas for integer variables. These formulas are based on the sigmoid function and the
genetic operation. A numerical study has demonstrated that the proposed MSRS deploy-
ment algorithms exhibit a statistically significant advantage in effectiveness with the same
computational cost.
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