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Abstract: With the continuous advancement of autonomous driving technology, an increasing number
of high-definition (HD) maps have been generated and stored in geospatial databases. These HD
maps can provide strong localization support for mobile robots equipped with light detection and
ranging (LiDAR) sensors. However, the global localization of heterogeneous robots under complex
environments remains challenging. Most of the existing point cloud global localization methods
perform poorly due to the different perspective views of heterogeneous robots. Leveraging existing
HD maps, this paper proposes a base-map-guided heterogeneous robots localization solution. A novel
co-view context descriptor with rotational invariance is developed to represent the characteristics of
heterogeneous point clouds in a unified manner. The pre-set base map is divided into virtual scans,
each of which generates a candidate co-view context descriptor. These descriptors are assigned to
robots before operations. By matching the query co-view context descriptors of a working robot with
the assigned candidate descriptors, the coarse localization is achieved. Finally, the refined localization
is done through point cloud registration. The proposed solution can be applied to both single-robot
and multi-robot global localization scenarios, especially when communication is impaired. The
heterogeneous datasets used for the experiments cover both indoor and outdoor scenarios, utilizing
various scanning modes. The average rotation and translation errors are within 1◦ and 0.30 m,
indicating the proposed solution can provide reliable localization support despite communication
failures, even across heterogeneous robots.

Keywords: global localization; heterogeneous data registration; LiDAR point cloud; multi robots

1. Introduction

The knowledge of one’s own location is crucial for all mobile robot applications. For
this reason, localization is a core function of mobile robots. Mobile robots can determine
their location in outdoor environments with good global navigation satellite system (GNSS)
signals. However, the quality of data heavily influences the performance of GNSS, making
it unsuitable for use in areas where satellite signals are obstructed, such as indoors, dense
urban environments, or forests. In GNSS-denied environments, mobile robots often rely
on external sensors such as cameras and LiDAR to estimate their position and orientation.
This approach is known as simultaneous localization and mapping (SLAM). LiDAR sensors
provide distance measurements by emitting and receiving light. These measurements are
more resilient to illumination and appearance changes than visual images from a camera,
making LiDAR very popular in the mobile robotics community. Typical applications
for LiDAR localization include laser odometry calculation, loop closure detection, and
collaborative SLAM, among others.

The laser odometry aims to calculate the relative transformation between LiDAR scans.
LOAM [1] is a typical laser odometry method that matches point features to edge/planar
to find correspondences between scans. The features are extracted by calculating the
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roughness of the point in its local region. This approach has a profound impact and is
still adopted by today’s state-of-the-art LiDAR SLAM methods [2,3]. However, odometry-
based localization is an incremental process, which means that errors in scan-matching
will inevitably accumulate in the overall localization results. The loop closure detection is
another important application of global LiDAR localization. It determines if the robot has
returned to a previously visited location. This module computes the similarity between
current and previous data through the abstracted description of laser scans [4–7]. If a
loop closure is detected, the relative transformation between the current and the previous
locations is computed and participates in the graph optimization to eliminate cumulative
errors [8,9].

With the increasing maturity of the single-robot LiDAR localization, more researchers
have begun to explore the possibility of localizing multi-robot systems [10]. Multiple
partially overlapping maps can be generated from multi-robot systems using incremental
SLAM or other mapping techniques. These maps are utilized for mutual localization
between robots, also known as multi-robot localization or cross-robot localization. In this
case, robots build local maps that are typically defined with respect to the local coordinate
system of each single robot. Recovering the global position of each local map is crucial in
multi-robot localization tasks.

Based on the operating modes, existing multi-robot localization methods fall into two
categories: online processing and offline processing. Online processing, also known as
collaborative SLAM, simultaneously detects whether robots meet each other at a certain
point known as a rendezvous [11]. The scans captured at the rendezvous region serve as
the inter-robot loop closure to calculate the relative transformations between robots. These
constraints are then added into a graph optimization framework to optimize the global
location of multi-robot systems. This approach is appropriate for applications with strong
real-time requirements, such as military autonomous collaboration, robot navigation, and
search and rescue (SAR) operations [12–17]. However, ensuring communications between
multi-robot systems, which online processing depends on, can be challenging in practical
situations. Communication problems, such as delays, interruptions, hidden signals, and
out-of-sequence packets, significantly impact the performance of real-time collaborative
SLAM algorithms [18]. Offline processing applies the LiDAR place-recognition method to
realize the global localization of multi-robot systems. Place recognition is enabled by point
cloud registration. Taking one point cloud as a reference, the registration algorithm first
estimates the coarse location of the other point cloud based on the correspondence. It then
performs the fine alignment using the iterative closest point (ICP) algorithm [19] and its
variants [20–22] to refine the localization result. This approach can provide more accurate
localization results without relying on communication conditions. It is suitable for applica-
tions with lower real-time demands, such as surveys and 3D scene reconstruction [23,24].

With increasing research efforts focused on HD map development in autonomous
driving, a growing amount of point cloud data is being acquired and stored in geographic
databases [25]. The fusion of these heterogeneous point clouds (e.g., the aerial-based and
the ground-based laser scanning point cloud, or the point clouds acquired from different
scanning modes on the ground) can effectively compensate for deficiencies in different
scanning modes, expand the coverage of the point cloud, and enhance the representation
of the scene. However, global localization, which is the basis of heterogeneous data fusion,
is challenging due to the diverse characteristics of heterogeneous point clouds, such as
scanning perspectives, ranges, and resolutions.

This paper proposes a heterogeneous robots localization solution based on a pre-set
base map. This idea of localization by using a pre-set map originates from [26], a study
that leverages a 3D map for image-based localization. In our work, mobile robots provide
local scans, and the pre-set base map is used as the reference scan. A descriptor with
rotational invariance is developed to explore co-visible regions between local scans and
the reference scan. The result of descriptor matching is adopted for coarse localization,
followed by refinement using the trimmed ICP [20] algorithm. The proposed solution can
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be used for the global localization of both single mobile robots and multiple mobile robots
in environments with poor communication.

The principal innovations and contributions of this research are summarized below:

• A base-map-guided LiDAR localization solution for heterogeneous robots is proposed.
In this case, a pre-set base map is utilized to localize local scans captured by mobile
robots. This solution can be applied to both online and offline global LiDAR local-
ization. It is particularly practical in environments where a rendezvous is difficult to
form or where communication is not available.

• A novel co-view context descriptor that can detect co-visible regions of heterogeneous
point clouds is developed. This discriminative descriptor takes into account the
height and density information of the points and extracts co-visible regions for both
horizontal and vertical cases. Descriptor matching enables the estimation of a coarse
transformation between the local scan and the pre-set base map, facilitating the global
localization of mobile robots.

• Three heterogeneous experimental datasets are elaborated to validate the effectiveness
of the proposed solution. The base maps are captured from aerial and ground-based
platforms, whereas the local scans are derived from LiDAR SLAM and single-station
laser scanning. The results indicate that the proposed solution can be implemented
either online or offline to localize both homogeneous and heterogeneous point clouds
in various environments.

The rest of the paper is organized as follows: Section 2 describes the related works
in the field; Section 3 outlines the specifics of global localization utilizing the proposed
co-view context descriptor; Section 4 presents the comprehensive experiments and their
corresponding results; Section 5 summarizes and concludes this work.

2. Related Works
2.1. LiDAR Place Recognition

The basic idea of place recognition is to retrieve the locations with the highest probabil-
ity based on the global similarity between the LiDAR point cloud and the given map. It has
gone through a process from the handcrafted descriptors to the end-to-end deep learning.

The handcrafted descriptors should exhibit discriminative characteristics for different
places but maintain similarity for places close to each other. LiDAR Iris [4] encodes the
height information of a 3D point cloud into a binary LiDAR-Iris image and transforms it
into the Fourier domain to achieve rotational invariance. This approach makes a highly
compressed representation of the 3D point cloud, which is specifically effective for nearest
neighbor search in place retrieval but cannot be used in geometric pose estimation. Contour
context [5] extracts bird’s-eye-view (BEV) contours and leverages them to encode local
information for place recognition and pose estimation. Scan context [6] projects a 3D
point cloud onto a 2D plane and divides the points into azimuthal and radial bins. A
compact global feature with rotational invariance is then constructed, facilitating both place
recognition and yaw estimation. The stable triangle descriptor [7] maintains a hash table as
the global descriptor and accomplishes place recognition through voting on the triangles
stored in the table. The pose with six degrees of freedom (DoF) is then estimated using
the singular value decomposition (SVD) method. Based on the descriptor construction
methods, Wu et al. [27] proposed a hierarchical framework named HL-MRF to hierarchically
localize a large number of multi-view scans efficiently and robustly.

The above methods accomplish localization through two phases: place retrieval and
pose estimation. With the maturity of deep learning, some researchers propose to directly
regress the global pose of a robot in an end-to-end manner. Wang et al. [28] introduce a
learning-based approach called PointLoc for LiDAR global pose estimation. The backbone
consists of an attention-aided PointNet-style architecture [29]. Luo et al. [30] propose a
rotation-invariant network called BEVPlace. The LiDAR point cloud is represented by
a BEV image, from which rotation-equivariant local features are extracted using group
convolution. The location of the query point cloud is estimated based on the distance
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between BEV features. Wang et al. [31] use a neural network to estimate the overlap between
scan pairs and construct a sparse but reliable pose graph to localize multi-view point clouds.
These end-to-end approaches are entirely data-driven and eliminate the need for traditional
pose estimation processing. However, their interpretability and generalization ability still
require improvement.

Some researchers focus on the place recognition of heterogeneous point clouds, espe-
cially for the airborne laser scanning (ALS) point cloud and the terrestrial laser scanning
(TLS) point cloud. Yang et al. [32] extract building outline features from both the ALS and
TLS point clouds and use these feature correspondences to estimate the transformation
between two point clouds. Avidar et al. [33] propose a local-to-global registration method
based on a viewpoint descriptor dictionary. It utilizes the phase correlation of the range
images to rapidly find plausible transformations from the local TLS point cloud to the
global ALS point cloud. Liang et al. [34] propose a skyline context descriptor to localize
TLS point clouds in ALS point clouds. This approach addresses the challenge posed by
different perspectives and resolutions of heterogeneous point clouds. Xu et al. [35] address
the viewpoint transformation problem by constructing virtual scans and introduce a polar
grid descriptor that incorporates point cloud height information. Based on the similarity of
descriptors, the place recognition from SLAM point clouds to the TLS map is conducted.

2.2. Collaborative LiDAR SLAM

In collaborative LiDAR SLAM, the robots participating in the mission contribute to one
global map to jointly reconstruct the environment. In general, collaborative LiDAR SLAM
algorithms are built on top of single-robot SLAM algorithms. The system architectures for
multiple robots can be categorized into centralized and distributed.

Centralized systems leave the complex computing to a central server. As the current
state-of-the-art collaborative LiDAR SLAM algorithms, LAMP [36] and LAMP 2.0 [37]
entail the direct transfer of local laser maps generated by each robot to a central server
for map fusion. This process demands significant computational resources on the server
and relies heavily on communication performance. CoLRIO [38] is a LiDAR-inertial-
based centralized system. It effectively allocates computationally intensive tasks to the
central server, thus alleviating the burden for individual robots. COHORT [39] groups
heterogeneous robots, including legged and aerial platforms, for autonomously exploring
the subterranean environment. Each robot of the team shares submaps to a centralized
location for global mapping and mission scheduling. He et al. [40] tightly couple the image
and range measurements on each robot and leverage neural networks to extract descriptors
for ground and aerial collaborative mapping. Centralized systems can provide significant
benefits in terms of accuracy and data management convenience. However, they often
require stable server connections and are susceptible to the single point of failure.

Distributed systems attempt to alleviate connection limitations by eliminating the
dependence on the centralized server. DOOR-SLAM [41] is a peer-to-peer-based distributed
system. It uses NetVLAD descriptors [42] for place recognition and the distributed Gauss–
Seidel algorithm [43] for distributed pose graph optimization. Additionally, the pairwise
consistency maximization technique (PCM) [44] is performed to identify and reject outlier
inter-robot loop closures. Following the architecture of DOOR-SLAM, DiSCo-SLAM [45]
expands the scan context [6] to detect inter-loop closures and introduces a two-stage
global–local graph optimization framework. DCL-SLAM [46] proposes a distributed loop
closure framework that operates without the need for exchanging all raw or feature points,
enhancing adaptability to scenarios with limited bandwidth and communication range. Xu
et al. [47] develop a system that comprises multiple unmanned ground vehicles (UGV), each
of which carries multimodal LiDAR sensors. The UGVs exchange submaps and relative
spatial exploration status through a mesh network. Distributed systems can effectively
enhance the availability, yet they still necessitate robots to rendezvous or communicate
with each other at some juncture to exchange data.
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To summarize, the current LiDAR-based multi-robot system localization methods still
face challenges. First, in both online collaborative LiDAR SLAM and offline LiDAR place
recognition, the failure of a single robot’s localization can cause significant drift for all
associated robots. Moreover, most widely-used LiDAR localization solutions are designed
for homogeneous robot systems, with limited research on heterogeneous robot systems.
Lastly, whether the system is centralized or distributed, there are inherent requirements for
communication conditions.

3. Materials and Methods
3.1. System Overview

In this section, we present a detailed explanation of the base-map-guided LiDAR
localization solution and the co-view context descriptor. The workflow is illustrated in
Figure 1. The pre-set base map, serving as a reference scan for mobile robots, can be
obtained using ALS or other mapping techniques, whereas the local point clouds of each
single robot can be captured using the LiDAR SLAM or single-station laser scanning
methods. To begin with, we propose the concept of a virtual scan, including the virtual
reference scan (VRS) and the virtual local scan (VLS). They are constructed for both the
pre-set base map and the local point clouds and are considered as the processing unit for
global localization. The height and density information of the virtual scan points is then
leveraged to detect horizontal and vertical co-visible regions and combined to generate
the co-view context descriptor. The VRS generates the candidate descriptor, whereas the
VLS generates the query descriptor. Subsequently, the similarity between candidate and
query descriptors is calculated. This process aids in determining the best matching pair
of descriptors, thereby facilitating the estimation of the coarse transformation. Finally,
the transformation is refined using the trimmed ICP algorithm to achieve precise global
localization for heterogeneous point clouds. Each robot is restored to a coordinate frame
that is unified with the base map.
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3.2. Virtual Scan Construction

Before constructing virtual scans, it is necessary to define a global coordinate frame G,
which will serve as the reference for the subsequent point cloud localization. In this paper,
we directly set the coordinate system of the base map as the global reference G.

Outlier removal is a preprocessing step aimed at eliminating noise measurements from
the original point cloud. In our solution, a simple yet effective statistical outlier removal
(SOR) algorithm [48] is employed for noise filtering. A point cloud voxel downsample
step is followed to eliminate the effects of varying densities between scans. Virtual scans
are subsequentially constructed for both the reference and local scans utilizing two dis-
tinct strategies. Each virtual scan serves as an individual processing unit for descriptor
generation and matching. Dividing the complete point cloud in this manner addresses chal-
lenges associated with matching low-overlap point clouds. The specific implementation is
described in detail below.

3.2.1. Virtual Reference Scan Construction

The pre-set base map can be captured through various techniques, including ALS,
mobile laser scanning (MLS), and more. Without loss of generality, this paper proposes a
VRS construction approach that is applicable to various acquisition techniques.

The movement of robots primarily occurs on the ground. Based on this assumption,
our approach concentrates the virtual reference stations on the ground to narrow the search
space. Therefore, the first step is to extract ground points from the reference scan using the
cloth simulation filtering (CSF) algorithm [49], as shown in Figure 2. The CSF algorithm
simulates a rigid cloth falling from above onto the surface of an inverted point cloud. The
location of the cloth nodes can be determined by analyzing the interactions between the
nodes and the corresponding points, thereby generating an approximation of the ground
surface. Based on the approximate surface, ground points can be extracted from the original
point cloud.
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Ground points are then divided into grids with a side length of L. Each grid’s center
serves as a virtual reference station, representing the potential locations of the local point
clouds. The neighboring points of radius rref around each virtual station are searched to
form a VRS, as shown in Figure 3. The points of each VRS are translated to the origin of
global reference G by tR =

[
xR, yR, zR]T. This represents the translation of the grid’s center

pR
C =

[
xR, yR, zR]T to the global coordinate system’s origin pG

O = [0, 0, 0]T.
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3.2.2. Virtual Local Scan Construction

Although it is feasible to determine the VLS location from ground points using the
approach described above, we find a more straightforward way for mobile robots. The
trajectories computed by LiDAR SLAM or other techniques can significantly reduce the
search space. It is worth discussing the granularity at which a single robot participates
in processing. Matching VRSs with each individual local scan frame is computationally
intractable and unnecessary, while matching VRSs with the entire local scan map may result
in a low success rate due to limited overlapping regions. To mitigate this issue, we adopt
the concept of the keyframe technique, which is widely employed in the visual SLAM
field [50,51].

For keyframe selection, we use a simple heuristic: a LiDAR frame is selected as a
keyframe when the change in robot position exceeds a user-defined threshold in comparison
to the previous position. The scans between two keyframes are accumulated to construct a
VLS, which serves as the processing unit for matching with VRSs. The keyframe selection
and virtual scan construction process of local scans are shown in Figure 4. The points of each
VLS are translated to the origin of global reference G by tL =

[
xL, yL, zL]T. This represents

the translation of the keyframe’s center pL
C =

[
xL, yL, zL]T to the global coordinate system’s

origin pG
O = [0, 0, 0]T. Unlike the SLAM keyframe selection strategy, which considers

both positional and rotational changes, our approach only relies on positional changes for
judgment. This is due to the rotational invariance of the descriptor introduced afterward.
Generally, the distance threshold σd is set to be equal to the grid size L to ensure the same
sampling interval.
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3.3. Co-View Context Descriptor

Inspired by the rotational-invariant scan context descriptor [6] and skyline context
descriptor [34], this paper develops the co-view context descriptor to represent the charac-
teristics of heterogeneous laser scans in a unified manner. Following the matching results of
descriptors, the global localization of robots is accomplished through a two-phase strategy.
The generation and matching processes of the co-view context descriptor are depicted in
Figure 5.
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3.3.1. Descriptor Encoding

Figure 5a illustrates the encoding process of the descriptors. The virtual scan is
projected onto a 2D plane, where points within a range of rmax are mapped into a polar grid
with Nr rings and Ns sectors. Each bin of the grids employs a value to encode the feature of
the points contained within it, such as maximum height, maximum intensity, point density,
etc. The polar grid is then transformed into an Nr × Ns matrix, forming the scan context
descriptor SC =

(
ai,j

)
∈ RNr×Ns . Here, we encode bins separately with the maximum

height and point density, preparing two descriptors, SCh =
(

hmax
i,j

)
∈ RNr×Ns and

SCd =
(
di,j

)
∈ RNr×Ns . In Figure 5a, the color of each bin corresponds to the highest point

within it, whereas the numerical value indicates the density of points contained therein.
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3.3.2. Co-Visible Region Detection

Scans from ground and aerial platforms differ in perspective, coverage, and resolution.
The scans captured from the heterogeneous platforms have limited sensing range. Ground-
based scans can cover most areas near the ground but information from higher places
remains unknown. Conversely, aerial-based scans can capture information from higher
elevations, but areas near the ground are susceptible to occlusion. These factors significantly
increase the difficulty of directly matching the heterogeneous scans. Our approach involves
detecting co-visible regions between heterogeneous scans and generating co-view context
descriptors, as shown in Figure 5b.

To better illustrate the approach for detecting co-visible regions, a typical example
of heterogeneous scans is presented in Figure 6. Figure 6a depicts a ground-based scan.
Due to occlusion, all roof points, partial ground points, and partial facade points are not
visible. The points captured from the ground-based scan are represented by green and
yellow colors in Figure 6c. Figure 6b illustrates a general aerial-based scanning mode. The
aircraft conducts a push-broom scan perpendicular to its forward direction, resulting in
partial ground points, partial facade points, and all roof points being scanned. These points
are represented by blue and green colors in Figure 6c. Based on this analysis, horizontal
and vertical co-visible regions are detected separately.
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The green points in Figure 6c are ground points and building outline points. They
can be directly identified as the horizontal co-visible points. To find these points, a simple
visibility analysis of the SCh descriptor is needed. Assuming the currently processing
element is at the i-th row and j-th column of the descriptor matrix, denoted as hmax

i,j , the

horizontal visibility Vhor

(
hmax

i,j

)
∈ RNr×Ns at the position (i, j) is calculated as

Vhor

(
hmax

i, j

)
=

 true, hmax
i, j ≥ σh

(
hmax

i, j

)
false, hmax

i, j < σh

(
hmax

i, j

) (1)

σh

(
hmax

i, j

)
= i × hvis

ivis
(2)



Remote Sens. 2024, 16, 4027 10 of 26

where hvis and ivis represent the maximum visible height and the corresponding row index
in the previous moment, respectively. These two values will be updated if the current
horizontal visibility is true.

The co-visible regions between aerial-based and ground-based scans include not only
ground or building outline points but also some facade points. In Figure 6c, the red box
indicates the scannable facades that are parallel to the flight direction, whereas the purple
box indicates facades perpendicular to the flight direction, which cannot be scanned. In
order to find the vertical points that are co-visible between aerial-based and ground-based
scans, we use the SCd descriptor to judge the facades and determine the vertical visibility
Vver

(
di,j

)
∈ RNr×Ns at the position (i, j) as

Vver
(
di,j

)
=

{
true, di,j ≥ Avr(SCd)
false, di,j < Avr(SCd)

(3)

where Avr(SCd) represents the average point density of the SCd descriptor. The visibility
of each bin is indicated by “

√
” and “×” in Figure 5b.

Based on the visibility analysis, we propose the co-view context descriptor
CoC =

(
ci,j

)
∈ RNr×Ns . For the bins that are only horizontally co-visible, we directly record

their maximum height as ci,j in the co-view context descriptor. For example, in the sector
shown in Figure 5a, the highest point within the innermost bin is blue, exhibiting true
horizontal but false vertical visibility. Hence, it is still displayed as blue in the first row
of the co-view context descriptor in Figure 5b. For the bins that are vertically co-visible,
we compute the average height of the points within the bin as the value of ci,j to enhance
the discrimination of the descriptor. For example, in the sector shown in Figure 5a, the bin
of the second inner ring contains points of both red and blue colors, with true horizontal
and vertical visibility. We display it as magenta in the second row of the co-view context
descriptor in Figure 5b (we use magenta to indicate average since it comes from the mix of
blue and red). As for the outermost bin with false horizontal visibility, we set it as black in
the co-view context descriptor in Figure 5b, indicating that the value in this region is zero.
The above descriptor generation approach can be formulated as

ci,j =


hmax

i, j , Vhor

(
hmax

i, j

)
= true ∧ Vver

(
di,j

)
= false

havr
i, j , Vhor

(
hmax

i, j

)
= true ∧ Vver

(
di,j

)
= true

0, otherwise

(4)

where havr
i,j is the average height of the points within the bin at the position (i, j).

3.3.3. Descriptor Matching

Figure 5c shows the matching process of the descriptor. In order to achieve rotational
invariance, the co-view context descriptor is compressed into an Nr-dimensional vector as

k = (ψ(ri)) ∈ RNr , i ∈ [1, Nr] (5)

where r represents each row of the co-view context descriptor and ψ(·) represents the
occupancy ratio of a row vector using the L0 norm:

ψ(ri) =
∥ ri ∥0

Ns
(6)

Due to the compression of the row vector, we can utilize a single value to describe the
features of the horizontal 360◦, thereby achieving rotational invariance of the descriptor
with respect to the yaw angle.

In our approach, VRSs and VLSs are utilized as candidates and queries, respectively.
Denoting the co-view context descriptors of the VRSs as {CoC}R

M and those of the VLSs as
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{CoC}L
N , they are compressed to obtain vectors {k}R

M and {k}L
N , where M and N represent

the numbers of VRSs and VLSs, respectively. A KD tree is then constructed for {k}R
M. For

each querying kQ ∈ {k}L
N , the most similar vector kC ∈ {k}R

M is retrieved. This process
results in obtaining the most similar candidate co-view context descriptor CoCC ∈ {CoC}R

M
for each querying CoCQ ∈ {CoC}L

N . We adopt the cosine distance between two descriptors,
CoCQ and CoCC, as the distance metric, as follows:

d
(

CoCQ, CoCC
)
=

1
Ns

Ns

∑
j=1

1 −
cQ

j · cC
j

∥ cQ
j ∥∥ cC

j ∥

 (7)

where cQ
j and cC

j represent the j-th column vectors of the two descriptors, ∥ · ∥ denotes the
L2 norm, and the number of columns Ns is used for normalization.

Due to the different horizontal orientations between VRSs and VLSs, the column
shift is also required for the candidate co-view context descriptors CoCC to obtain the best
matched descriptor pair. Denoting CoCC

n the co-view context descriptor with its columns
shifted n units from the original CoCC, we calculate the minimum distance between CoCQ

and CoCC as
dmin = min

n∈{Ns}
d
(

CoCQ, CoCC
n

)
(8)

The number of the corresponding column shift is

n∗ = argmind
n∈{Ns}

(
CoCQ, CoCC

n

)
(9)

3.4. Two-Phase Localization Strategy

Our solution adopts a two-phase strategy for the global localization of heterogeneous
scans, comprising a coarse step and a refined step.

As a mobile robot performs its scanning task, each CoCQ in {CoC}L
N will find the

most similar CoCC in {CoC}R
M, and the shortest distance constitutes the set {dmin}N . The

minimum distance in {dmin}N corresponds to the best matched descriptor pair between
VLSs ang VRSs. In the co-view context descriptor, Ns is defined as the number of sec-
tors. Each column shift therefore represents a yaw rotation of 2π/Ns. The rotation angle
corresponding to n∗ column shifts is

yaw =
2πn∗

Ns
(10)

The coordinate transformation is performed on the virtual scan using the rotation
angle yaw obtained from descriptor matching and the coordinate translation tR and tL.
Let PR and PL denote the best matched VRS and VLS, R ∈ SO(3) and t∈ R3 denote the
rotation matrix and translation vector, and T = [R|t] ∈ SE(3) denote the homogeneous
transformation matrix. The scan after coarse localization is

PL
coarse = Rcoarse·PL + tcoarse (11)

where the rotation matrix Rcoarse and the translation vector tcoarse are

Rcoarse =

cos(yaw) −sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1


tcoarse = tR − tL =

[
xR − xL, yR − yL, zR − zL]T

(12)

Here, tr and tl are derived from the construction processes of VRSs and VLSs, respec-
tively. The coarse transformation is Tcoarse = [Rcoarse|tcoarse].
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By checking the vertical visibility of the matched VRS and VLS descriptors, points
that exhibit significant differences in vertical visibility are identified and eliminated. This
process aims to reduce the impact of inconsistent points, primarily those facade points
not scanned by the VRS, on the refined localization step. Taking the coarse localization
as the initial value, trimmed ICP [20] is employed to perform fine registration between
point clouds of the VRS and VLS. The trimmed ICP algorithm leverages the least trimmed
squares (LTS) method to fit the error function

E(Rrefined, trefined) =
1
m

m

∑
k=1

∥∥∥PR, k −
(

Rrefined·PL, k
coarse + trefined

)∥∥∥ (13)

where m represents the number of correspondences, and PR, k and PL, k
coarse represent a set

of corresponding points in the VRS point cloud and the coarse-localized VLS point cloud,
respectively. The LTS method sorts the residuals calculated from each set of corresponding
points in ascending order and retains only the top fraction ϵ to fit the error function. This
algorithm can effectively remove outlier correspondences resulting from the low overlap
between heterogeneous scans. The refined transformation Trefined = [Rrefined|trefined] is
determined by iteratively minimizing the error function. The final transformation matrix
from the local scan to the reference scan after the two-phase localization is given by

TL−R = Trefined·Tcoarse (14)

We simulate a scenario in which robots in a multi-robot system are unable to com-
municate with each other. Each robot calculates its transformation matrix with respect to
the pre-set base map by localizing its own scan in the reference scan. This process enables
global localization of heterogeneous multi-robot systems in scenarios where communication
is impaired.

4. Experiments

We implement the proposed solution in C++ on a Linux Ubuntu system and test it on
an industrial computer equipped with 8 GB RAM and an ARM Cortex-A55@1.8GHz CPU.
This low configuration is a fair representation of the mobile robot performance.

4.1. Datasets Description

We evaluate the performance of the proposed global localization solution using three
datasets collected from different scenarios, namely construction, gymnasium, and campus.
These datasets were captured at Wuhan University, respectively around the Forepart Con-
struction, inside and outside the Zhuoer Gymnasium, and around the Friendship Square,
as depicted in Figure 7. They were sourced from four distinct heterogeneous platforms:
unmanned aerial vehicle (UAV), terrestrial station, trolley, and handheld. Candidate co-
view context descriptors generated by the pre-set base map were assigned to multi-robot
systems to conduct local scanning for online or offline global localization purposes. The
detailed information about the datasets can be found in Table 1.
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Table 1. Details of the datasets.

Dataset

Base Map Local Scan
Average
OverlapScanner Density

(Points/m2) Index Data Source Scanner Density
(Points/m2) Ground Truth

Construction LJYY-FT1500 88.4

1 WHU-TLS Heritage building 3 VZ-400 3348.3 Provided by WHU-TLS 57.8%
2 WHU-TLS Heritage building 4 VZ-400 5536.4 Provided by WHU-TLS 50.6%
3 WHU-TLS Heritage building 5 VZ-400 3412.9 Provided by WHU-TLS 36.4%
4 WHU-TLS Heritage building 6 VZ-400 5876.5 Provided by WHU-TLS 52.1%

Gymnasium CHCNAV-AU20 261.3
1 Gymnasium Self-built 1 Mid-360 429.8 Handcraft + T-ICP 49.9%
2 Gymnasium Self-built 2 Mid-360 913.0 Handcraft + T-ICP 4.7%
3 Gymnasium Self-built 3 Mid-360 252.4 Handcraft + T-ICP 22.6%

Square LJYY-FT1500 88.2

1 WHU-TLS Campus 1 VZ-400 3440.0 Provided by WHU-TLS 74.8%
2 WHU-TLS Campus 2 VZ-400 1782.2 Provided by WHU-TLS 65.0%
3 WHU-TLS Campus 3 VZ-400 2255.0 Provided by WHU-TLS 84.4%
4 WHU-TLS Campus 4 VZ-400 2700.8 Provided by WHU-TLS 85.1%
5 Square Self-built 1 Mid-360 90.8 Handcraft + T-ICP 54.1%
6 Square Self-built 2 RS-Bpearl 824.1 Handcraft + T-ICP 43.7%
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LJYY-FT1500 [52] is an airborne laser radar system developed by LuoJiaYiYun. It
was mounted on a multi-rotor DJI M300 RTK [53] UAV to generate base maps for the
construction and campus datasets. During the operation, the UAV flew automatically on
a predefined course at an altitude of approximately 300 m and a speed of about 8 m/s.
CHCNAV-AU20 [54] is a multi-platform-available mobile mapping system equipped with
an integrated navigation system (INS) to obtain accurate laser scans. We fixed it on a mobile
trolley to provide the base map for the gymnasium dataset. It is worth noting that the data
collection process for base maps follows general surveying standards and has not been
deliberately densified or refined. The 3D terrestrial laser scanner RIEGL VZ-400 [55] is
capable of providing long-range and high-precision point clouds. In the public benchmark
WHU-TLS [56], the WHU-TLS heritage building dataset and the WHU-TLS campus dataset
were captured using the RIEGL VZ-400 laser scanner, which we consider as a local scan
from a stationary robot. The self-built data come from LiDAR SLAM. Livox Mid-360 [57] is
a mixed solid-state LiDAR that delivers 3D perception in 360 degrees. We used a handheld
device and employed the FAST-LIO2 algorithm [58] for localization, treating each local
point cloud as provided by a single robot. Robosense bpearl is a super-wide field-of-view
(FOV) mechanical LiDAR with 32 hemispherical scan lines. We utilized the handheld
device prototype designed by Duan [59] as a single robot to provide a local scan of the
campus dataset. The scan points are downsampled since our bin-wise descriptor does not
require dense point clouds. The overlaps between the base map and local scans range from
4.7% to 85.1%, and the point densities vary significantly. These differences pose significant
challenges for global localization. The laser scanners and platforms used in the experiments
are shown in Figure 8.
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4.2. Evaluation Criteria

The global localization accuracy is evaluated in terms of the axis-angle rotation error,
translation error, and successful localization rate (SLR). Letting the estimated transfor-
mation matrix from the local scan to base map be [RL−R|tL−R] and the ground truth be
[RGT|tGT], the axis-angle rotation error eθ and translation error et are calculated as

eθ = across
(

tr(RL−R·RGT
−1)−1

2

)
et = ∥ tL−R − tGT ∥

(15)

where TR(·) denotes the trace of a matrix.
We use the successful localization (SL) to indicate whether a global localization attempt

is successful. SL is defined as

SL =

{
1, eθ < σθ ∧ et < σt
0, otherwise

(16)
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where σθ and σt are predefined thresholds for rotation and translation errors, respectively.
In this paper, they are set to 5.0◦ and 3.0 m, respectively. The SLR is then calculated as

SLR =
Ns

Ntotal
(17)

where Ns is the number of successful localizations and Ntotal is the total number of localiza-
tion attempts.

4.3. Parameter Settings

Table 2 shows the parameter settings of the proposed solution. The subsequent
experiments are conducted based on these parameter settings.

Table 2. The parameter settings of the proposed solution.

Parameters Symbol Description Value

Block size L The block size of reference scan 2.0 m
Search radius rre f The search radius of reference scan 50 m for LiDAR SLAM and 100 m for TLS
Distance threshold σd The distance threshold for keyframe selection 2.0 m
Radial partition Nr The number of radial partitions 20
Azimuthal partition Ns The number of azimuthal partitions 60
Descriptor range rmax The max range of co-view context descriptor 50 m for LiDAR SLAM and 100 m for TLS
Overlap rate ϵ The overlap rate for trimmed ICP 60%

The parameters L and σd are the block size of reference scan and the distance threshold
for keyframe selection, respectively, which impact the number of VRSs and VLSs. Smaller
L and σd result in more virtual scans with shorter intervals, leading to better localization
effectiveness but longer runtime and vice versa. Typically, L and σd are set to equal to
maintain a consistent sampling interval. Figure 9 illustrates the SLR and average runtime
for each dataset under different configurations of L and σd. When L and σd are set to 1.0 m
or 2.0 m, all three datasets maintain a 100% SLR. As L and σd increase further, the SLR
gradually decreases. Balancing the runtime efficiency and localization effectiveness, these
two parameters are set to 2.0 m in our experiments.
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The parameter rref is the search radius for constructing VRSs. It is adjusted according
to the measurement range of the laser scanner. If the local scan is obtained by an MLS
method like LiDAR SLAM, it is initially processed to construct VLSs, which are then
matched with the VRSs. In this case, the search radius rref is set to the measurement range
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of the mobile laser scanning device, typically around 50 m. If the local scan originates
from single-station laser scanning, such as TLS, the entire scan is matched with the VRS.
Therefore, the parameter rref is set larger, typically around 100 m, corresponding to the
measurement range of TLS devices.

The parameters Nr, Ns, and rmax are associated with the co-view context descriptor.
Nr and Ns control the number of bins in the descriptor. They are set to 20 and 60 by default
based on the experimental findings from scan context [6] and skyline context [34]. The
parameter rmax controls the range of the descriptor and is typically set to be equal to rref.

The parameter ϵ represents the overlap rate between point clouds in trimmed ICP. We
empirically set it to 60%.

4.4. Experiment Results

Table 3 lists the number of VLSs and VRSs generated from each dataset during the
global localization process. Local scans from the WHU-TLS dataset have only one VLS
because we consider them as stationary robots. Figures 10–12 illustrate the results of global
localization for the three datasets and offer additional details. The point clouds in the
figures are displayed from a bird’s-eye view. In the overview, the base maps are depicted by
gray points, while the local scans are distinguished by different colors. In the detailed views,
the local scans are visualized with colored ribbons to indicate elevation. The localization
results depicted in the figures demonstrate that our solution effectively addresses various
scenarios involving heterogeneous scans and achieves good performance.

Table 3. The number of VRSs and VLSs.

Reference Scan #VRS Local Scan #VLS

Construction ALS point cloud 1535

WHU-TLS Heritage building 3 1
WHU-TLS Heritage building 4 1
WHU-TLS Heritage building 5 1
WHU-TLS Heritage building 6 1

Gymnasium MLS point cloud 9527
Gymnasium Self-built 1 223
Gymnasium Self-built 2 245
Gymnasium Self-built 3 176

Square ALS point cloud 8360

WHU-TLS Campus 1 1
WHU-TLS Campus 2 1
WHU-TLS Campus 3 1
WHU-TLS Campus 4 1
Square Self-built 1 154
Square Self-built 2 719

In the construction dataset, the base map is provided by ALS, while all local scans
are acquired by TLS. This represents a special case in multi-robot global localization
where all local robots are stationary. In such a scenario, the step of VLS construction
can be omitted, and the global localization problem simplifies into a pure LiDAR place
recognition and point cloud registration problem. However, the differences in scanning
perspectives, ranges, and resolutions between ALS and TLS significantly increase the
difficulty of registration. In Figure 10, all four local scans are successfully localized in the
base map, demonstrating that the co-view context descriptor proposed in this paper can
cope well with the heterogeneous scans.

In the gymnasium dataset, the reference and local scans are obtained homogeneously
using the MLS method. This exemplifies a typical case in multi-robot global localization
where all local robots are in motion. In this dataset, the scanning scenarios encompass
both indoor and outdoor environments with limited overlaps, and the three local robots
did not encounter each other during the operation. With the support of the proposed
communication-free solution, each robot can perform local and global localization simulta-
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neously under the guidance of the pre-set base map. As shown in Figure 11, the successful
localization indicates that our base-map-guided global LiDAR localization solution is effective.
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the localization results, and the top and bottom figures show detailed views of each localized scan.

In the square dataset, the base map is provided by ALS, while the local scans consist of
TLS and MLS acquired using different devices. We consider this to be a complex scenario
in multi-robot systems global localization, as the scans are totally hybrid. The dataset
comprises four different laser scanning modes: aerial-based laser scanning, ground-based
single-station laser scanning, mechanical LiDAR mobile scanning, and mixed solid-state
LiDAR mobile scanning. The variations arise not only between the local scan and the base
map but also among local scans themselves, posing huge challenges for heterogeneous
multi-robot systems global localization. However, due to the effective extraction of co-
visible regions by the proposed discriminative co-view context descriptor, all six sets of
heterogeneous scans in Figure 12 can be successfully localized in the base map.

4.5. Quantitative Analysis
4.5.1. Successful Localization Rate Validation

To validate the successful localization rate of our approach, a total of 30 evenly dis-
tributed local scans were additionally collected using a handheld Livox Mid-360 [57] laser
scanning device on the campus of Wuhan University. These 30 local scans are globally lo-
calized with guidance from the ALS base map, as shown in Figure 13. The SLR is calculated
according to Equation (17). Among these, 28 local scans are successfully globally localized,
resulting in a successful localization rate of 93.3%.
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Figure 13. The localization results of the SLR validation experiment. Green labels indicate successfully
localized scans, while red labels indicate failed localized scans.

The 12th and 13th local scans are not successfully localized. The reason is that these
two local scans were collected on Luojia Mountain, where the trees are tall and dense.
On the one hand, the dense canopy almost completely obscures the ground in the ALS
base map, preventing the construction of virtual scans. On the other hand, the lack of
distinguishable features among the trees leads to ambiguities during the registration of
local scans with the base map.

4.5.2. Accuracy Evaluation

According to Equation (15), the rotation and translation errors of the proposed local-
ization approach are evaluated, as listed in Table 4. In the public benchmark WHU-TLS,
ground truth transformations between neighboring point clouds are provided. We calculate
the transformation between two neighboring point clouds after global localization (RL−R
and tL−R in Equation (15)), and it is compared with the ground truth (RGT and tGT in
Equation (15)) to reflect the localization accuracy. As for the self-built datasets, we roughly
localize the local scan to the base map in a handcraft manner and then compute the ground
truth using the trimmed ICP method. The transformation between the local scans and
the base map (RL−R and tL−R in Equation (15)) is calculated and then compared with the
ground truth (RGT and tGT in Equation (15)) to show the localization accuracy.

It is found that the rotation and translation errors range from 0.013◦ to 1.391◦ and from
0.058 m to 0.675 m, respectively. The rotation error between WHU-TLS heritage building 4
and WHU-TLS heritage building 5 stands out as significantly larger than others. This result
stems from the symmetrical structure of the constructions, which causes the descriptors
to be ambiguous in estimating the yaw angle. Moreover, the rotation and translation
errors between the Square Self-built 2 and Square ALS point cloud are both large, with
two underlying reasons. First, limited by sensor performance and SLAM algorithms, the
local scan accuracy of Square Self-built 2 is inherently lower compared to scans captured
by other scanning modes. In Figure 14, it is evident that the walls in Square Self-built
2 exhibit layering due to repeated scanning, which is not observed in the Square ALS point
cloud. Second, the region of Square Self-built 2 is densely covered with trees that obscure
the co-visibility between the aerial-based scan and the ground-based scan from different
perspectives. These two factors together account for the significant error.
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Table 4. The rotation and translation errors of each scan.

Dataset To Be Aligned Reference Rotation
Error (deg)

Translation
Error (m)

Construction

WHU-TLS Heritage building 3 WHU-TLS Heritage building 4 0.091 0.058
WHU-TLS Heritage building 4 WHU-TLS Heritage building 5 1.391 0.185
WHU-TLS Heritage building 5 WHU-TLS Heritage building 6 0.103 0.071
WHU-TLS Heritage building 6 Construction ALS point cloud 1.065 0.065

Gymnasium
Gymnasium Self-built 1 Gymnasium MLS point cloud 0.013 0.080
Gymnasium Self-built 2 Gymnasium MLS point cloud 0.045 0.120
Gymnasium Self-built 3 Gymnasium MLS point cloud 0.097 0.184

Square

WHU-TLS Campus 1 WHU-TLS Campus 2 0.018 0.256
WHU-TLS Campus 2 WHU-TLS Campus 3 0.080 0.069
WHU-TLS Campus 3 WHU-TLS Campus 4 0.017 0.145
WHU-TLS Campus 4 Square ALS point cloud 0.054 0.453
Square Self-built 1 Square ALS point cloud 0.114 0.169
Square Self-built 2 Square ALS point cloud 0.067 0.675
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We compare the performance of the proposed method with two state-of-the-art multi-
view point cloud registration methods: the geometry-based HL-MRF method [27] and the
deep-learning-based SGHR method [31]. The following work is done to ensure the fairness
of the comparison: first, in each set of experiments, the base map is used to provide a
reference for registration. Second, the point clouds transformed by the SGHR method are
further refined with trimmed ICP alignment, as this refinement step is not included in the
end-to-end process of SGHR. Table 5 lists the quantitative evaluation results of the global
localization. It is important to note that we only included scans that meet the successful
localization criteria in the calculation of the mean error and root mean square error (RMSE).
Otherwise, the localization errors from failed attempts would significantly skew the results.
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Table 5. Quantitative evaluation of global localization.

Dataset Method
Rotation Error (deg) Translation Error (m)

SLR (%)
Average RMSE Average RMSE

Construction
HL-MRF 0.056 0.058 0.012 0.014 75%
SGHR 0.337 0.337 0.302 0.302 25%
Ours 0.663 0.879 0.095 0.108 100%

Gymnasium
HL-MRF 0.315 0.346 0.661 0.724 100%
SGHR 1.697 1.812 3.186 3.593 75%
Ours 0.052 0.062 0.128 0.135 100%

Square
HL-MRF 0.096 0.102 0.109 0.155 50%
SGHR 0.815 1.031 0.996 1.180 33%
Ours 0.058 0.068 0.295 0.361 100%

Our method maintains an advantage in the SLR criteria, achieving a 100% successful
localization rate for all three datasets, with average rotation and translation errors within
1◦ and 0.30 m, respectively. For the construction dataset, the HL-MRF method exhibits
the highest rotation and translation accuracy. This is because the four local scans in the
construction dataset all originate from WHU-TLS dataset. The HL-MRF method, specifically
designed for multi-view point cloud registration, can accurately solve the relative poses of
the homogeneous local scans. However, a 75% SLR of HL-MRF means that one out of four
localizations failed. This failure occurred between the WHU-TLS heritage building 6 and the
construction ALS point cloud. This indicates that while the HL-MRF method can effectively
perform mutual localization of homogeneous scans, it struggles with global localization of
heterogeneous scans across different viewpoints due to a lack of targeted design. In the
gymnasium dataset, the low overlap between local scans and the reference scan results
in larger errors for both the HL-MRF and SGHR methods. Our method constructs virtual
scans based on the constraints of the robot’s trajectory. This approach can be viewed as
generating multiple smaller data processing units for place recognition. Consequently,
it ensures that our method can effectively handle low-overlap cases. The square dataset
consists of scans obtained through four different scanning modes, leading to significant
variations in scanning perspectives, ranges, resolutions, and even periods among local scans
and the base map. The heterogeneity poses a huge challenge in establishing associations
between scans using the HL-MRF and SGHR methods. Nevertheless, our method still
maintains sub-meter-level global localization accuracy for this complex dataset.

4.5.3. Runtime Analysis

The time consumption during the local scanning process of the gymnasium dataset
is listed in Table 6. Since the candidate descriptors are pre-generated and stored in each
robot, we solely focus on the time consumed by a single robot for generating descriptors,
detecting co-visible regions, and matching descriptors during online operation. It is found
that the runtime is primarily concentrated on descriptor matching as it involves similarity
calculation with candidate descriptors. For each laser frame, the total runtime is about
50 ms. Considering that the typical scanning frequency of LiDAR used for SLAM is around
10 Hz, we conclude that the proposed approach based on co-view context descriptors can
adequately meet the requirements for online processing.

Table 6. Runtime analysis of the gymnasium dataset (ms).

Sequence Descriptor
Generation

Co-Visible
Region Detection

Descriptor
Matching Total

Self-built 1 1.522 1.973 47.715 51.210
Self-built 2 2.723 4.227 47.202 54.152
Self-built 3 1.490 1.979 47.198 50.667
Average 1.912 2.726 47.372 52.010
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5. Discussion

In general, researchers aim to achieve global localization for multiple robots without
relying on prior information, such as pre-set base maps. This is considered a standard
collaborative SLAM problem. However, in specific scenarios—such as in mapping tasks
where high-precision point cloud maps are required, in complex environments where mu-
tual overlapping scans are difficult to obtain, or in applications where data fusion between
heterogeneous platforms is involved—the base-map-guided LiDAR localization solution
for heterogeneous robots proposed in this paper demonstrates superior performance. From
a strategic perspective, we address the LiDAR global localization problem in multi-robot
systems as a multi-view point cloud registration issue that leverages the prior knowledge
from pre-set base maps. This approach naturally achieves superior results compared to
existing methods, where multi-robot LiDAR localization without prior knowledge depends
exclusively on overlapping regions between robots to estimate their global poses. For
example, in a chain arrangement of three robots, the second robot shares overlapping
regions with both the first and third robots, while the first and third robots do not overlap
with each other. Using the coordinate system of the first robot as the global reference,
the global pose of the second robot can be determined based on its overlap with the first
robot, followed by the derivation of the third robot’s global pose based on its overlap with
the second one. However, this process results in cumulative localization errors from the
second to the third robot, and as the number of robots increases, this accumulation further
undermines the reliability of subsequent robots’ localization. In contrast, our approach
utilizes the base map as a global reference, directly aligning each robot to the base map’s
coordinate system, thereby effectively preventing error accumulation. Consequently, the
global localization strategy proposed in this study outperforms current state-of-the-art
geometry-based [27] and deep-learning-based [31] methods in both localization success
rate and accuracy.

Nevertheless, localizing heterogeneous point clouds remains challenging, and ad-
dressing this issue is a central focus of our work., localizing heterogeneous point clouds
remains challenging, and addressing this issue is a central focus of our work. In this paper,
we develop a novel co-view context descriptor capable of detecting co-visible regions in
heterogeneous point clouds. Inspired by the scan context descriptor [6], the co-view context
descriptor enables efficient and concise feature encoding of point clouds. In addition to this,
it provides adaptability to heterogeneous point clouds—an aspect generally overlooked by
conventional registration methods. The primary challenges in heterogeneous aerial and
ground point cloud localization involve the differences in scanning viewpoint, perspec-
tives, ranges, and resolutions. Our approach begins by constructing virtual scans and uses
ground information to mitigate viewpoint differences between the aerial and ground point
clouds. Additionally, the range of the virtual scan is adjusted according to the sensor’s
configuration to eliminate the differences in scanning ranges. A descriptor is then con-
structed using the bin-wise encoding method, in which a representative feature is selected
for all points within each bin, thus mitigating the impact of resolution differences. Finally,
co-visible regions between aerial and ground platforms are identified at the descriptor
level, effectively addressing the influence of perspectives differences. These advantages
are clearly demonstrated in comparative experiments, where our method exhibits superior
performance when the base map and robot point clouds are derived from scans taken from
different sources. Moreover, we believe that the co-view context descriptor holds great
potential and can be applied to various other scenarios, such as real-time data association
in heterogeneous aerial–ground collaborative SLAM.

However, the proposed method exhibits limitations when processing regions densely
populated with trees, both in terms of the successful localization rate and localization
accuracy. Two main factors likely contribute to this: first, from a ground-level perspective,
different trees often exhibit similar structural features, making it challenging to achieve
high localization accuracy for individual robots; second, the dense tree canopy obstructs the
line of sight between aerial and ground platforms, limiting the effectiveness of the co-view
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context descriptor and thereby impacting multi-robot localization under the guidance of
the base map. Future work will need to incorporate data fusion with other sensors to
address the challenge of achieving robust localization in forested environments.

6. Conclusions

In this paper, we propose a global LiDAR localization solution for heterogeneous
robots using a pre-set base map as a reference. This solution can be regarded as conduct-
ing place recognition of small-scale point clouds within a large-scale point cloud or as
globally registering point clouds acquired through different laser scanning modes. By
independently localizing each scan under the guidance of the pre-set base map, the risk of
single-point failures or communication disruptions in global localization can be mitigated.
Experimental results demonstrate that the proposed solution achieves good localization
performance across different environments, robot types, scanning modes, and point cloud
characteristics, offering reliable localization support for mobile robots. After global lo-
calization, the fused point cloud can compensate for blind spots and scanning defects in
different perspectives, thereby enhancing the ability to represent indoor and outdoor scenes
uniformly. In conclusion, our solution offers great application scenarios for existing HD
maps. It can effectively support various downstream tasks such as geospatial information
extraction, cultural heritage preservation, and real-world 3D reconstruction.

Future work will focus on two aspects. First, the proposed approach only estimates
the pose relationship between the local scan and the base map. Considering scenarios
where there are overlapping regions between multiple local scans, a multi-view point
cloud registration step will be introduced to establish constraints between mobile robots.
Further pose optimization will be conducted to achieve global consistency. Second, we
currently only consider LiDAR as the external sensor for global localization. The co-view
context descriptor will be expanded to adapt various sensors (e.g., RGB cameras, millimeter-
wave radar, etc.) to address global localization problems for cross-modal heterogeneous
mobile robots.
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